1,272
Views
0
CrossRef citations to date
0
Altmetric
Articles

How to build vegetation patches in hydraulic studies: a hydrodynamic-ecological perspective on a biological object

, , , &
Pages 105-120 | Received 19 Apr 2022, Accepted 08 Jan 2023, Published online: 13 Feb 2023

References

  • Aberle J, Järvelä J. 2013. Flow resistance of emergent rigid and flexible floodplain vegetation. J Hydra Res. 51(1):33–45.
  • Bouma T, De Vries M, Low E, Peralta G, Tánczos I, van de Koppel J, Herman PMJ. 2005. Trade‐offs related to ecosystem engineering: a case study on stiffness of emerging macrophytes. Ecology. 86(8):2187–2199.
  • Bouma T, Friedrichs M, Van Wesenbeeck B, Temmerman S, Graf G, Herman P. 2009. Density‐dependent linkage of scale‐dependent feedbacks: a flume study on the intertidal macrophyte Spartina anglica. Oikos. 118(2):260–268.
  • Bouma TJ, Temmerman S, van Duren LA, Martini E, Vandenbruwaene W, Callaghan DP, Balke T, Biermans G, Klaassen PC, van Steeg P, et al. 2013. Organism traits determine the strength of scale-dependent bio-geomorphic feedbacks: a flume study on three intertidal plant species. Geomorphology. 180–181:57–65.
  • Chen Z, Jiang C, Nepf H. 2013. Flow adjustment at the leading edge of a submerged aquatic canopy. Water Resour Res. 49(9):5537–5551.
  • Chen Z, Ortiz A, Zong L, Nepf H. 2012. The wake structure behind a porous obstruction and its implications for deposition near a finite patch of emergent vegetation. Water Resour Res. 48(9):1–12.
  • Cornacchia L, Folkard A, Davies G, Grabowski RC, Koppel J, Wal D, Wharton G, Puijalon S, Bouma TJ. 2019a. Plants face the flow in V formation: a study of plant patch alignment in streams. Limnol Oceanogr. 64(3):1087–1102.
  • Cornacchia L, Licci S, Nepf H, Folkard A, Wal D, Koppel J, Puijalon S, Bouma TJ. 2019b. Turbulence‐mediated facilitation of resource uptake in patchy stream macrophytes. Limnol Oceanogr. 64(2):714–727.
  • Cornacchia L, Licci S, Van De Koppel J, Van Der Wal D, Wharton G, Puijalon S, Bouma TJ. 2016. Flow velocity and morphology of a submerged patch of the aquatic species Veronica anagallis-aquatica L. Hydrodynamic and mass transport at freshwater aquatic interfaces. Cham: Springer; p. 141–152.
  • Cornacchia L, Riviere N, Soundar Jerome JJ, Doppler D, Vallier F, Puijalon S. 2022. Flow and wake length downstream of live submerged vegetation patches: how do different species and patch configurations create sheltering in stressful habitats? Water Resour Res. 58(3):1–21.
  • Cornacchia L, van de Koppel J, van der Wal D, Wharton G, Puijalon S, Bouma TJ. 2018. Landscapes of facilitation: how self-organized patchiness of aquatic macrophytes promotes diversity in streams. Ecology. 99(4):832–847.
  • Cornacchia L, Lapetoule G, Licci S, Basquin H, Puijalon S. 2023. Data underlying the publication: how to build vegetation patches in hydraulic studies: a hydrodynamic-ecological perspective on a biological object [Data Set]. 4TU.ResearchData. https://doi.org/10.4121/21786434
  • De Lima PH, Janzen JG, Nepf HM. 2015. Flow patterns around two neighboring patches of emergent vegetation and possible implications for deposition and vegetation growth. Environ Fluid Mech. 15(4):881–898.
  • Folkard AM. 2011. Flow regimes in gaps within stands of flexible vegetation: laboratory flume simulations. Environ Fluid Mech. 11(3):289–306.
  • Folkard AM. 2019. Biophysical interactions in fragmented marine canopies: fundamental processes, consequences, and upscaling. Front Mar Sci. 6:279.
  • Fonseca MS, Cahalan JA. 1992. A preliminary evaluation of wave attenuation by four species of seagrass. Estuarine Coastal Shelf Sci. 35(6):565–576.
  • Forman RT. 1995. Some general principles of landscape and regional ecology. Landscape Ecol. 10(3):133–142.
  • Franklin P, Dunbar M, Whitehead P. 2008. Flow controls on lowland river macrophytes: a review. Sci Total Environ. 400(1–3):369–378.
  • Gessner F. 1955. Hydrobotanik, Die Physiologischen Grundlagen der Pflanzenverbreitung in Wasser. I. Berlin: Energiehaushalt. VEB Deutscher Verlag der Wissenschaften.
  • Ghisalberti M, Nepf H. 2006. The structure of the shear layer in flows over rigid and flexible canopies. Environ Fluid Mech. 6(3):277–301.
  • Hamann E, Puijalon S. 2013. Biomechanical responses of aquatic plants to aerial conditions. Ann Bot. 112(9):1869–1878.
  • Haslam SM. 1978. River plants: The macrophytic vegetation of watercourses. Cambridge University Press; p. 396.
  • Kondziolka JM, Nepf HM. 2014. Vegetation wakes and wake interaction shaping aquatic landscape evolution. Limnol Oceanogr Fluids Environ. 4(1):106–119.
  • Kouwen N, Unny TE. 1973. Flexible roughness in open channels. J Hydr Div. 99(5):713–728.
  • Licci S, Delolme C, Marmonier P, Philippe M, Cornacchia L, Gardette V, Bouma T, Puijalon S. 2016. Effect of aquatic plant patches on flow and sediment characteristics: the case of Callitriche platycarpa and Elodea nuttallii. Hydrodynamic and mass transport at freshwater aquatic interfaces. Cham: Springer; p. 129–140.
  • Licci S, Nepf H, Delolme C, Marmonier P, Bouma TJ, Puijalon S. 2019. The role of patch size in ecosystem engineering capacity: a case study of aquatic vegetation. Aquat Sci. 81(3):41.
  • Liu C, Nepf H. 2016. Sediment deposition within and around a finite patch of model vegetation over a range of channel velocity. Water Resour Res. 52(1):600–612.
  • Łoboda A, Bialik RJ, Karpiński M, Przyborowski Ł. 2018a. Seasonal changes in the biomechanical properties of Elodea canadensis Michx. Aquat Bot. 147:43–51.
  • Łoboda A, Przyborowski Ł, Karpiński M, Bialik R, Nikora V. 2018b. Biomechanical properties of aquatic plants: the effect of test conditions. Limnol Oceanogr Methods. 16(4):222–236.
  • Luhar M, Nepf HM. 2011. Flow‐induced reconfiguration of buoyant and flexible aquatic vegetation. Limnol Oceanogr. 56(6):2003–2017.
  • Marin‐Diaz B, Bouma TJ, Infantes E. 2020. Role of eelgrass on bed‐load transport and sediment resuspension under oscillatory flow. Limnol Oceanogr. 65(2):426–436.
  • Marion A, Nikora V, Puijalon S, Bouma T, Koll K, Ballio F, Tait S, Zaramella M, Sukhodolov A, O'Hare M, et al. 2014. Aquatic interfaces: a hydrodynamic and ecological perspective. Journal of Hydraulic Research. 52(6):744–758.
  • Marjoribanks TI, Hardy RJ, Lane SN, Tancock MJ. 2017. Patch‐scale representation of vegetation within hydraulic models. Earth Surf Process Landforms. 42(5):699–710.
  • Marjoribanks TI, Lague D, Hardy R, Boothroyd R, Leroux J, Mony C, Puijalon S. 2019. Flexural rigidity and shoot reconfiguration determine wake length behind saltmarsh vegetation patches. J Geophys Res Earth Surf. 124(8):2176–2196.
  • Meire DW, Kondziolka JM, Nepf HM. 2014. Interaction between neighboring vegetation patches: impact on flow and deposition. Water Resour Res. 50(5):3809–3825.
  • Murray A, Knaapen M, Tal M, Kirwan M. 2008. Biomorphodynamics: physical‐biological feedbacks that shape landscapes. Water Resour Res. 44(11):1–18.
  • Niklas KJ. 1992. Plant biomechanics: an engineering approach to plant form and function. Chicago: University of Chicago press.
  • Paul M, Bouma T, Amos CL. 2012. Wave attenuation by submerged vegetation: combining the effect of organism traits and tidal current. Mar Ecol Prog Ser. 444:31–41.
  • Przyborowski Ł, Łoboda AM, Bialik RJ, Västilä K. 2019. Flow field downstream of individual aquatic plants – experiments in a natural river with Potamogeton crispus L. and Myriophyllum spicatum L. Hydrol Processes. 33(9):1324–1337.
  • Puijalon S, Bornette G. 2004. Morphological variation of two taxonomically distant plant species along a natural flow velocity gradient. New Phytol. 163(3):651–660.
  • Puijalon S, Bouma TJ, Douady CJ, van Groenendael J, Anten NP, Martel E, Bornette G. 2011. Plant resistance to mechanical stress: evidence of an avoidance–tolerance trade‐off. New Phytol. 191(4):1141–1149.
  • Puijalon S, Bouma TJ, Van Groenendael J, Bornette G. 2008a. Clonal plasticity of aquatic plant species submitted to mechanical stress: escape versus resistance strategy. Ann Bot. 102(6):989–996.
  • Puijalon S, Léna JP, Rivière N, Champagne JY, Rostan JC, Bornette G. 2008b. Phenotypic plasticity in response to mechanical stress: hydrodynamic performance and fitness of four aquatic plant species. New Phytol. 177(4):907–917.
  • Rietkerk M, van de Koppel J. 2008. Regular pattern formation in real ecosystems. Trends Ecol Evol. 23(3):169–175.
  • Rominger JT, Nepf HM. 2014. Effects of blade flexural rigidity on drag force and mass transfer rates in model blades. Limnol Oceanogr. 59(6):2028–2041.
  • Sand-Jensen K, Mebus JR. 1996. Fine-scale patterns of water velocity within macrophyte patches in streams. Oikos. 76(1):169–180.
  • Sand‐Jensen K. 1998. Influence of submerged macrophytes on sediment composition and near‐bed flow in lowland streams. Freshwater Biol. 39(4):663–679.
  • Sand‐Jensen K, Madsen TV. 1992. Patch dynamics of the stream macrophyte, Callitriche cophocarpa. Freshwater Biol. 27(2):277–282.
  • Schoelynck J, Creëlle S, Buis K, De Mulder T, Emsens W-J, Hein T, Meire D, Meire P, Okruszko T, Preiner S, et al. 2018. What is a macrophyte patch? Patch identification in aquatic ecosystems and guidelines for consistent delineation. Ecohydrol Hydrobiol. 18(1):1–9.
  • Schoelynck J, Meire D, Bal K, Buis K, Troch P, Bouma T, Meire P, Temmerman S. 2013. Submerged macrophytes avoiding a negative feedback in reaction to hydrodynamic stress. Limnologica. 43(5):371–380.
  • Siniscalchi F, Nikora VI, Aberle J. 2012. Plant patch hydrodynamics in streams: mean flow, turbulence, and drag forces. Water Resour Res. 48(1):1–14.
  • Sukhodolov A, Sukhodolova T, Aberle J. 2022. Modelling of flexible aquatic plants from silicone syntactic foams. J Hydrau Res. 60(1):173–181.
  • Sukhodolova T. 2008. Studies of turbulent flow in vegetated river reaches with implications for transport and mixing processes. Berlin, Mathematisch-Naturwissenschaftliche Fakultät II: Humboldt-Universität zu.
  • Temmerman S, Meire P, Bouma TJ, Herman PM, Ysebaert T, De Vriend HJ. 2013. Ecosystem-based coastal defence in the face of global change. Nature. 504(7478):79–83.
  • Tinoco RO, Coco G. 2016. A laboratory study on sediment resuspension within arrays of rigid cylinders. Adv Water Resour. 92:1–9.
  • Tschisgale S, Löhrer B, Meller R, Fröhlich J. 2021. Large eddy simulation of the fluid–structure interaction in an abstracted aquatic canopy consisting of flexible blades. J Fluid Mech. 916:A43.
  • Vandenbruwaene W, Temmerman S, Bouma TJ, Klaassen PC, de Vries MB, Callaghan DP, van Steeg P, Dekker F, van Duren LA, Martini E, et al. 2011. Flow interaction with dynamic vegetation patches: implications for biogeomorphic evolution of a tidal landscape. J Geophys Res. 116(F1):n/a–n/a.
  • Vettori D, Nikora V. 2018. Flow–seaweed interactions: a laboratory study using blade models. Environ Fluid Mech. 18(3):611–636.
  • Vettori D, Nikora V. 2019. Flow-seaweed interactions of Saccharina latissima at a blade scale: turbulence, drag force, and blade dynamics. Aquat Sci. 81(4):1–16.
  • Vettori D, Rice SP. 2020. Implications of environmental conditions for health status and biomechanics of freshwater macrophytes in hydraulic laboratories. J Ecohydraul. 5(1):71–83.
  • Yang J, Chung H, Nepf H. 2016. The onset of sediment transport in vegetated channels predicted by turbulent kinetic energy. Geophys Res Lett. 43(21):11,261–211,268.
  • R Core Team. 2020. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.
  • Zhang X, Nepf H. 2022. Reconfiguration of and drag on marsh plants in combined waves and current. J Fluids Struct. 110:103539.