Publication Cover
Applied Earth Science
Transactions of the Institutions of Mining and Metallurgy
Volume 132, 2023 - Issue 3-4
67
Views
0
CrossRef citations to date
0
Altmetric
Articles

Assessment of landslide susceptibility of Pithoragarh, Uttarakhand (India) using logistic regression and multi-criteria decision-based analysis by analytical hierarchy process

ORCID Icon & ORCID Icon
Pages 178-186 | Received 10 Jun 2023, Accepted 11 Jul 2023, Published online: 24 Jul 2023

References

  • Ahmed KS, Basharat M, Riaz MT, Sarfraz Y, Shahzad A. 2021. Effect of soil microstructure on the small-strain shear modulus of saline soil. Arabian J Geosci. 14:1–19. doi:10.1007/s12517-020-06304-8.
  • Ali SA, Parvin F, Vojteková J, Costache R, Linh NTT, Pham QB, Ghorbani MA. 2021. GIS-based landslide susceptibility modeling: a comparison between fuzzy multi-criteria and machine learning algorithms. Geosci Front. 12:857–876. doi:10.1016/j.gsf.2020.09.004.
  • Anbalagan R. 1992. Landslide hazard evaluation and zonation mapping in mountainous Terrain. Eng Geol. 32:269–277. doi:10.1016/0013-7952(92)90053-2.
  • Batar AK, Watanabe T. 2021. Landslide susceptibility mapping and assessment using geospatial platforms and weights of evidence (WoE) method in the Indian Himalayan region: recent developments, gaps, and future directions. ISPRS Int J Geoinf. 10:114. doi:10.3390/ijgi10030114.
  • Bera A, Mukhopadhyay BP, Das D. 2019. Landslide hazard zonation mapping using multi-criteria analysis with the help of GIS techniques: a case study from Eastern Himalayas, Namchi, South Sikkim. Nat Hazards. 96:935–959. doi:10.1007/s11069-019-03580-w.
  • Bilwa LM, Yanthan MA, Madesh P, Hutti B. 2015. Identification of potential landslide hazard zonation mapping using geoinformatics for Kohima region, Nagaland, India. Int J Innovat Sci Eng Techn. 2:1–10.
  • Chauhan S, Sharma M, Arora MK. 2010. Landslide susceptibility zonation of the Chamoli region, Garhwal Himalayas, using logistic regression model. Landslides. 7:411–423. doi:10.1007/s10346-010-0202-3.
  • Chawla A, Chawla S, Pasupuleti S, Rao ACS, Sarkar K, Dwivedi R. 2018. Landslide susceptibility mapping in Darjeeling Himalayas, India. Adv Civil Eng. 2018:1–17. doi:10.1155/2018/6416492.
  • Chen W, Chai H, Zhao Z, Wang Q, Hong H. 2016. Relationship between water-conservation behavior and water education in Guangzhou, China. Environ Earth Sci. 75:1–13. doi:10.1007/s12665-015-4873-x.
  • Chowdhuri I, Pal SC, Arabameri A, Ngo PTT, Chakrabortty R, Malik S, Roy P. 2020. Ensemble approach to develop landslide susceptibility map in landslide dominated Sikkim Himalayan region, India. Environ Earth Sci. 79:1–28. doi:10.1007/s12665-020-09227-5.
  • Dam ND, Amiri M, Al-Ansari N, Prakash I, Le HV, Nguyen HBT, Pham BT. 2022. Evaluation of Shannon entropy and weights of evidence models in landslide susceptibility mapping for the pithoragarh district of Uttarakhand state, India. Adv Civil Eng. doi:10.1155/2022/6645007.
  • Das G, Lepcha K. 2019. Grain texture as a proxy to understand porosity, permeability and density in Chandra Basin, India. SN Appl Sci. 1:1–22. doi:10.1007/s42452-018-0001-3.
  • Das I, Sahoo S, Van Westen C, Stein A, Hack R. 2010. Landslide susceptibility assessment using logistic regression and its comparison with a rock mass classification system, along a road section in the northern Himalayas (India). Geomorphol. 114:627–637. doi:10.1016/j.geomorph.2009.09.023.
  • Das S, Sarkar S, Kanungo DP. 2023. A critical review on landslide susceptibility zonation: recent trends, techniques, and practices in Indian Himalaya. Nat Hazards. 115:23–72. doi:10.1007/s11069-022-05554-x.
  • Demir G. 2019. GIS-based landslide susceptibility mapping for a part of the north anatolian fault zone between reşadiye and koyulhisar (Turkey). Catena. 183:104211. doi:10.1016/j.catena.2019.104211.
  • Ercanoglu M, Gokceoglu C. 2004. Use of fuzzy relations to produce landslide susceptibility map of a landslide prone area (West Black Sea Region, Turkey). Eng Geol. 75:229–250. doi:10.1016/j.enggeo.2004.06.001.
  • Farooq S, Akram MS. 2021. Effect of soil microstructure on the small-strain shear modulus of saline soil. Arabian J Geosci. 14:1–16. doi:10.1007/s12517-020-06304-8.
  • Fawcett T. 2006. An introduction to ROC analysis. Pattern Recognit Lett. 27:861–874. doi:10.1016/j.patrec.2005.10.010.
  • Fayez L, Pazhman D, Pham BT, Dholakia MB, Solanki HA, Khalid M, Prakash I. 2018. Application of frequency ratio model for the development of landslide susceptibility mapping at part of Uttarakhand State, India. Int J Appl Eng Res. 13:6846–6854.
  • Feizizadeh B, Blaschke T, Nazmfar H, Moghaddam R,HM. 2017. Landslide hazard mapping along national highway-154A in Himachal Pradesh, India using information value and frequency ratio. Arabian J Geosci. 10:319–3336. doi:10.1007/s12517-017-3315-3.
  • Fernandez Merodo JA, Pastor M, Mira P. 2004. Modelling of diffuse failure mechanisms of catastrophic landslides. Comput Methods Appl Mech Eng. 193:2911–2939. doi:10.1016/j.cma.2003.09.016.
  • George D, Mallery P. 2000. SPSS for windows step-by step: a simple guide and reference, 2nd edition. Boston.: Allyn and Bacon.
  • Ghosh S, Carranza EJM, Van Westen CJ, Jetten VG, Bhattacharya DN. 2011. Selecting and weighting spatial predictors for empirical modeling of landslide susceptibility in the Darjeeling Himalayas (India). Geomorphology. 131:35–56. doi:10.1016/j.geomorph.2011.04.019.
  • Gupta RP, Kanungo DP, Arora MK, Sarkar S. 2008. Approaches for comparative evaluation of raster GIS-based landslide susceptibility zonation maps. Int J Appl Earth Obs Geoinf. 10:330–341. doi:10.1016/j.jag.2008.01.003.
  • Kannan M, Saranathan E, Anbalagan R. 2013. Landslide vulnerability mapping using frequency ratio model: a geospatial approach in Bodi-Bodimettu Ghat section, Theni district, Tamil Nadu, India. Arabian J Geosci. 6:2901–2913. doi:10.1007/s12517-012-0587-5.
  • Kanungo DP, Arora MK, Sarkar S, Gupta RP. 2006. A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas. Eng Geol. 85:347–366. doi:10.1016/j.enggeo.2006.03.004.
  • Kavzoglu T, Sahin EK, Colkesen I. 2014. Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression. Landslides. 11:425–439. doi:10.1007/s10346-013-0391-7.
  • Kumar A, Sharma RK, Bansal VK. 2018. The case of the Biscayne Bay and aquifer near Miami, Florida: density-driven flow of seawater or gravitationally driven discharge of deep saline groundwater? Env Earth Sci. 77:1–19. doi:10.1007/s12665-017-7169-5.
  • Kumar A, Sharma RK, Bansal VK. 2019. A parametric study on the vertical pullout capacity of suction caisson foundation in cohesive soil. Innov Infrastruct Sol. 4:1–17. doi:10.1007/s41062-018-0188-6.
  • Kumar A, Sharma RK, Bansal VK. 2022. Spatial prediction of landslide hazard using GIS-multi-criteria decision analysis in kullu district of Himachal Pradesh, India. J Min Environ. 13(4):943–956. doi:10.22044/jme.2022.12235.2222.
  • Kumar A, Sharma RK, Mehta BS. 2020. Groundwater contamination in mega cities with finite sources. J Earth Syst Sci. 129:1–14. doi:10.1007/s12040-019-1281-8.
  • Kumar D, Thakur M, Dubey CS, Shukla DP. 2017. Landslide susceptibility mapping & prediction using support vector machine for Mandakini River Basin, Garhwal Himalaya, India. Geomorphology. 295:115–125. doi:10.1016/j.geomorph.2017.06.013.
  • Kumar R, Anbalagan R. 2016. Landslide susceptibility mapping using analytical hierarchy process (AHP) in Tehri reservoir rim region, Uttarakhand. J Geol Soc India. 87:271–286. doi:10.1007/s12594-016-0395-8.
  • Mandal B, Mandal S. 2018. Analytical hierarchy process (AHP) based landslide susceptibility mapping of lish river basin of eastern Darjeeling Himalaya, India. Adv Space Res. 62:3114–3132. doi:10.1016/j.asr.2018.08.008.
  • Mandal K, Saha S, Mandal S. 2021. Applying deep learning and benchmark machine learning algorithms for landslide susceptibility modelling in Rorachu river basin of Sikkim Himalaya, India. Geosci Front. 12:101203. doi:10.1016/j.gsf.2021.101203.
  • Mathew J, Jha VK, Rawat GS. 2007. Weights of evidence modelling for landslide hazard zonation mapping in part of Bhagirathi valley, Uttarakhand. Curr Sci. 628–638.
  • Mathew J, Jha VK, Rawat GS. 2009. Landslide susceptibility zonation mapping and its validation in part of Garhwal Lesser Himalaya, India, using binary logistic regression analysis and receiver operating characteristic curve method. Landslides. 6:17–26. doi:10.1007/s10346-008-0138-z.
  • Meena SR, Tavakkoli Piralilou S. 2019. Comparison of earthquake-triggered landslide inventories: A case study of the 2015 Gorkha earthquake, Nepal. Geosciences (Basel). 9:437. doi:10.3390/geosciences9100437.
  • Nandi A, Shakoor A. 2010. A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses. Eng Geol. 110:11–20. doi:10.1016/j.enggeo.2009.10.001.
  • Nautiyal A, Kumar A, Poddar A, Parajuli N. 2021. Optimum transportation of relief materials aftermath the disaster. J Achievem Mater Manufact Eng. 109(1):26–41. doi:10.5604/01.3001.0015.5857.
  • Ngo TQ, Dam ND, Al-Ansari N, Amiri M, Phong TV, Prakash I, Pham BT. 2021. Landslide susceptibility mapping using single machine learning models: a case study from Pithoragarh District, India. Adv Civil Eng. 1–19. doi:10.1155/2021/9934732.
  • Ohlmacher GC. 2007. Plan curvature and landslide probability in regions dominated by earth flows and earth slides. Eng Geol. 91:117–134. doi:10.1016/j.enggeo.2007.01.005.
  • Panchal S, Shrivastava AK. 2022. Landslide hazard assessment using analytic hierarchy process (AHP): A case study of National Highway 5 in India. Ain Shams Eng J. 13:101626. doi:10.1016/j.asej.2021.10.021.
  • Pandey VK, Pourghasemi HR, Sharma MC. 2020. Landslide susceptibility mapping using maximum entropy and support vector machine models along the Highway Corridor, Garhwal Himalaya. Geocarto Int. 35:168–187. doi:10.1080/10106049.2018.1510038.
  • Pareta K, Kumar J, Pareta U. 2012. Solutions of fractional zakharov-kuznetsov equations By FCT method; this paper has been withdrawn. Int J Eng Techn. 1:1–9. doi:10.14419/ijet.v1i1.14.
  • Peethambaran B, Anbalagan R, Kanungo DP, Goswami A, Shihabudheen KV. 2020. A comparative evaluation of supervised machine learning algorithms for township level landslide susceptibility zonation in parts of Indian Himalayas. Catena. 195:104751. doi:10.1016/j.catena.2020.104751.
  • Pham BT, Prakash I, Singh SK, Shirzadi A, Shahabi H, Bui DT. 2019. Landslide susceptibility modeling using Reduced Error Pruning Trees and different ensemble techniques: hybrid machine learning approaches. Catena. 175:203–218. doi:10.1016/j.catena.2018.12.018.
  • Pham BT, Tien Bui D, Prakash I, Dholakia M. 2015. Landslide susceptibility assessment at a part of Uttarakhand Himalaya, India using GIS–based statistical approach frequency ratio method. Int J Eng Res Techn. 4:338–344.
  • Pradhan B, Lee S. 2010. Landslide susceptibility assessment and factor effect analysis: backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling. Environ Model Softw. 25:747–759. doi:10.1016/j.envsoft.2009.10.016.
  • Ramakrishnan D, Singh TN, Verma AK, Gulati A, Tiwari KC. 2013. Soft computing and GIS for landslide susceptibility assessment in Tawaghat area, Kumaon Himalaya, India. Nat Hazards. 65:315–330. doi:10.1007/s11069-012-0365-4.
  • Saaty T. 1980. The analytic hierarchy process (AHP) for decision making. In Kobe, Japan. 1–69.
  • Saaty TL. 1977. A scaling method for priorities in hierarchical structures. J Math Psychol. 15:234–281. doi:10.1016/0022-2496(77)90033-5.
  • Saaty TL. 2000. The fundamentals of decision making and priority theory with the analytic hierarchy process. Pennsylvia: University of Pittsburgh (Vol 1).
  • Saha A, Saha S. 2020. Comparing the efficiency of weight of evidence, support vector machine and their ensemble approaches in landslide susceptibility modelling: a study on Kurseong region of Darjeeling Himalaya, India. Remot Sens Appl Soc Environ. 19:100323. doi:10.1016/j.rsase.2020.100323.
  • Sarkar S, Kanungo DP. 2004. An integrated approach for landslide susceptibility mapping using remote sensing and GIS. Photogramm Eng Remot Sens. 70:617–625. doi:10.14358/PERS.70.5.617.
  • Sharma LP, Patel N, Debnath P, Ghose MK. 2012. Assessing landslide vulnerability from soil characteristics – a GIS-based analysis. Arabian J Geosci. 5:789–796. doi:10.1007/s12517-010-0272-5.
  • Sharma RK, Kaur A, Kumar A. 2019. Slope stability analysis by bishop analysis using MATLAB program based on particle swarm optimization technique. In: Proceedings of the 1st international conference on sustainable waste management through design: IC_SWMD 2018 1. Springer International Publishing; p. 285–293. doi:10.1007/978-3-030-02707-0_34.
  • Shrestha S, Kang TS, Choi JC. 2018. The monsoon system: land–sea breeze or the ITCZ? J Earth Syst Sci. 127:1–17. doi:10.1007/s12040-017-0916-x.
  • Singh K, Kumar V. 2017. Late cretaceous (cenomanian-turonian) ammonites from southern Morocco and south western Algeria. Arabian J Geosci. 10:1–18. doi:10.1007/s12517-016-2714-1.
  • Tran TH, Dam ND, Jalal FE, Al-Ansari N, Ho LS, Phong TV, Pham BT. 2021. GIS-based soft computing models for landslide susceptibility mapping: A case study of pithoragarh district, Uttarakhand state, India. Math Probl Eng. doi:10.1155/2021/9914650.
  • Varnes JD. 1984. Landslide Hazard Zonation: a review of principles and practice. Natural Hazards.
  • Veerappan R, Negi A, Siddan A. 2017. Landslide susceptibility mapping and comparison using frequency ratio and analytical hierarchy process in part of NH-58, Uttarakhand, India. In: Advancing culture of living with landslides: volume 2 advances in landslide science. Springer International Publishing; p. 1081–1091.
  • Yalcin A. 2008. GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): comparisons of results and confirmations. Catena. 72:1–12. doi:10.1016/j.catena.2007.01.003.
  • Yilmaz I. 2009. Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: a case study from Kat landslides (Tokat–Turkey). Comput Geosci. 35:1125–1138. doi:10.1016/j.cageo.2008.08.007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.