418
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Ti–6Al–4V alloy prepared by laser powder bed fusion of a coarse powder

ORCID Icon, , , &

References

  • Liu S, Shin YC. Additive manufacturing of Ti6Al4V alloy: a review. Mater Des. 2019;164:107552. doi: 10.1016/j.matdes.2018.107552
  • Giganto S, Martínez-Pellitero S, Barreiro J, et al. Influence of 17-4 PH stainless steel powder recycling on properties of SLM additive manufactured parts. J Mater Res Technol. 2022;16:1647–1658. doi: 10.1016/j.jmrt.2021.12.089
  • Gu H, Gong H, Dilip JJS, et al. Effects of powder variation on the microstructure and tensile strength of Ti6Al4V parts fabricated by selective laser melting. 25th Annual International Solid Freeform Fabrication Symposium; 2014 August 16; Austin, Texas: International Journal of Powder Metallurgy; 2015. p. 35–42.
  • Yang X, Ren Y, Liu S, et al. Microstructure and tensile property of SLM 316L stainless steel manufactured with fine and coarse powder mixtures. J Cent South Univ. 2020;27(2):334–343. doi: 10.1007/s11771-020-4299-9
  • Kaplanskii YY, Sentyurina ZA, Loginov PA, et al. Microstructure and mechanical properties of the (Fe,Ni)Al-based alloy produced by SLM and HIP of spherical composite powder. Mater Sci Eng A. 2019;743:567–580. doi: 10.1016/j.msea.2018.11.104
  • Thijs L, Verhaeghe F, Craeghs T, et al. A study of the microstructural evolution during selective laser melting of Ti-6Al-4V. Acta Mater. 2010;58(9):3303–3312. doi: 10.1016/j.actamat.2010.02.004
  • Vrancken B, Thijs L, Kruth J, et al. Heat treatment of Ti6Al4V produced by selective laser melting: microstructure and mechanical properties. J Alloys Compd. 2012;541:177–185. doi: 10.1016/j.jallcom.2012.07.022
  • Wu SQ, Lu YJ, Gan YL, et al. Microstructural evolution and microhardness of a selective-laser-melted Ti-6Al-4V alloy after post heat treatments. J Alloys Compd. 2016;672:643–652. doi: 10.1016/j.jallcom.2016.02.183
  • Singla AK, Singh J, Sharma VS, et al. Impact of cryogenic treatment on HCF and FCP performance of β-solution treated Ti-6Al-4V ELI biomaterial. Materials. 2020;13(3):500. doi: 10.3390/ma13030500
  • Singla AK, Singh J, Sharma VS. Impact of cryogenic treatment on mechanical behavior and microstructure of Ti-6Al-4V ELI biomaterial. J Mater Eng Perform. 2019;28:5931–5945. doi: 10.1007/s11665-019-04338-y
  • He B, Wu W, Zhang L, et al. Microstructural characteristic and mechanical property of Ti6Al4V alloy fabricated by selective laser melting. Vacuum. 2018;150:79–83. doi: 10.1016/j.vacuum.2018.01.026
  • Yan X, Yin S, Chen C, et al. Effect of heat treatment on the phase transformation and mechanical properties of Ti6Al4V fabricated by selective laser melting. J Alloys Compd. 2018;764:1056–1071. doi: 10.1016/j.jallcom.2018.06.076
  • An C, Zhang YM, Zhang JS, et al. Study on the effect of process parameters on the density of selected laser melting molded parts and the formation mechanism of pore defects. Laser J. 2018;39(07):68–71.
  • Verhaeghe F, Craeghs T, Heulens J, et al. A pragmatic model for selective laser melting with evaporation. Acta Mater. 2009;57(20):6006–6012. doi: 10.1016/j.actamat.2009.08.027
  • Zhao CL, Li W, Wang Q, et al. Study on the internal defects and their evolution law of titanium alloy formed by laser-selective melting. Chin J Rare Metal Mater Eng. 2021;50(08):2841–2849.
  • Peng L, Zheng ZJ. Overview of defect types and characterization methods for laser-selective melting of formed metal parts. Chin J Mater Guide. 2023;8:1–14.
  • Qiu CL, Adkins NJE, Attallan MM. Microstructure and tensile properties of selectively laser-melted and of HIPed laser-melted Ti-6Al-4V. Mater Sci Eng A. 2013;578:230–239. doi: 10.1016/j.msea.2013.04.099
  • Wei Q, Xie Y, Teng Q, et al. Crack types, mechanisms, and suppression methods during high-energy beam additive manufacturing of nickel-based superalloys: a review. Chin J Mech Eng Addit Manuf Front. 2022;1:100055. doi: 10.1016/j.cjmeam.2022.100055
  • Cai C, Wu X, Liu W, et al. Selective laser melting of near- titanium alloy Ti-6Al-2Zr-1Mo-1V: parameter optimization, heat treatment and mechanical performance. J Mater Sci Technol. 2020;57:51–64. doi: 10.1016/j.jmst.2020.05.004
  • Yang JJ. Organizational evolution and regulation of laser-selective melting and forming of Ti-6Al-4V alloy [PhD thesis]. Wuhan (China): Huazhong University of Science and Technology; 2017.
  • Gusarov AV, Malakhova-Ziablova IS, Pavlov MD. Thermoelastic residual stresses and deformations at laser treatment. Phys Procedia. 2013;41:896–903. doi: 10.1016/j.phpro.2013.03.164
  • Tan X, Kok Y, Tan YJ, et al. Graded microstructure and mechanical properties of additive manufactured Ti-6Al-4V via electron beam melting. Acta Mater. 2015;97:1–16. doi: 10.1016/j.actamat.2015.06.036
  • Beladi H, Chao Q, Rohrer GS. Variant selection and intervariant crystallographic planes distribution in martensite in a Ti-6Al-4V alloy. Acta Mater. 2014;80:478–489. doi: 10.1016/j.actamat.2014.06.064
  • Rotella G, Dillon OW, Umbrello D, et al. The effects of cooling conditions on surface integrity in machining of Ti6Al4V alloy. Int J Adv Manuf Technol. 2014;71(1-4):47–55. doi: 10.1007/s00170-013-5477-9
  • Gao JB. Study of microstructure and mechanical properties of TC4 titanium alloy box-shaped components at different forming positions by laser-selective melting [masters thesis]. Shenyang (China): Northeastern University; 2019.
  • Chang K, Liang E, Huang W, et al. Microstructural feature and mechanical property in different building directions of additive manufactured Ti6Al4V alloy. Mater Lett. 2020;267:127516. doi: 10.1016/j.matlet.2020.127516
  • Nguyen HD, Pramanik A, Basak AK, et al. A critical review on additive manufacturing of Ti-6Al-4V alloy: microstructure and mechanical properties. Mater Res Technol. 2022;18:e4661.