97
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Microstructure and mechanical properties of a recycled aluminum alloy fabricated by consolidation of small pieces

& ORCID Icon
Article: 2345938 | Received 30 Dec 2023, Accepted 17 Apr 2024, Published online: 30 Apr 2024

References

  • Ferretti I, Zanoni S, Zavanella L, et al. Greening the aluminium supply chain. Int J Prod Econ. 2007;108(1/2):236–245. doi:10.1016/j.ijpe.2006.12.037
  • Gao AJ, Qu XL. Study on the treatment technology and process for recycling of waste aluminium. Recycl Res Cir Econ. 2014;7(02):35–44.
  • Colombo A, Benfenati E, Celeste G, et al. Concentrations of PCDD/PCDF in soil close to a secondary aluminum smelter. Chemosphere. 2011;85(11):1719–1724. doi:10.1016/j.chemosphere.2011.09.018
  • Ao XH. Research on the prediction of energy efficiency and quality of the process of recycling of waste aluminium by remelting. Beijing: Beijing Jiao Tong University; 2018.
  • Tekkaya AE, Schikorra M, Becker D, et al. Hot profile extrusion of AA-6060 aluminum chips. Mater Process Technol. 2009;209:3343–3350. doi:10.1016/j.jmatprotec.2008.07.047
  • Baffari D, Reynolds AP, Masnata A, et al. Friction stir extrusion to recycle aluminum alloys scraps: energy efficiency characterization. Manuf Process. 2019;43:63–69. doi:10.1016/j.jmapro.2019.03.049
  • Gronostajski J, Matuszak A. The recycling of metals by plastic deformation: an example of recycling of aluminium and its alloys chips. Mater Process Technol. 1999;92:35–41. doi:10.1016/S0924-0136(99)00166-1
  • Anilchandra AR, Surappa MK. Microstructure and tensile properties of consolidated magnesium chips. Mater Sci Eng A. 2013;560(10):759–766. doi:10.1016/j.msea.2012.10.030
  • Misiolek WZ, Haase M, Khalifa NB, et al. High quality extrudates from aluminum chips by new billet compaction and deformation routes. CIRP Ann-Manuf Technol. 2012;61(1):239–242. doi:10.1016/j.cirp.2012.03.113
  • Stern M. Method for treating aluminum or aluminum alloy scrap[P]. 1945.
  • Haase M, et al. Environmental assessment of solid state recycling routes for aluminium alloys: Can solid state processes significantly reduce the environmental impact of aluminium recycling. CIRP Ann. 2015;64:37–40. doi:10.1016/j.cirp.2015.04.051
  • Güley V, Ben N, Khalifa A, et al. Direct recycling of 1050 aluminum alloy scrap material mixed with 6060 aluminum alloy chips by hot extrusion. IntJ Mater Form. 2010;3(1):853–856. doi:10.1007/s12289-010-0904-z
  • Schikorra M, Pantke K, Tekkaya AE, et al. Reuse of AA6060, AA6082, and AA7075 aluminum turning chips by hot extrusion. The 9th International Conference on Technology of Plasticity; 2008.
  • Tekkayaae S, Becker D, et al. Hot profile extrusion of AA-6060aluminum chips. Mater Process Technol. 2009;209:3343–3350. doi:10.1016/j.jmatprotec.2008.07.047
  • Güley V, Ben Khalifa N, Tekkaya AE. Direct recycling of 1050aluminum alloy chip material mixed with 6060aluminum alloy chips by hot extrusion. IntJ Mater Form. 2010;3(1):853–856. doi:10.1007/s12289-010-0904-z
  • Güley V, Khalifa NB, Tekkaya AE. The effect of extrusion ratio and material flow on the mechanical properties of aluminum profiles solid state recycled from 6060 aluminum alloy chips. The 14th International Esaform Conference on Material Forming; 2011.p. 1609–1614.
  • Fogagnolo JB, Ruiz-navas EM, Simón MA, et al. Recycling of aluminium alloy and aluminium matrix composite chips by pressing and hot extrusion. Mater Process Technol. 2003;143-144:792–795. doi:10.1016/S0924-0136(03)00380-7
  • Chen Q, Shu D, Zhao Z, et al. Microstructure development and tensile mechanical properties of Mg–Zn–RE–Zr magnesium alloy. Mater Des. 2012;40:488–496. doi:10.1016/j.matdes.2012.03.059
  • Lu L. Anisotropic deformation of extruded magnesium alloy AZ31 under uniaxial compression: a study with simultaneous in situ synchrotron x-ray imaging and diffraction. Acta Mater. 2016;120:86–94. doi:10.1016/j.actamat.2016.08.029
  • Qu J, Xie X, Bi Z, et al. Hot deformation characteristics and dynamic recrystallization mechanism of GH4730 Ni-based superalloy. Alloys Comp. 2019;785:918–924. doi:10.1016/j.jallcom.2019.01.237
  • Wen DX, Lin Y, Li XH. Hot deformation characteristics and dislocation substructure evolution of a nickel-base alloy considering effects of δ phase. J. Alloys Comp. 2018;764:1008–1020. doi:10.1016/j.jallcom.2018.06.146
  • Lu J, Song Y, Hua L, et al. Influence of thermal deformation conditions on the microstructure and mechanical properties of boron steel. Mater Sci Eng A. 2017;701:328–337. doi:10.1016/j.msea.2017.06.101
  • Peng K, Chen W, Qian K. Study on dynamic strain aging phenomenon of 3004 aluminum alloy. Mater Sci Eng A. 2005;415(1–2):53–58. doi:10.1016/j.msea.2005.08.216
  • Jíša D, Iškutín P, Kruml T, et al. Small fatigue crack growth in aluminium alloy EN-AW 6082/T6. Int J Fatigue. 2010;32(12):1913–1920. doi:10.1016/j.ijfatigue.2010.06.003
  • Pineau A, Benzerga AA, Pardoen T. Failure of metals I: brittle and ductile fracture. Acta Mater. 2016;107:424–483. doi:10.1016/j.actamat.2015.12.034
  • Ibrahim AEAM, Taha MA, Selmy AI, et al. Solid state recycling of aluminium AA6061 alloy chips by hot extrusion. Mater Res Express. 2018;6(3):56–65.