261
Views
0
CrossRef citations to date
0
Altmetric
Materials/process Modeling and Simulation

Generation of almost rectangular, square, and hexagonal two-dimensional supercells

ORCID Icon
Article: 2300254 | Received 27 Oct 2023, Accepted 22 Dec 2023, Published online: 19 Jan 2024

References

  • Tanabe K. Surface and catalytic properties of ZrO2. Mater Chem Phys. 1985;13(3):347–13. doi: 10.1016/0254-0584(85)90064-1
  • Kauppi EI, Honkala K, Krause AOI, et al. ZrO2 acting as a redox catalyst. Top Catal. 2016;59(8):823–832. doi: 10.1007/s11244-016-0556-4
  • Kouva S, Honkala K, Lefferts L, et al. Review: monoclinic zirconia, its surface sites and their interaction with carbon monoxide. Catal Sci Technol. 2015;5(7):3473–3490. doi: 10.1039/C5CY00330J
  • Kogler M, Köck E-M, Bielz T, et al. Hydrogen surface reactions and adsorption studied on Y2O3, YSZ, and ZrO2. J Phys Chem C. 2014;118(16):8435–8444. doi: 10.1021/jp5008472
  • Bianchi D, Chafik T, Khalfallah M, et al. Intermediate species on zirconia supported methanol aerogel catalysts: II. Adsorption of carbon monoxide on pure zirconia and on zirconia containing zinc oxide. Appl Catal A Gen. 1993;105(2):223–249. doi: 10.1016/0926-860X(93)80250-T
  • Henderson MA. A surface science perspective on TiO2 photocatalysis. Surf Sci Rep. 2011;66(6):185–297. doi: 10.1016/j.surfrep.2011.01.001
  • Linsebigler AL, Lu G, Yates JT Jr. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev. 1995;95(3):735–758. doi: 10.1021/cr00035a013
  • Grätzel M. Photoelectrochemical cells. Nature. 2001;414(6861):338–344. doi: 10.1038/35104607
  • Xu M, Gao Y, Moreno EM, et al. Photocatalytic activity of bulk TiO2 anatase and rutile single crystals using infrared absorption spectroscopy. Phys Rev Lett. 2011;106(13):138302. doi: 10.1103/PhysRevLett.106.138302
  • Luttrell T, Halpegamage S, Tao J, et al. Why is anatase a better photocatalyst than rutile? - model studies on epitaxial TiO2 films. Sci Rep. 2014;4(1):4043. doi: 10.1038/srep04043
  • Dette C, Pérez-Osorio MA, Mangel S, et al. Atomic structure of water monolayer on anatase TiO2(101) surface. J Phys Chem C. 2018;122(22):11954–11960. doi: 10.1021/acs.jpcc.8b04210
  • Fasulo F, Piccini G, Muñoz-García AB, et al. Dynamics of water dissociative adsorption on TiO2 anatase (101) at monolayer coverage and below. J Phys Chem C. 2022;126(37):15752–15758. doi: 10.1021/acs.jpcc.2c03077
  • O’Connor CR, Calegari Andrade MF, Selloni A, et al. Elucidating the water–anatase TiO2(101) interface structure using infrared signatures and molecular dynamics. J Chem Phys. 2023;159(10). doi: 10.1063/5.0161895
  • Vasan R, Makableh YF, Manasreh MO. Comparison of anti-reflective properties of single layer anatase and rutile TiO2 on GaAs based solar cells. MRS Adv. 2016;1(14):957–963. doi: 10.1557/adv.2016.116
  • Katz G. The epitaxy of copper on sapphire. Appl Phys Lett. 2003;12(5):161–163. doi: 10.1063/1.1651935
  • Miller DL, Keller MW, Shaw JM, et al. Giant secondary grain growth in Cu films on sapphire. AIP Adv. 2013;3(8):082105. doi: 10.1063/1.4817829
  • Dehm G, Edongué H, Wagner T, et al. Obtaining different orientation relationships for Cu films grown on (0001) α-Al2O3 substrates by magnetron sputtering. Int J Mater Res. 2005;96(3):249–254. doi: 10.3139/146.101027
  • Cemin F, Lundin D, Furgeaud C, et al. Epitaxial growth of Cu(001) thin films onto Si(001) using a single-step HiPIMS process. Sci Rep. 2017;7(1):1655. doi: 10.1038/s41598-017-01755-8
  • Nakamura S, Harada Y, Seno M. Novel metalorganic chemical vapor deposition system for GaN growth. Appl Phys Lett. 1991;58(18):2021–2023. doi: 10.1063/1.105239
  • Paskova T, Svedberg EB, Henry A, et al. Thick GaN layers grown on a-plane sapphire substrates by hydride vapour phase epitaxy. Phys Scr. 1999;1999(T79):67. doi: 10.1238/Physica.Topical.079a00067
  • Grandjean N, Massies J, Vennéguès P, et al. Epitaxial relationships between GaN and Al2O3(0001) substrates. Appl Phys Lett. 1997;70(5):643–645. doi: 10.1063/1.118205
  • Chen P, Xu W, Gao Y, et al. Epitaxial growth of monolayer MoS2 on SrTiO3 single crystal substrates for applications in nanoelectronics. ACS Appl Nano Mater. 2018;1(12):6976–6988. doi: 10.1021/acsanm.8b01792
  • Zhang Z. A low-temperature and low-cost method to produce high-quality epitaxial anatase TiO2 thin films. J Mater Res. 2005;20(2):292–294. doi: 10.1557/JMR.2005.0036
  • Ono K, Kimura K, Kato T, et al. Epitaxial growth of a homogeneous anatase TiO2 thin film on LaAlO3 (001) using a solvothermal method with anticorrosive ligands. Chem Eng J. 2023;451:138893. doi: 10.1016/j.cej.2022.138893
  • Perrière J, Nistor M, Millon E, et al. Nd-doped ZnO films on (100) MgO substrate: from metal to semiconductor. Mater Sci Semicond Process. 2021;134:106000. doi: 10.1016/j.mssp.2021.106000
  • Matthews JW, Blakeslee AE. Defects in epitaxial multilayers: I. Misfit dislocations. J Cryst Growth. 1974;27:118–125. doi: 10.1016/0022-0248(74)90424-2
  • Hinuma Y, Oba F, Kumagai Y, et al. Band offsets of CuInSe2/CdS and CuInSe2/ZnS (110) interfaces: a hybrid density functional theory study. Phys Rev B. 2013;88(3):035305. doi: 10.1103/PhysRevB.88.035305
  • Hinuma Y. Modeling interfaces of fluorite-structure compounds using slab charge distribution. Sci Technol Adv Mater. 2022;2(1):392–401. doi: 10.1080/27660400.2022.2126739
  • Hinuma Y, Takigawa I, Kohyama M, et al. A simplified methodology for the modeling of interfaces of elementary metals. AIP Adv. 2021;11(11):115020. doi: 10.1063/5.0063715
  • Xie Y, Shibata K, Mizoguchi T. A brute-force code searching for cell of non-identical displacement for CSL grain boundaries and interfaces. Comput Phys Commun. 2022;273:108260. doi: 10.1016/j.cpc.2021.108260
  • Hinuma Y, Kumagai Y, Oba F, et al. Categorization of surface polarity from a crystallographic approach. Comp Mater Sci. 2016;113:221–230. doi: 10.1016/j.commatsci.2015.11.042
  • Banadaki AD, Patala S. An efficient algorithm for computing the primitive bases of a general lattice plane. J Appl Crystallogr. 2015;48(2):585–588. doi: 10.1107/S1600576715004446
  • Hinuma Y. Systematic derivation of maximally orthogonalized supercells. Sci Technol Adv Mater. 2022;2(1):266–279. doi: 10.1080/27660400.2022.2093094
  • Hinuma Y, Kohyama M, Tanaka S. Boundary plane-oriented grain boundary model generation. Modell Simul Mater Sci Eng. 2022;30(4):045005. doi: 10.1088/1361-651X/ac58b5
  • Yasumura S, Kamachi T, Toyao T, et al. Prediction of stable surfaces of metal oxides through the unsaturated coordination index. ACS Omega. 2023;8(32):29779–29788. doi: 10.1021/acsomega.3c04253
  • Hinuma Y, Meng YS, Ceder G. Temperature-concentration phase diagram of P2-Na(x)CoO(2) from first-principles calculations. Phys Rev B. 2008 Jun;77(22):224111. doi: 10.1103/PhysRevB.77.224111
  • Blankinship WA. A new version of the Euclidean Algorithm. Amer Math Mon. 1963;70(7):742–745. doi: 10.2307/2312260
  • Momma K, Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr. 2011;44(6):1272–1276. doi: 10.1107/S0021889811038970