478
Views
0
CrossRef citations to date
0
Altmetric
Materials Data Analysis and Utilization

Bayesian estimation to identify crystalline phase structures for X-ray diffraction pattern analysis

ORCID Icon, , , &
Article: 2300698 | Received 05 Sep 2023, Accepted 22 Dec 2023, Published online: 30 Jan 2024

References

  • Press WH, Teukolsky SA. Savitzky-golay smoothing filters. Comput Phys. 1990;4(6):669–20. doi:10.1063/1.4822961
  • Taupin D. Automatic peak determination in x-ray powder patterns. J Appl Crystallogr. 1973;6(4):266–273. doi:10.1107/S0021889873008666
  • Huang TC. Precision peak determination in x-ray powder diffraction. Aust J Phys. 1988;41(2):201–212. doi:10.1071/PH880201
  • Surdu V-A, Győrgy R. X-ray diffraction data analysis by machine learning methods—a review. Appl Sci. 2023;13(17):9992. doi: 10.3390/app13179992
  • Greasley J, Hosein P. Exploring supervised machine learning for multi-phase identification and quantification from powder X-ray diffraction spectra. J Mater Sci. 2023;58:1–15. doi:10.1007/s10853-023-08343-4
  • Fancher CM, Han Z, Levin I, et al. Use of Bayesian inference in crystallographic structure refinement via full diffraction profile analysis. Sci Rep. 2016;6:8. doi: 10.1038/srep31625
  • Mikhalychev A, Ulyanenkov A. Bayesian approach to powder phase identification. J Appl Crystallogr. 2017 Jun;50(3):776–786. doi: 10.1107/S1600576717004393
  • Suzuki Y. Automated data analysis for powder X-ray diffraction using machine learning. Synchrotron Radiat News. 2022;35(4):9–15. doi:10.1080/08940886.2022.2112496
  • Momma K, Izumi F. VESTA: a three-dimensional visualization system for electronic and structural analysis. J Appl Crystallogr. 2008 Jun;41(3):653–658. doi: 10.1107/S0021889808012016
  • Toraya H. Array-type universal profile function for powder pattern fitting. J Appl Crystallogr. 1990 Dec;23(6):485–491. doi: 10.1107/S002188989000704X
  • Wertheim GK, Butler MA, West KW, et al. Determination of the gaussian and lorentzian content of experimental line shapes. Rev Sci Instrum. 1974;45(11):1369–1371. doi: 10.1063/1.1686503
  • Hukushima K, Nemoto K. Exchange Monte Carlo method and application to spin glass simulations. J Phys Soc Jpn. 1996;65(6):1604–1608. doi:10.1143/JPSJ.65.1604
  • Nagata K, Sugita S, Okada M. Bayesian spectral deconvolution with the exchange Monte Carlo method. Neural Netw. 2012;28:82–89. doi:10.1016/j.neunet.2011.12.001
  • Rietveld HM, HM Rietveld. Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallogr. 1967;22(1):151–152. doi:10.1107/S0365110X67000234
  • Rietveld HM. A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr. 1969 Jun;2(2):65–71. doi: 10.1107/S0021889869006558
  • Rodríguez-Carvajal J. Recent advances in magnetic structure determination by neutron powder diffraction. Phys B Condens Matter. 1993;192(1–2):55–69. doi:10.1016/0921-4526(93)90108-I
  • Akselrud L, Grin Y. Wincsd: software package for crystallographic calculations (version 4). J Appl Crystallogr. 2014;47(2):803–805. doi:10.1107/S1600576714001058
  • Xu Y, Yamazaki M, Villars P. Inorganic materials database for exploring the nature of material. Jpn J Appl Phys. 2011 Nov;50(11S):11RH02. doi: 10.1143/JJAP.50.11RH02
  • Akimoto J, Gotoh Y, Oosawa Y, et al. Topotactic oxidation of ramsdellite-type li0.5tio2, a new polymorph of titanium dioxide: Tio2(r). J Solid State Chem. 1994;113(1):27–36. doi: 10.1006/jssc.1994.1337
  • Latroche M, Brohan L, Marchand R, et al. New hollandite oxides: Tio2(h) and k0.06tio2. J Solid State Chem. 1989;81(1):78–82. doi: 10.1016/0022-4596(89)90204-1
  • Kim D-W, Enomoto N, Nakagawa Z-E, et al. Molecular dynamic simulation in titanium dioxide polymorphs: rutile, brookite, and anatase. J Am Ceram Soc. 1996;79(4):1095–1099. doi: 10.1111/j.1151-2916.1996.tb08553.x