46
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Microstructural evolution in 12% Cr heat-resistant steel during compression deformation at 650°C

, , , &
Article: 2351264 | Received 29 Dec 2023, Accepted 30 Apr 2024, Published online: 16 May 2024

References

  • Fang Y, Zhang WY, Cao JW, et al. Analysis on the current situation and development trend of energy resources in China. Conserv Util Miner Resour. 2018;4:34–42.
  • Zhou RC, Fan CX. Material research and material selection analysis of ultra-supercritical thermal power unit. Electr Power. 2005;8:41–47.
  • Han LZ, Chen RK, Gu JF, et al. Behavior of austenite grain growth in X12CrMoWVNbN10-1-1 ferrite heat-resistant steel. Acta Metall Sinica. 2009;45(12):1446–1450.
  • Han LZ, Gu JF, Pan JS. Isothermal transformation kinetics of X12CrMoWVNbN10-1-1 steel for the ultra-supercritical rotor. Trans Mater Heat Treat. 2010;31(1):35–39.
  • Cui H, Sun F, Chen K, et al. Precipitation behavior of laves phase in 10% Cr steel X12CrMoWVNbN10-1-1 during short-term creep exposure. Mater Sci Eng A. 2010;527(29):7505–7509. doi:10.1016/j.msea.2010.08.013
  • Abe F. Evolution of microstructure and acceleration of creep rate in tempered martensitic 9Cr-W steels. Mater Sci Eng A. 1997;234-236:1045–1048. doi:10.1016/S0921-5093(97)00404-8
  • Hald J.. Metallography and alloy design in the COST 536 action. 2006.
  • Xu Y, Zhang X, Tian Y, et al. Study on the nucleation and growth of M23C6 particles in a 10% Cr martensite ferritic steel after long-term aging. Mater Charact. 2016;111:122–127. doi:10.1016/j.matchar.2015.11.023
  • Xu Y, Nie Y, Wang M, et al. The effect of microstructure evolution on the mechanical properties of martensite ferritic steel during long-term aging. Acta Mater. 2017;131:110–122. doi:10.1016/j.actamat.2017.03.045
  • Xu Y, Li W, Wang M, et al. Nano-sized MX carbonitrides contribute to the stability of mechanical properties of martensite ferritic steel in the later stages of long-term aging. Acta Mater. 2019;175:148–159. doi:10.1016/j.actamat.2019.06.012
  • Solberg JK, McQueen HJ, Ryum N, et al. Influence of ultra-high strains at elevated temperatures on the microstructure of aluminium. Part I. Philos Mag A. 1989;60(4):447–471. doi:10.1080/01418618908213872
  • Gourdet S, Montheillet F. A model of continuous dynamic recrystallization. Acta Mater. 2003;51(9):2685–2699. doi:10.1016/S1359-6454(03)00078-8
  • Gourdet S, Montheillet F. An experimental study of the recrystallization mechanism during hot deformation of aluminium. Mater Sci Eng A. 2000;283(1):274–288. doi:10.1016/S0921-5093(00)00733-4
  • Dillamore IL, Katoh H, Haslam K. The nucleation of recrystallisation and the development of textures in heavily compressed iron-carbon alloys. Texture Stress Microstruct. 1974;1(3):151–156.
  • Wright SI, Nowell MM, Field DP. A review of strain analysis using electron backscatter diffraction. Microsc Microanal. 2011;17(3):316–329. doi:10.1017/S1431927611000055
  • Morito S, Huang X, Furuhara T, et al. The morphology and crystallography of lath martensite in alloy steels. Acta Mater. 2006;54(19):5323–5331. doi:10.1016/j.actamat.2006.07.009
  • Kelly PM, Jostsons A, Blake RG. The orientation relationship between lath martensite and austenite in low carbon, low alloy steels. Acta Metall Mater. 1990;38(6):1075–1081. doi:10.1016/0956-7151(90)90180-O
  • Naraghi R, Hedström P, Borgenstam A. Spontaneous and deformation-induced martensite in austenitic stainless steels with different stability. Steel Res Int. 2011;82(4):337–345. doi:10.1002/srin.201000118
  • Al-Samman T, Gottstein G. Dynamic recrystallization during high temperature deformation of magnesium. Mater Sci Eng A. 2008;490(1-2):411–420. doi:10.1016/j.msea.2008.02.004
  • Ashby MF. The deformation of plastically non-homogeneous materials. Philos Mag. 1970;21(170):399–424. doi:10.1080/14786437008238426
  • Humphreys FJ, Hatherly M. Recrystallization and related annealing phenomena. Elsevier; 2004. https://doi.org/10.1016/b978-0-08-044164-1.x5000-2
  • Li J, Jiang B, Zhang C, et al. Hot embrittlement and effect of grain size on hot ductility of martensitic heat-resistant steels. Mater Sci Eng A. 2016;677:274–280. doi:10.1016/j.msea.2016.09.072
  • Li J, He T, Zhang P, et al. Effect of large-size particles on the anisotropy of mechanical properties in 11Cr-3Co-3W martensitic heat-resistant steel for turbine high temperature blades in ultra-supercritical power plants. Mater Charact. 2020;159:110025. doi:10.1016/j.matchar.2019.110025
  • Doherty RD, Hughes DA, Humphreys FJ, et al. Current issues in recrystallization: a review. Mater Sci Eng A. 1997;238(2):219–274. doi:10.1016/S0921-5093(97)00424-3