2,647
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

The effects of focused ultrasound pulsation of nucleus accumbens in opioid-dependent rats

ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, , , ORCID Icon & show all
Pages 748-759 | Received 28 Feb 2019, Accepted 11 Jun 2019, Published online: 09 Jul 2019

References

  • Compton P, Darakjian J, Miotto K. Screening for addiction in patients with chronic pain and “problematic” substance use: evaluation of a pilot assessment tool. J Pain Symptom Manage. 1998;16(6):355–363.
  • Koob GF, Volkow ND. Neurocircuitry of addiction. Neuropsychopharmacology. 2010;35(1):217–238.
  • Fecteau S, Fregni F, Boggio PS, et al. Neuromodulation of decision-making in the addictive brain. Subst Use Misuse. 2010;45(11):1766–1786.
  • Kuhn J, Lenartz D, Huff W, et al. Remission of alcohol dependency following deep brain stimulation of the nucleus accumbens: valuable therapeutic implications? J Neurol, Neurosurg & Psychiatry. 2007;78(10):1152–1153.
  • Liu HY, Jin J, Tang JS, et al. Preclinical study: chronic deep brain stimulation in the rat nucleus accumbens and its effect on morphine reinforcement. Addict Biol. 2008;13(1):40–46.
  • Wang L, Wang G, Zhao Y. Effect of deep brain stimulation of nucleus accumbens on psychological morphine dependence in rats. Chin J Minimally Invasive Neurosurg. 2008;5:016.
  • Mihran RT, Barnes FS, Wachtel H. Temporally-specific modification of myelinated axon excitability in vitro following a single ultrasound pulse. Ultrasound Med Biol. 1990;16(3):297–309.
  • Baizabal Carvallo JF, Simpson R, Jankovic J. Diagnosis and treatment of complications related to deep brain stimulation hardware. Mov Disord. 2011;26(8):1398–1406.
  • Tyler WJ, Tufail Y, Finsterwald M, et al. Remote excitation of neuronal circuits using low-intensity, low-frequency ultrasound. Public Libr Sci. 2008;3(10):e3511.
  • Tyler WJ. Noninvasive neuromodulation with ultrasound? A continuum mechanics hypothesis. Neuroscientist. 2011;17(1):25–36.
  • Bystritsky A, Korb AS, Douglas PK, et al. A review of low-intensity focused ultrasound pulsation. Brain Stimul. 2011;4(3):125–136.
  • Min BK, Bystritsky A, Jung KI, et al. Focused ultrasound-mediated suppression of chemically-induced acute epileptic EEG activity. BMC Neurosci. 2011;12(1):23.
  • Fry WJ, Fry RB. A possible mechanism involved in the conduction process of thin sheathed nerve fibers. J Cell Physiol. 1950;36(2):229–239.
  • Heckman JD, Ryaby JP, McCabe J, et al. Acceleration of tibial fracture-healing by non-invasive, low-intensity pulsed ultrasound. J Bone Joint Surg-Am Volume. 1994;76(1):26–34.
  • Legon W, Sato TF, Opitz A, et al. Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans. Nat Neurosci. 2014;17(2):322–329.
  • Roma PG, Riley AL. Apparatus bias and the use of light and texture in place conditioning. Pharmacol Biochem Behav. 2005;82(1):163–169.
  • Ferbinteanu J, McDonald RJ. Dorsal/ventral hippocampus, fornix, and conditioned place preference. Hippocampus. 2001;11(2):187–200.
  • Mucha RF, Van Der Kooy D, O’Shaughnessy M, et al. Drug reinforcement studied by the use of place conditioning in rat. Brain Res. 1982;243(1):91–105.
  • Chen Q, Hou H, Feng J, et al. PET Imaging Reveals Brain Metabolic Changes in Adolescent Rats following Chronic Escalating Morphine Administration. Mol Imaging Biol. 2018;20(6):993–1000.
  • Moon S, Kang S, Shin H, et al. Morphine dependence is attenuated by treatment of 3, 4, 5-trimethoxy cinnamic acid in mice and rats. Neurochem Res. 2019;44(4):874–883.
  • Chen SL, Tao PL, Chu CH, et al. Low-dose memantine attenuated morphine addictive behavior through its anti-inflammation and neurotrophic effects in rats. J Neuroimmune Pharmacol. 2012;7(2):444–453.
  • Wang F, Jing X, Yang J, et al. The role of the insular cortex in naloxone-induced conditioned place aversion in morphine-dependent mice. Physiol Res. 2016;65(4):701.
  • Kubanek J, Shukla P, Das A, et al. Ultrasound elicits behavioral responses through mechanical effects on neurons and ion channels in a simple nervous system. J Neurosci. 2018;38(12):3081–3091.
  • Harvey EN. The effect of high frequency sound waves on heart muscle and other irritable tissues. Am J Physiol. 1929;91(1):284–290.
  • Tsui PH, Wang SH, Huang CC. In vitro effects of ultrasound with different energies on the conduction properties of neural tissue. Ultrasonics. 2005;43(7):560–565.
  • Bachtold MR, Rinaldi PC, Jones JP, et al. Focused ultrasound modifications of neural circuit activity in a mammalian brain. Ultrasound Med Biol. 1998;24(4):557–565.
  • Rinaldi PC, Jones JP, Reines F, et al. Modification by focused ultrasound pulses of electrically evoked responses from an in vitro hippocampal preparation. Brain Res. 1991;558(1):36–42.
  • Foley JL, Little JW, Vaezy S. Effects of high-intensity focused ultrasound on nerve conduction. Muscle Nerve. 2008;37(2):241–250.
  • Tufail Y, Matyushov A, Baldwin N, et al. Transcranial pulsed ultrasound stimulates intact brain circuits. Neuron. 2010;66(5):681–694.
  • Dalecki D. Mechanical bioeffects of ultrasound. Annu Rev Biomed Eng. 2004;6:229–248.
  • Dinno MA, Dyson M, Young SR, et al. The significance of membrane changes in the safe and effective use of therapeutic and diagnostic ultrasound. Phys Med Biol. 1989;34(11):1543.
  • O’Brien WD. Ultrasound-biophysics mechanisms. Prog Biophys Mol Biol. 2007;93:212–255.
  • Yoo SS, Kim H, Min BK, et al. Transcranial focused ultrasound to the thalamus alters anesthesia time in rats. NeuroReport. 2011;22(15):783–787.
  • Scarcelli T, Jordão JF, O’Reilly MA, et al. Stimulation of hippocampal neurogenesis by transcranial focused ultrasound and microbubbles in adult mice. Brain Stimul. 2014;7(2):304–307.
  • Hu Y, Zhong W, Wan JM, et al. Ultrasound can modulate neuronal development: impact on neurite growth and cell body morphology. Ultrasound Med Biol. 2013;39(5):915–925.