507
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of α+β solution treatment and aging on the performance of powder forged Ti-5Al-2.5Fe

, &
Article: 2170691 | Received 17 Nov 2022, Accepted 28 Dec 2022, Published online: 02 Feb 2023

References

  • Crowley G. How to extract low-cost titanium. Adv Mater Process. 2003;161(11):25–27.
  • Ma M, Wang D, Wang W, et al. Extraction of titanium from different titania precursors by the FFC Cambridge process. J Alloys Compd. 2006;420(1-2):37–45.
  • Nowak M, Yeoh WK, Bolzoni L, et al. Development of Al-Nb-B master alloys using Nb and KBF4 powders. Mater Des. 2015;75:40–46.
  • Saitou K. Microwave sintering of iron, cobalt, nickel, copper and stainless steel powders. Scr Mater. 2006;54(5):875–879.
  • Bolzoni L, Ruiz-Navas EM, Gordo E. Influence of vacuum hot-pressing temperature on the microstructure and mechanical properties of Ti-3Al-2.5 V alloy obtained by blended elemental and master alloy addition powders. Mater Chem Phys. 2012;137:608–616.
  • Zhang Y, Sun D, Cheng J, et al. Mechanical and biological properties of Ti-(0-25 wt%)Nb alloys for biomedical implants application. Regen Biomater. 2020;7(1):119–127.
  • Boyer R, Welsch G, Collings EW. Materials properties handbook: titanium alloys, in: A. International (Ed.) Ohio, 1998.
  • Geetha M, Singh AK, Asokamani R, et al. The ultimate choice for orthopaedic implants – a review. Prog Mater Sci. 2009;54(3):397–425.
  • Domingo JL. Vanadium and tungsten derivatives as antidiabetic agents: a review of their toxic effects. Biol Trace Elem Res. 2002;88:97–112.
  • Bolzoni L, Paul M, Yang F. Effect of combined lean additions of isomorphous and eutectoid beta stabilisers on the properties of titanium. J Mater Res Technol. 2022;21:3828–3843.
  • Osada T, Miura H, Itoh Y, et al. Optimization of MIM process for Ti-6Al-7Nb alloy powder. J Jpn Soc Powder Metall. 2008;55:726–731.
  • Challa VSA, Mali S, Misra RDK. Reduced toxicity and superior cellular response of preosteoblasts to Ti-6Al-7Nb alloy and comparison with Ti-6Al-4 V. J Biomed Mater Res. 2013;101:2083–2089.
  • Siqueira RP, Sandim HRZ, Henriques VAR, et al. Microstructural evolution during sintering of the P/M blended elemental Ti-5Al-2.5Fe alloy. Adv Powder Technol IV. 2005;498-499:55–60.
  • Siqueira RP, Sandim HRZ, Hayama AOF, et al. Microstructural evolution during sintering of the blended elemental Ti-5Al-2.5Fe alloy. J Alloys Compd. 2009;476(1-2):130–137.
  • Jia MT, Gabbitas B, Bolzoni L. Evaluation of reactive induction sintering as a manufacturing route for blended elemental Ti-5Al-2.5Fe alloy. J Mater Process Technol. 2018;255:611–620.
  • Henriques VAR, Galvani ET, Petroni SLG, et al. Production of Ti-13Nb-13Zr alloy for surgical implants by powder metallurgy. J Mater Sci. 2010;45(21):5844–5850.
  • Khan MA, Williams RL, Williams DF. The corrosion behaviour of Ti-6Al-4 V, Ti-6Al-7Nb and Ti-13Nb-13Zr in protein solutions. Biomaterials. 1999;20:631–637.
  • Imam MA, Froes FHS, Reddy RG. Cost effective developments for fabrication of titanium components. Key Eng Mater. 2013;551:3–10.
  • Froes FH, Gungor MN, Imam MA. Cost-affordable titanium: the component fabrication perspective. JOM. 2007;59(6):28–31.
  • Alshammari Y, Jia M, Yang F, et al. The effect of α + β forging on the mechanical properties and microstructure of binary titanium alloys produced via a cost-effective powder metallurgy route. Mater Sci Eng A. 2020;769:138496.
  • Xu Y, Nomura H. Homogenizing analysis for sintering of bio-titanium alloy (Ti-5Al-2.5Fe) in MIM process. J Jpn Soc Powder Powder Metall. 2001;48(11):1089–1096.
  • Xu Y, Nomura H. Corrosion behavior of biomedical titanium alloy Ti-5Al-2.5Fe processed by MIM. J Jpn Soc Powder Powder Metall. 2002;49(5):382–389.
  • Yamanoglu R, Efendi E, Daoud I. Sintering properties of mechanically alloyed Ti-5Al-2.5Fe. Int J Mater Metall Eng. 2017;11(5):360–364.
  • Hagiwara M, Kaieda Y, Kawabe Y, et al. Production of Ti-5Al-2.5Fe alloys by the blended elemental method with microstructural modification and their mechanical properties. Tetsu-to-Hagane. 1991;77(1):139–146.
  • Bolzoni L, Xia M, Hari Babu N. Formation of equiaxed crystal structures in directionally solidified Al-Si alloys using Nb-based heterogeneous nuclei. Sci Rep. 2016;6(1):39554.
  • Fujii H. Strengthening of α+β titanium alloys by thermomechanical processing. Mater Sci Eng A. 1998;243(1-2):103–108.
  • Semiatin SL, Seetharaman V, Weiss I. The thermomechanical processing of alpha/beta titanium alloys, journal of the minerals. Metals Mater Soc. 1997;49(6):33–39.
  • Bolzoni L, Ruiz-Navas EM, Gordo E. Investigation of the factors influencing the tensile behaviour of PM Ti-3Al-2.5 V alloy. Mater Sci Eng A. 2014;609:266–272.
  • Kumar P, Chandran KSR. Strength-ductility property maps of powder metallurgy (PM) Ti-6Al-4 V alloy: a critical review of processing-structure-property relationships. Metall Mater Trans A. 2017;48(5):2301–2319.
  • Wang H, Fang ZZ, Sun P. A critical review of mechanical properties of powder metallurgy titanium. Int J Powder Metall. 2010;46(5):45–57.
  • Chirico C, Tsipas S, Toptan F, et al. Development of Ti-Nb and Ti-Nb-Fe beta alloys from TiH2 powders. Powder Metall. 2019;62(1):44–53.
  • Raynova S, Imam MA, Yang F, et al. Hybrid microwave sintering of blended elemental Ti alloys. J Manuf Process. 2019;39:52–57.
  • Niinomi M SA, Fukunaga K. Long crack growth behavior of implant material Ti-5Al-2.5Fe in air and simulated body environment related to microstructure. Int J Fatigue. 2000;22:887–897.
  • Bak GR, Won JW, Choe H-J, et al. Effect of iron content on β→α phase transformation behavior of Ti-5Al-xFe (x=1, 2.5, 4) alloys during continuous cooling. J Mater Res Technol. 2019;8(3):2887–2897.
  • Zeng L, Bieler TR, Working Eo. Heat treatment and aging on microstructural evolution and crystallographic texture of [alpha], [alpha], [alpha] and [beta] phases in Ti-6Al-4 V wire. Mater Sci Eng A. 2005;392(1-2):403–414.
  • Bolzoni L, Nowak M, Hari Babu N. Assessment of the influence of Al-2Nb-2B master alloy on the grain refinement and properties of LM6 (A413) alloy. Mater Sci Eng A. 2015;628:230–237.
  • Zhang J, Song B, Cai C, et al. Tailorable microstructure and mechanical properties of selective laser melted TiB/Ti-6Al-4 V composite by heat treatment. Adv Powder Mater. 1 (2022) 100010.
  • Dobromyslov AV, Elkin VA. Martensitic transformation and metastable β-phase in binary titanium alloys with d-metals of 4-6 periods. Scr Mater. 2001;44(6):905–910.
  • Li C-L, Hong J-K, Narayana PL, et al. Realizing superior ductility of selective laser melted Ti-6Al-4 V through a multi-step heat treatment. Mater Sci Eng A. 2021;799:140367.
  • Itoh Y, Miura H, Uematsu T, et al. The commercial potential of MIM titanium alloy. Powder Metall. 64 2009: 17–20.
  • Bak GR, Jeong D-W, Hyun YT, et al. Effect of Mn addition on microstructural changes and mechanical properties of Ti-5Al-2.5Fe alloys. Met Mater Int. 2019;25(6):1521–1528.
  • Jaffee RI, Ogden HR, Maykuth DJ. Alloys of titanium with carbon, oxygen and nitrogen. Trans Am Inst Min Metall Eng. 1950;188(10):1261–1266.
  • Raynova S, Collas Y, Yang F, et al. Advancement in the pressureless sintering of CP titanium using high-frequency induction heating. Metall Mater Trans A. 2019;50(10):4732–4742.
  • Finlay WL, Snyder JA. Effects of three interstitial solutes (nitrogen, oxygen and carbon) on the mechanical properties of high-purity alpha titanium. J Met. 1950;188:277–286.