312
Views
0
CrossRef citations to date
0
Altmetric
Methodology, Apparatus, Experimental Design

Absolute evaluation of internal and external quantum efficiencies and light extraction efficiency in InGaN single quantum wells by simultaneous photoacoustic and photoluminescence measurements combined with integrating-sphere method

, , , , , , , , & show all
Article: 2315027 | Received 09 Aug 2023, Accepted 01 Feb 2024, Published online: 14 Feb 2024

References

  • Hwang JI, Hashimoto R, Saito S, et al. Development of InGaN-based red LED grown on (0001) polar surface. Appl Phys Express. 2014;7:071003. doi: 10.7567/APEX.7.071003
  • Li Y, Liu B, Zhang R, et al. Investigation of surface-plasmon coupled red light emitting InGaN/GaN multi-quantum well with ag nanostructures coated on GaN surface. J Appl Phys. 2015;117(15):153103. doi: 10.1063/1.4918555
  • Iida D, Zhuang Z, Kirilenko P, et al. 633-nm InGaN-based red LEDs grown on thick underlying GaN layers with reduced in-plane residual stress. Appl Phys Lett. 2020;116(16):162101. doi: 10.1063/1.5142538
  • Pasayat SS, Gupta C, Wong MS, et al. Demonstration of ultra-small (<10 μm) 632 nm red InGaN micro-LEDs with useful on-wafer external quantum efficiency (>0.2%) for mini-displays. Appl Phys Express. 2021;14:011004. doi: 10.35848/1882-0786/abd06f
  • Zhuang Z, Iida D, Velazquez-Rizo M, et al. InGaN-based red light-emitting diodes: from traditional to micro-LEDs. IEEE Electron Device Lett. 2021;42:1029. doi: 10.1109/LED.2021.3080985
  • Hou X, Fan SS, Xu H, et al. Optical properties of InGaN-based red multiple quantum wells. Appl Phys Lett. 2022;120(26):261102. doi: 10.1063/5.0096155
  • Hirayama H, Yatabe T, Noguchi N, et al. 231-261 nm AlGaN deep-ultraviolet light-emitting diodes fabricated on AlN multilayer buffers grown by ammonia pulse-flow method on sapphire. Appl Phys Lett. 2007:91;071901. doi: 10.1063/1.2770662
  • Hirayama H, Noguchi N, Yatabe T, et al. 227 nm AlGaN light-emitting diode with 0.15 mW output power realized using a thin quantum well and AlN buffer with reduced threading dislocation density. Appl Phys Express. 2008;1:051101. doi: 10.1143/APEX.1.051101
  • Taniyasu Y, Kasu M. Surface 210 nm light emission from an AlN p–n junction light-emitting diode enhanced by A-plane growth orientation. Appl Phys Lett. 2010;96(22):221110. doi: 10.1063/1.3446834
  • Hirayama H, Tsukada Y, Maeda T, et al. Marked enhancement in the efficiency of deep-Ultraviolet AlGaN light-emitting diodes by using a multiquantum-barrier electron blockingyayer. Appl Phys Express. 2010;3:031002.
  • Mehnke E, Kuhn C, Guttmann M, et al. Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes. Appl Phys Lett. 2014:105;051113. doi: 10.1063/1.4892883
  • Takano T, Mino T, Sakai J, et al. Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275 nm achieved by improving light-extraction efficiency. Appl Phys Express. 2017;10(3):031002. doi: 10.7567/APEX.10.031002
  • Zhang Y, Jamal-Eddine Z, Akyol F, et al. Tunnel-injected sub 290 nm ultra-violet light emitting diodes with 2.8% external quantum efficiency. Appl Phys Lett. 2018;112(7):071107. doi: 10.1063/1.5017045
  • Tan S, Zhang J, Egawa T, et al. Influence of quantum-well number and an AlN electron blocking Layer on the electroluminescence properties of AlGaN deep ultraviolet light-emitting diodes. Appl Sci. 2018;8(12):2402. doi: 10.3390/app8122402
  • Mehnke F, Sulmoni L, Guttmann M, et al. Influence of light absorption on the performance characteristics of UV LEDs with emission between 239 and 217 nm. Appl Phys Express. 2019;12(1):012008. doi: 10.7567/1882-0786/aaf788
  • Yoshikawa A, Hasegawa R, Morishita T, et al. Improve efficiency and long lifetime UVC LEDs with wavelengths between 230 and 237 nm. Appl Phys Express. 2020;13(2):022001. doi: 10.35848/1882-0786/ab65fb
  • Murotani H, Miyoshi H, Takeda R, et al. Correlation between excitons recombination dynamics and internal quantum efficiency of AlGaN-based UV-A multiple quantum wells. J Appl Phys. 2020;128(10):105704. doi: 10.1063/5.0015554
  • Funato M, Kawakami Y. Singularity structures for sub-250 nm emissions from AlGaN-based semiconductors. Jpn J Appl Phys. 2021;60(12):120501. doi: 10.35848/1347-4065/ac2f1e
  • Kawakami Y, Narukawa Y, Sawada K, et al. The mechanism of radiative recombination in light-emitting devices composed on InGaN quantum wells. Electron Comm Jpn Pt II. 1998;81(7):45. doi: 10.1002/(SICI)1520-6432(199807)81:7<45:AID-ECJB6>3.0.CO;2-1
  • Onuma T, Uchinuma Y, Suh EK, et al. Improved emission efficiency in InGaN/GaN quantum wells with compositionally-graded barriers studied by time-resolved photoluminescence spectroscopy. Jpn J Appl Phys. 2003;42(Part 2, No. 11B):L1369. doi: 10.1143/JJAP.42.L1369
  • Okamoto K, Niki I, Scherer A, et al. Surface plasmon enhanced spontaneous emission rate of InGaN ∕ GaN quantum wells probed by time-resolved photoluminescence spectroscopy. Appl Phys Lett. 2005;87(7):071102. doi: 10.1063/1.2010602
  • Liu L, Wang L, Liu N, et al. Investigation of the light emission properties and carrier dynamics in dual-wavelength InGaN/GaN multiple-quantum well light emitting diodes. J Appl Phys. 2012;112(8):083101. doi: 10.1063/1.4759373
  • Kohno T, Sudo Y, Yamauchi M, et al. Internal quantum efficiency and nonradiative recombination rate in InGaN-based near-ultraviolet light-emitting diodes. Jpn J Appl Phys. 2012;51(7R):072102. doi: 10.1143/JJAP.51.072102
  • Ngo TH, Gil B, Damilano B, et al. Photo-induced droop in blue to red light emitting InGaN/GaN single quantum wells structures. J Appl Phys. 2017;122(6):063103. doi: 10.1063/1.4997608
  • Murotani H, Yamada Y, Honda Y, et al. Excitation density dependence of radiative and nonradiative recombination lifetimes in InGaN/GaN multiple quantum wells. Phys Status Solidi B. 2015;252(5):940. doi: 10.1002/pssb.201451491
  • Boettcher T, Einfeldt S, Figge S, et al. The role of high-temperature island coalescence in the development of stresses in GaN films. Appl Phys Lett. 2001;78(14):1976. doi: 10.1063/1.1359780
  • Shan H, Mei YJ, Wang N. Degradation in efficiency of InGaN/GaN multiquantum well solar cells with rising temperature. IEEE Trans Electron Devices. 2022;69(11):6195–10. doi: 10.1109/TED.2022.3208081
  • Mion C, Muth JF, Preble EA, et al. Thermal conductivity, dislocation density and GaN device design. Superlattices Microstruct. 2006;40(4–6):338. doi: 10.1016/j.spmi.2006.07.017
  • Cho YH, Gainer GH, Fischer AJ, et al. “S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells. Appl Phys Lett. 1998;73(10):1370. doi: 10.1063/1.122164
  • Cho HD, Yoon IH, Yuldashev SU, et al. Electroluminescence in a rectifying graphene/InGaN junction. RSC Adv. 2017;7:50853. doi: 10.1039/C7RA10672F
  • Yamaguchi T, Ariga K, Mori K, et al. Excitation wavelength dependence of temperature-induced photoluminescence quenching in InGaN quantum wells. IEICE Technical Report. 2020;120:5. (conference abstract, in Japanese).
  • Dai Q, Shan Q, Wang J, et al. Carrier recombination mechanisms and efficiency droop in GaInN/GaN light-emitting diodes. Appl Phys Lett. 2010;97(13):133507. doi: 10.1063/1.3493654
  • Karpov SY. ABC-Model for interpretation of internal quantum efficiency and its droop in III-Nitride LEDs: a review. Opt Quantum Electron. 2015;47(6):1293. doi: 10.1007/s11082-014-0042-9
  • Olivier F, Daami A, Licitra C, et al. Shockley-read-hall and auger non-radiative recombination in GaN based LEDs: a size effect study. Appl Phys Lett. 2017;111(2):022104. doi: 10.1063/1.4993741
  • David A, Young NG, Hurni CA, et al. Quantum efficiency of III-Nitride emitters: evidence for defect-assisted nonradiative recombination and its effect on the green gap. Phys Rev Appl. 2019;11(3):031001. doi: 10.1103/PhysRevApplied.11.031001
  • Manabe H, Goto H, Sunakawa H, et al. Direct verification of commonly-used rate-equation Model in III-Nitride material by detailed analysis of photoluminescence decay curves. San Francisco, California: SPIE Photonics West; 2014 Feb 1-6.
  • Kawakami Y, Inoue K, Kaneta A, et al. Quantification of the internal quantum efficiency in GaN via analysis of the heat generated by non-radiative recombination processes. J Appl Phys. 2015;117(10):105702. doi: 10.1063/1.4914413
  • Kojima K, Ohtomo T, Ikemura K. Determination of absolute value of quantum efficiency of radiation in high quality GaN single crystals using an integrating sphere. J Appl Phys. 2016;120(1):015704. doi: 10.1063/1.4955139
  • Usami S, Honda Y, Amano H. Photocurrent and photoluminescence measurements for InGaN based LED. Yokohama, Japan: LEDIA’17 LDC’17; [2017 Apr 18-21].
  • Halsall MP, Crowe IF, Mullins J, et al. Photomodulated reflectivity measurement of free-carrier dynamics in InGaN/GaN quantum wells. ACS Photonics. 2018;5(11):4437. doi: 10.1021/acsphotonics.8b00904
  • Shim JI, Shin DS. Measuring the internal quantum efficiency of light-emitting diodes: towards accurate and reliable room-temperature characterization. Nanophotonics. 2018;7(10):1601. doi: 10.1515/nanoph-2018-0094
  • Murotani H, Shibuya K, Yoneda A, et al. Analysis of efficiency curves in near-UV, blue, and green-emitting InGaN-based multiple quantum wells using rate equations of exciton recombination. Jpn J Appl Phys. 2019;58(SC):SCCB02. doi: 10.7567/1347-4065/ab040b
  • Mi C, Wang L, Jin J, et al. Estimating internal quantum efficiency of light-emitting diodes from current–voltage curves. Appl Phys Express. 2019;12(3):032002. doi: 10.7567/1882-0786/aafb57
  • Nakano T, Kawakami K, Yamaguchi AA. Determination of internal quantum efficiency in GaN by simultaneous measurements of photoluminescence and photo-acoustic signals. Proc Of SPIE. 2016;9748:97481W–974811.
  • Yamaguchi AA, Kawakami K, Shimizu N, et al. A novel method to measure absolute internal quantum efficiency in III-Nitride semiconductors by simultaneous photo-acoustic and photoluminescence spectroscopy. IEICE Trans Electron. 2018;E101.C(7):527. doi: 10.1587/transele.E101.C.527
  • Dunstan DJ. On the measurement of absolute radiative and non-radiative recombination efficiencies in semiconductor lasers. J Phys D Appl Phys. 1992;25(12):1825. doi: 10.1088/0022-3727/25/12/020
  • Kawakami K, Nakano T, Yamaguchi AA. Analysis of radiative and non-radiative lifetimes in GaN using accurate internal-quantum-efficiency values estimated by simultaneous photoluminescence and photo-acoustic measurements. Proc of SPIE. 2016;9748:97480S–974801.
  • Bell AG. Upon the production of sound by radiant energy. Am J Sci. 1880;20(118):305. doi: 10.2475/ajs.s3-20.118.305
  • Rosencwaig A, Gersho A. Theory of the photoacoustic effect with solids. J Appl Phys. 1976;47(1):64. doi: 10.1063/1.322296
  • Haller C, Carlin JF, Jacopin G, et al. GaN surface as the source of non-radiative defects in InGaN/GaN quantum wells. Appl Phys Lett. 2020;113(11):111106. doi: 10.1063/1.5048010
  • Haller C, Carlin JF, Mosca M, et al. InAlN underlayer for near ultraviolet InGaN based light emitting diodes. Appl Phys Express. 2019;12(3):034002. doi: 10.7567/1882-0786/ab0147
  • Badcock TJ, Ali M, Zhu T, et al. Radiative recombination mechanisms in polar and non-polar InGaN/GaN quantum well LED structures. Appl Phys Lett. 2016;109(15):151110. doi: 10.1063/1.4964842
  • Rashidi A, Monavarian M, Aragon A, et al. Thermal and efficiency droop in InGaN/GaN light-emitting diodes: decoupling multiphysics effects using temperature-dependent RF measurements. Sci Rep. 2019;9(1):19921. doi: 10.1038/s41598-019-56390-2
  • Sari E, Nizamoglu S, Lee IH, et al. Electric field dependent radiative decay kinetics of polar InGaN/GaN quantum heterostructures at low fields. Appl Phys Lett. 2009;94(21):211107. doi: 10.1063/1.3142386
  • Langer T, Chernikov A, Kalincev D, et al. Room temperature excitonic recombination in GaInN/GaN quantum wells. Appl Phys Lett. 2013;103(20):202106. doi: 10.1063/1.4830366
  • Han DP, Lee GW, Min S, et al. Identifying the cause of thermal droop in GaInN‑based LEDs by carrier‑ and thermo‑dynamics analysis. Sci Rep. 2020;10(1):17433. doi: 10.1038/s41598-020-74585-w