1,186
Views
0
CrossRef citations to date
0
Altmetric
Materials Data Analysis and Utilization

Alloys innovation through machine learning: a statistical literature review

ORCID Icon, ORCID Icon & ORCID Icon
Article: 2326305 | Received 26 Jun 2023, Accepted 28 Feb 2024, Published online: 11 Apr 2024

References

  • Tanaka I, Rajan K, Wolverton C. Data-centric science for materials innovation. MRS Bull. 2018;43(9):659–31. doi: 10.1557/mrs.2018.205
  • Schmidt J, Marques MRG, Botti S, et al. Recent advances and applications of machine learning in solid-state materials science. Npj Comput Mater. 2019;5. doi: 10.1038/s41524-019-0221-0
  • Olson GB. Computational design of hierarchically structured materials. Science. 1997;277(5330):1237–1242. doi: 10.1126/science.277.5330.1237
  • Kingsmore KM, Puglisi CE, Grammer AC, et al. An introduction to machine learning and analysis of its use in rheumatic diseases. Nat Rev Rheumatol. 2021;17(12):710–730. doi: 10.1038/s41584-021-00708-w
  • Pfeiler, W. Alloy physics: a comprehensive reference. Wiley; 2007.
  • Marchand D, Jain A, Glensk A, et al. Machine learning for metallurgy I. A neural-network potential for al-cu. Phys Rev Mater. 2020;4(10):1–21. doi: 10.1103/PhysRevMaterials.4.103601
  • Jakse N, Sandberg J, Granz LF, et al. Machine learning interatomic potentials for aluminium: application to solidification phenomena. J Phys Condens Matter. 2023;35(3):035402. doi: 10.1088/1361-648X/ac9d7d
  • Varol ÖH, İnce M, Bıçaklı EE. Prediction of mechanical properties of the 2024 aluminum alloy by using machine learning methods. Arab J Sci Eng. 2023;48:2841–2850. doi: 10.1007/s13369-022-07009-8
  • Kumar AK, Surya MS, Venkataramaiah P. Performance evaluation of machine learning based-classifiers in friction stir welding of Aa6061-T6 alloy. Int J Interact Des Manuf. 2023;17(1):469–472. doi: 10.1007/s12008-022-00904-2
  • Yao D, Pu S, Li M, et al. Parameter identification method of the semi-coupled fracture model for 6061 aluminium alloy sheet based on machine learning assistance. Int J Solids Struct. 2022;254–255:111823. doi: 10.1016/j.ijsolstr.2022.111823
  • Liu Q, Wu H, Paul MJ, et al. Machine-learning assisted laser powder bed fusion process optimization for AlSi10Mg: new microstructure description indices and fracture mechanisms. Acta Mater. 2020;201:316–328. doi: 10.1016/j.actamat.2020.10.010
  • Yanase Y, Miyauchi H, Matsumoto H, et al. Densification behavior and microstructures of the Al-10%Si-0.35Mg alloy fabricated by selective laser melting: from experimental observation to machine learning. Mater Trans. 2022;63:176–184. doi: 10.2320/matertrans.MT-M2021215
  • Chun MS, Biglou J, Lenard JG, et al. Using neural networks to predict parameters in the hot working of aluminum alloys. J Mater Process Technol. 1999;86(1–3):245–251. doi: 10.1016/S0924-0136(98)00318-5
  • Li B, Du Y, Zheng ZS, et al. Manipulation of mechanical properties of 7xxx aluminum alloy via a hybrid approach of machine learning and key experiments. J Mater Res Technol. 2022;19:2483–2496. doi: 10.1016/j.jmrt.2022.06.015
  • Aydin F. The investigation of the effect of particle size on wear performance of AA7075/Al2O3 composites using statistical analysis and different machine learning methods. Adv Powder Technol. 2021;32:445–463. doi: 10.1016/j.apt.2020.12.024
  • Decke J, Engelhardt A, Rauch L, et al. Predicting flow stress behavior of an AA7075 alloy using machine learning methods. Crystals. 2022;12(9):1–19. doi: 10.3390/cryst12091281
  • Haghdadi N, Zarei-Hanzaki A, Khalesian AR, et al. Artificial neural network modeling to predict the hot deformation behavior of an A356 aluminum alloy. Mater Des. 2013;49:386–391. doi: 10.1016/j.matdes.2012.12.082
  • Shang H, Wu P, Lou Y, et al. Machine learning-based modeling of the coupling effect of strain rate and temperature on strain hardening for 5182-O aluminum alloy. J Mater Process Technol. 2022;302:117501. doi: 10.1016/j.jmatprotec.2022.117501
  • Soofi Y J, Rahman MA, Gu Y, et al. A feasibility study of machine learning-assisted alloy design using wrought aluminum alloys as an example. Comput Mater Sci. 2022;215:111783. doi: 10.1016/j.commatsci.2022.111783
  • Takara Y, Ozawa T, Yamaguchi M. Analysis of the elemental effects on the surface potential of aluminum alloy using machine learning. Jpn J Appl Phys. 2022;61:SL1008. doi: 10.35848/1347-4065/ac5a2a
  • Lian Z, Li M, Lu W. Fatigue life prediction of aluminum alloy via knowledge-based machine learning. Int J Fatigue. 2022;157:106716. doi: 10.1016/j.ijfatigue.2021.106716
  • Chun PJ, Yamane T, Izumi S, et al. Development of a machine learning-based damage identification method using multi-point simultaneous acceleration measurement results. Sensors (Switzerland). 2020;20(10):20. doi: 10.3390/s20102780
  • Jiang X, Zhang R, Zhang C, et al. Fast prediction of the quasi phase equilibrium in phase field model for multicomponent alloys based on machine learning method. Calphad. 2019;66:101644. https://linkinghub.elsevier.com/retrieve/pii/S0364591619300860
  • Dai Y, Zhao S, Song C, et al. Identification of aluminum alloy by laser‐induced breakdown spectroscopy combined with machine algorithm. Microw Opt Technol Lett. 2021;63(6):1629–1634. doi: 10.1002/mop.32810
  • Wang J, Yousefzadi Nobakht A, Blanks JD, et al. Machine learning for thermal transport analysis of aluminum alloys with precipitate morphology. Adv Theory Simul. 2019;2(4). doi: 10.1002/adts.201800196
  • Malinov S, Sha W, McKeown J. Modelling the correlation between processing parameters and properties in titanium alloys using artificial neural network. Comput Mater Sci. 2001;21(3):375–394. doi: 10.1016/S0927-0256(01)00160-4
  • Malinov S, Sha W. Application of artificial neural networks for modelling correlations in titanium alloys. Mater Sci Eng A. 2004;365(1–2):202–211. doi: 10.1016/j.msea.2003.09.029
  • Zhu C, Li C, Wu D, et al. A titanium alloys design method based on high-throughput experiments and machine learning. J Mater Res Technol. 2021;11:2336–2353. doi: 10.1016/j.jmrt.2021.02.055
  • Bautista-Monsalve F, García-Sevilla F, Miguel V, et al. A novel machine-learning-based procedure to determine the surface finish quality of titanium alloy parts obtained by heat assisted single point incremental forming. Metals (Basel). 2021;11(8):11. doi: 10.3390/met11081287
  • Zhan Z, Hu W, Meng Q. Data-driven fatigue life prediction in additive manufactured titanium alloy: a damage mechanics based machine learning framework. Eng Fract Mech. 2021;252:107850. doi: 10.1016/j.engfracmech.2021.107850
  • Li J, Yang Z, Qian G, et al. Machine learning based very-high-cycle fatigue life prediction of Ti-6Al-4V alloy fabricated by selective laser melting. Int J Fatigue. 2022;158:106764. doi: 10.1016/j.ijfatigue.2022.106764
  • Sun Y, Zeng WD, Zhao YQ, et al. Development of constitutive relationship model of Ti600 alloy using artificial neural network. Comput Mater Sci. 2010;48:686–691. doi: 10.1016/j.commatsci.2010.03.007
  • Reddy NS, Panigrahi BB, Ho CM, et al. Artificial neural network modeling on the relative importance of alloying elements and heat treatment temperature to the stability of α and β phase in titanium alloys. Comput Mater Sci. 2015;107:175–183. doi: 10.1016/j.commatsci.2015.05.026
  • Kwak S, Kim J, Ding H, et al. Machine learning prediction of the mechanical properties of γ-TiAl alloys produced using random forest regression model. J Mater Res Technol. 2022;18:520–530. doi: 10.1016/j.jmrt.2022.02.108
  • Outeiro J, Cheng W, Chinesta F, et al. Modelling and optimization of machining of ti-6Al-4V titanium alloy using machine learning and design of experiments methods. J Manuf Mater Process. 2022;6(3):6. doi: 10.3390/jmmp6030058
  • Wu CT, Lin PH, Huang SY, et al. Revisiting alloy design of low-modulus biomedical β-Ti alloys using an artificial neural network. Materialia. 2022;21:101313. doi: 10.1016/j.mtla.2021.101313
  • Liu Y, Wang L, Zhang H, et al. Accelerated development of high-strength magnesium alloys by machine learning. Metall Mater Trans A Phys Metall Mater Sci. 2021;52:943–954. doi: 10.1007/s11661-020-06132-1
  • Xu X, Wang L, Zhu G, et al. Predicting tensile properties of AZ31 magnesium alloys by machine learning. JOM. 2020;72:3935–3942. doi: 10.1007/s11837-020-04343-w
  • Ibarra-Hernández W, Hajinazar S, Avendaño-Franco G, et al. Structural search for stable Mg-ca alloys accelerated with a neural network interatomic model. Phys Chem Chem Phys. 2018;20:27545–27557. doi: 10.1039/C8CP05314F
  • Gui Y, Li Q, Zhu K, et al. A combined machine learning and EBSD approach for the prediction of {10-12} twin nucleation in an Mg-RE alloy. Mater Today Commun. 2021;27:102282. doi: 10.1016/j.mtcomm.2021.102282
  • Wei X, Wang J, Wang C, et al. Prediction of electronic work function of the second phase in binary magnesium alloy based on machine learning method. J Mater Res. 2022;37(21):3792–3802. doi: 10.1557/s43578-022-00752-6
  • Fang S, Xiao X, Xia L, et al. Relationship between the widths of supercooled liquid regions and bond parameters of Mg-based bulk metallic glasses. J Non Cryst Solids. 2003;321(1–2):120–125. doi: 10.1016/S0022-3093(03)00155-8
  • Chen T, Gao Q, Yuan Y, et al. Coupling physics in machine learning to investigate the solution behavior of binary Mg alloys. J Magnes Alloy. 2022;10:2817–2832. https://linkinghub.elsevier.com/retrieve/pii/S2213956721001584
  • Qiao L, Ramanujan RV, Zhu J. Machine learning discovery of a new cobalt free multi-principal-element alloy with excellent mechanical properties. Mater Sci Eng A. 2022;845:143198. doi: 10.1016/j.msea.2022.143198
  • Wang H, Li B, Xuan FZ. A dimensionally augmented and physics-informed machine learning for quality prediction of additively manufactured high-entropy alloy. J Mater Process Technol. 2022;307:117637. doi: 10.1016/j.jmatprotec.2022.117637
  • Rovinelli A, Sangid MD, Proudhon H, et al. Using machine learning and a data-driven approach to identify the small fatigue crack driving force in polycrystalline materials. Npj Comput Mater. 2018;4:1–10. doi: 10.1038/s41524-018-0094-7
  • Wang R, Zeng S, Wang X, et al. Machine learning for hierarchical prediction of elastic properties in Fe-cr-al system. Comput Mater Sci. 2019;166:119–123. doi: 10.1016/j.commatsci.2019.04.051
  • Zhang YM, Yang S, Evans JRG. Revisiting Hume-Rothery’s rules with artificial neural networks. Acta Mater. 2008;56(5):1094–1105. doi: 10.1016/j.actamat.2007.10.059
  • Seko A, Maekawa T, Tsuda K, et al. Machine learning with systematic density-functional theory calculations: application to melting temperatures of single- and binary-component solids. Phys Rev B. 2014;89(5):054303. doi: 10.1103/PhysRevB.89.054303
  • Reitz DM, Blaisten-Barojas E. Simulating the NaK eutectic alloy with Monte Carlo and machine learning. Sci Rep. 2019;9:1–11. doi: 10.1038/s41598-018-36574-y
  • Oh SV, Hwang W, Kim K, et al. Using feature‐assisted machine learning algorithms to boost polarity in lead‐free multicomponent niobate alloys for high‐performance ferroelectrics. Adv Sci. 2022;9. doi: 10.1002/advs.202104569
  • Chintakindi S, Alsamhan A, Abidi MH, et al. Annealing of monel 400 alloy using principal component analysis, hyper-parameter optimization, machine learning techniques, and multi-objective particle swarm optimization. Int J Comput Intell Syst. 2022;15(1):18. doi: 10.1007/s44196-022-00070-z
  • Yang Y, Guo Z, Gellman AJ, et al. Simulating segregation in a ternary Cu-pd-au alloy with density functional theory, machine learning, and monte carlo simulations. J Phys Chem C. 2022;126:1800–1808. doi: 10.1021/acs.jpcc.1c09647
  • Mayeur JR, Mourad HM, Luscher DJ, et al. Numerical implementation of a crystal plasticity model with dislocation transport for high strain rate applications. Model Simul Mater Sci Eng. 2016;24(4):045013. doi: 10.1088/0965-0393/24/4/045013
  • van Nieuwenburg EPL, Liu Y-H, Huber SD. Learning phase transitions by confusion. Nat Phys. 2017;13:435–439. https://www.nature.com/articles/nphys4037
  • Sun H, Zhang H, Ren G, et al. A knowledge transfer framework for general alloy materials properties prediction. Materials. 2022;15(21):7442. doi: 10.3390/ma15217442
  • Fu Y, Frazier WE, Choi KS, et al. Prediction of grain structure after thermomechanical processing of U-10Mo alloy using sensitivity analysis and machine learning surrogate model. Sci Rep. 2022;12:1–11. doi: 10.1038/s41598-022-14731-8
  • Kautz E, Ma W, Jana S, et al. An image-driven machine learning approach to kinetic modeling of a discontinuous precipitation reaction. Mater Charact. 2020;166:110379. doi: 10.1016/j.matchar.2020.110379
  • Grabowski B, Ikeda Y, Srinivasan P, et al. Ab initio vibrational free energies including anharmonicity for multicomponent alloys. Npj Comput Mater. 2019;5. 10.1038/s41524-019-0218-8
  • Chang YJ, Jui CY, Lee WJ, et al. Prediction of the composition and hardness of high-entropy alloys by machine learning. JOM. 2019;71:3433–3442. doi: 10.1007/s11837-019-03704-4
  • Kim G, Diao H, Lee C, et al. First-principles and machine learning predictions of elasticity in severely lattice-distorted high-entropy alloys with experimental validation. Acta Mater. 2019;181:124–138. doi: 10.1016/j.actamat.2019.09.026
  • Wu Q, Wang Z, Hu X, et al. Uncovering the eutectics design by machine learning in the Al–Co–Cr–Fe–Ni high entropy system. Acta Mater. 2020;182:278–286. doi: 10.1016/j.actamat.2019.10.043
  • Menou E, Toda-Caraballo I, Rivera-Díaz-Del-Castillo PEJ, et al. Evolutionary design of strong and stable high entropy alloys using multi-objective optimisation based on physical models, statistics and thermodynamics. Mater Des. 2018;143:185–195. doi: 10.1016/j.matdes.2018.01.045
  • Menou E, Tancret F, Toda-Caraballo I, et al. Computational design of light and strong high entropy alloys (HEA): obtainment of an extremely high specific solid solution hardening. Scr Mater. 2018;156:120–123. doi: 10.1016/j.scriptamat.2018.07.024
  • Zhuang X, Antonov S, Li W, et al. Alloying effects and effective alloy design of high-Cr CoNi-based superalloys via a high-throughput experiments and machine learning framework. Acta Mater. 2022;243:118525. doi: 10.1016/j.actamat.2022.118525
  • Jafary-Zadeh M, Khoo KH, Laskowski R, et al. Applying a machine learning interatomic potential to unravel the effects of local lattice distortion on the elastic properties of multi-principal element alloys. J Alloys Compd. 2019;803:1054–1062. doi: 10.1016/j.jallcom.2019.06.318
  • Rickman JM, Chan HM, Harmer MP, et al. Materials informatics for the screening of multi-principal elements and high-entropy alloys. Nat Commun. 2019;10:1–10. doi: 10.1038/s41467-019-10533-1
  • Ozerdem MS, Kolukisa S. Artificial neural network approach to predict the mechanical properties of Cu-Sn-Pb-Zn-Ni cast alloys. Mater Des. 2009;30:764–769. doi: 10.1016/j.matdes.2008.05.019
  • Zhang L, Qian K, Huang J, et al. Molecular dynamics simulation and machine learning of mechanical response in non-equiatomic FeCrNiCoMn high-entropy alloy. J Mater Res Technol. 2021;13:2043–2054. doi: 10.1016/j.jmrt.2021.06.021
  • Kostiuchenko T, Körmann F, Neugebauer J, et al. Impact of lattice relaxations on phase transitions in a high-entropy alloy studied by machine-learning potentials. Npj Comput Mater. 2019;5:1–7. doi: 10.1038/s41524-019-0195-y
  • Rao Z, Tung P-Y, Xie R, et al. Machine learning–enabled high-entropy alloy discovery. Science. 2022;378:78–85. doi: 10.1126/science.abo4940
  • Machaka R. Machine learning-based prediction of phases in high-entropy alloys. Comput Mater Sci. 2021;188:110244. doi: 10.1016/j.commatsci.2020.110244
  • Zhang Y, Wen C, Wang C, et al. Phase prediction in high entropy alloys with a rational selection of materials descriptors and machine learning models. Acta Mater. 2020;185:528–539. doi: 10.1016/j.actamat.2019.11.067
  • Batchelor TAA, Pedersen JK, Winther SH, et al. High-entropy alloys as a discovery platform for electrocatalysis. Joule. 2019;3(3):834–845. doi: 10.1016/j.joule.2018.12.015
  • Ghouchan Nezhad Noor Nia R, Jalali M, Mail M, et al. Machine Learning Approach to Community Detection in a high-entropy alloy interaction network. ACS Omega. 2022;7:12978–12992. doi: 10.1021/acsomega.2c00317
  • Wan X, Zhang Z, Yu W, et al. Machine-learning-assisted discovery of highly efficient high-entropy alloy catalysts for the oxygen reduction reaction. Patterns. 2022;3:100553. doi: 10.1016/j.patter.2022.100553
  • Clausen CM, Nielsen MLS, Pedersen JK, et al. Ab Initio to activity: machine learning-assisted optimization of high-entropy alloy catalytic activity. High Entropy Alloy Mater. 2022;1:0–3.
  • Mishra A, Kompella L, Sanagavarapu LM, et al. Ensemble-based machine learning models for phase prediction in high entropy alloys. Comput Mater Sci. 2022;210:111025. doi: 10.1016/j.commatsci.2021.111025
  • Wen C, Wang C, Zhang Y, et al. Modeling solid solution strengthening in high entropy alloys using machine learning. Acta Mater. 2021;212:116917. doi: 10.1016/j.actamat.2021.116917
  • Zhou Y, Srinivasan P, Körmann F, et al. Thermodynamics up to the melting point in a TaVCrW high entropy alloy: systematic ab initio study aided by machine learni. Phys Rev B. 2022;105:214302. doi: 10.1103/PhysRevB.105.214302
  • Krishna YV, Jaiswal UK, RM R. Machine learning approach to predict new multiphase high entropy alloys. Scr Mater. 2021;197:113804. doi: 10.1016/j.scriptamat.2021.113804
  • Li Y, Guo W. Machine-learning model for predicting phase formations of high-entropy alloys. Phys Rev Mater. 2019;3:95005. doi: 10.1103/PhysRevMaterials.3.095005
  • Huang W, Martin P, Zhuang HL. Machine-learning phase prediction of high-entropy alloys. Acta Mater. 2019;169:225–236. doi: 10.1016/j.actamat.2019.03.012
  • Li L, Xie B, Fang Q, et al. Machine learning approach to design high entropy alloys with heterogeneous grain structures. Metall Mater Trans A Phys Metall Mater Sci. 2021;52(2):439–448. doi: 10.1007/s11661-020-06099-z
  • Wen C, Zhang Y, Wang C, et al. Machine learning assisted design of high entropy alloys with desired property. Acta Mater. 2019;170:109–117. doi: 10.1016/j.actamat.2019.03.010
  • Yang C, Ren C, Jia Y, et al. A machine learning-based alloy design system to facilitate the rational design of high entropy alloys with enhanced hardness. Acta Mater. 2022;222:117431. doi: 10.1016/j.actamat.2021.117431
  • Li XG, Chen C, Zheng H, et al. Complex strengthening mechanisms in the NbMoTaW multi-principal element alloy. Npj Comput Mater. 2020;6:1–32. doi: 10.1038/s41524-020-0339-0
  • Shapeev A. Accurate representation of formation energies of crystalline alloys with many components. Comput Mater Sci. 2017;139:26–30. doi: 10.1016/j.commatsci.2017.07.010
  • Meshkov EA, Novoselov II, Shapeev AV, et al. Sublattice formation in CoCrFeNi high-entropy alloy. Intermetallics. 2019;112:106542. doi: 10.1016/j.intermet.2019.106542
  • Zhang L, Chen H, Tao X, et al. Machine learning reveals the importance of the formation enthalpy and atom-size difference in forming phases of high entropy alloys. Mater Des. 2020;193:108835. doi: 10.1016/j.matdes.2020.108835
  • Zhang J, Liu X, Bi S, et al. Robust data-driven approach for predicting the configurational energy of high entropy alloys. Mater Des. 2020;185:108247. doi: 10.1016/j.matdes.2019.108247
  • Nong Z-S, Zhu J-C, Cao Y, et al. Stability and structure prediction of cubic phase in as cast high entropy alloys. Mater Sci Technol. 2014;30(3):363–369. doi: 10.1179/1743284713Y.0000000368
  • Abu-Odeh A, Galvan E, Kirk T, et al. Efficient exploration of the high entropy alloy composition-phase space. Acta Mater. 2018;152:41–57. doi: 10.1016/j.actamat.2018.04.012
  • Yan Y, Lu D, Wang K. Accelerated discovery of single-phase refractory high entropy alloys assisted by machine learning. Comput Mater Sci. 2021;199:110723. doi: 10.1016/j.commatsci.2021.110723
  • Guo T, Wu L, Li T. Machine learning accelerated, high throughput, multi‐objective optimization of multiprincipal element alloys. Small. 2021;17(42). doi: 10.1002/smll.202102972
  • Roy D, Mandal SC, Pathak B. Machine learning assisted exploration of high entropy alloy-based catalysts for selective CO2 reduction to methanol. J Phys Chem Lett. 2022;13(25):5991–6002. doi: 10.1021/acs.jpclett.2c00929
  • Kaufmann K, Maryanovsky D, Mellor WM, et al. Discovery of high-entropy ceramics via machine learning. Npj Comput Mater. 2020;6:1–9. doi: 10.1038/s41524-020-0317-6
  • Tancret F, Toda-Caraballo I, Menou E, et al. Designing high entropy alloys employing thermodynamics and Gaussian process statistical analysis. Mater Des. 2017;115:486–497. doi: 10.1016/j.matdes.2016.11.049
  • Qi J, Cheung AM, Poon SJ. High entropy alloys mined from binary phase diagrams. Sci Rep. 2019;9(1):15501. doi: 10.1038/s41598-019-50015-4
  • Domínguez LA, Goodall R, Todd I, et al. Prediction and validation of four component high entropy alloys using principal component analysis. Adv Eng Mater. 2015;210:259–268. doi: 10.1016/j.matchemphys.2017.09.001
  • Deng L, Wang C, Luo J, et al. Preparation and property optimization of FeCrAl-based ODS alloy by machine learning combined with wedge-shaped hot-rolling. Mater Charact. 2022;188:111894. doi: 10.1016/j.matchar.2022.111894
  • Shin D, Yamamoto Y, Brady MP, et al. Modern data analytics approach to predict creep of high-temperature alloys. Acta Mater. 2019;168:321–330. doi: 10.1016/j.actamat.2019.02.017
  • Geng X, Cheng Z, Wang S, et al. A data-driven machine learning approach to predict the hardenability curve of boron steels and assist alloy design. J Mater Sci. 2022;57:10755–10768. doi: 10.1007/s10853-022-07132-9
  • Peng G, Sun Y, Zhang Q, et al. A collaborative design platform for new alloy material development. Adv Eng Informatics. 2022;51:101488. doi: 10.1016/j.aei.2021.101488
  • Yang X, Yang J, Yang Y, et al. Data-mining and atmospheric corrosion resistance evaluation of Sn- and Sb-additional low alloy steel based on big data technology. Int J Miner Metall Mater. 2022;29(4):825–835. doi: 10.1007/s12613-022-2457-9
  • Rakhshkhorshid M, Teimouri Sendesi SA. Bayesian regularization neural networks for prediction of austenite formation temperatures (Ac1 and Ac3). J Iron Steel Res Int. 2014;21(2):246–251. doi: 10.1016/S1006-706X(14)60038-8
  • Zhan Z, Li H. Machine learning based fatigue life prediction with effects of additive manufacturing process parameters for printed SS 316L. Int J Fatigue. 2021;142:105941. doi: 10.1016/j.ijfatigue.2020.105941
  • Thanush AA, Chitra P, Kasinath J, et al. Atmospheric corrosion rate prediction of low-alloy steel using machine learning models. IOP Conf Ser Mater Sci Eng. 2022;1248(1):012050. doi: 10.1088/1757-899X/1248/1/012050
  • Wang C, Wei X, Ren D, et al. High-throughput map design of creep life in low-alloy steels by integrating machine learning with a genetic algorithm. Mater Des. 2022;213:110326. doi: 10.1016/j.matdes.2021.110326
  • Wang Y, Goh B, Nelaturu P, et al. Integrated high-throughput and machine learning methods to accelerate discovery of molten salt corrosion-resistant alloys. Adv Sci. 2022;9(20):1–13. doi: 10.1002/advs.202200370
  • Gavard L, Bhadeshia HKDH, MacKay DJC, et al. Bayesian neural network model for austenite formation in steels. Mater Sci Technol. 1996;12(6):453–463. doi: 10.1179/mst.1996.12.6.453
  • Mahfouf M, Jamei M, Linkens DA. Optimal design of alloy steels using multiobjective genetic algorithms. Mater Manuf Process. 2005;20(3):553–567. doi: 10.1081/AMP-200053580
  • Bailer-Jones CAL, Bhadeshia HKDH, MacKay DJC. Gaussian process modelling of austenite formation in steel. Mater Sci Technol. 1999;15(3):287–294. doi: 10.1179/026708399101505851
  • Capdevila C, Caballero FG, de AC. Determination of ms temperature in steels: a bayesian neural network model. ISIJ Int. 2002;42:894–902. http://www.jstage.jst.go.jp/article/isijinternational1989/42/8/42_8_894/_article
  • Capdevila C, Caballero FG, de Andrés C G. Analysis of effect of alloying elements on martensite start temperature of steels. Mater Sci Technol. 2003;19:581–586. doi: 10.1179/026708303225001902
  • Behler J, Parrinello M. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys Rev Lett. 2007;98(14):146401. doi: 10.1103/PhysRevLett.98.146401
  • Chatterjee S, Murugananth M, HKDH B. δ TRIP steel. Mater Sci Technol. 2007;23:819–827. doi: 10.1179/174328407X179746
  • Brun F, Yoshida T, Robson JD, et al. Theoretical design of ferritic creep resistant steels using neural network, kinetic, and thermodynamic models. Mater Sci Technol. 1999;15(5):547–554. doi: 10.1179/026708399101506085
  • Mandal S, Sivaprasad PV, Venugopal S, et al. Artificial neural network modeling to evaluate and predict the deformation behavior of stainless steel type AISI 304L during hot torsion. Appl Soft Comput. 2009;9(1):237–244. doi: 10.1016/j.asoc.2008.03.016
  • Ji G, Li F, Li Q, et al. A comparative study on Arrhenius-type constitutive model and artificial neural network model to predict high-temperature deformation behaviour in Aermet100 steel. Mater Sci Eng A. 2011;528:4774–4782. doi: 10.1016/j.msea.2011.03.017
  • Abbassi F, Belhadj T, Mistou S, et al. Parameter identification of a mechanical ductile damage using artificial neural networks in sheet metal forming. Mater Des. 2013;45:605–615. doi: 10.1016/j.matdes.2012.09.032
  • Wilk-Kolodziejczyk D, Regulski K, Gumienny G. Comparative analysis of the properties of the nodular cast iron with carbides and the austempered ductile iron with use of the machine learning and the support vector machine. Int J Adv Manuf Technol. 2016;87(1–4):1077–1093. doi: 10.1007/s00170-016-8510-y
  • Chaudhary N, Abu-Odeh A, Karaman I, et al. A data-driven machine learning approach to predicting stacking faulting energy in austenitic steels. J Mater Sci. 2017;52(18):11048–11076. doi: 10.1007/s10853-017-1252-x
  • Tapia G, Khairallah S, Matthews M, et al. Gaussian process-based surrogate modeling framework for process planning in laser powder-bed fusion additive manufacturing of 316L stainless steel. Int J Adv Manuf Technol. 2018;94(9–12):3591–3603. doi: 10.1007/s00170-017-1045-z
  • DeCost BL, Lei B, Francis T, et al. High throughput quantitative metallography for complex microstructures using deep learning: a case study in ultrahigh carbon steel. Microsc Microanal. 2019;25(1):21–29. doi: 10.1017/S1431927618015635
  • Feng S, Zhou H, Dong H. Using deep neural network with small dataset to predict material defects. Mater Des. 2019;162:300–310. doi: 10.1016/j.matdes.2018.11.060
  • Meng L, Zhang J. Process design of laser powder bed fusion of stainless steel using a Gaussian process-based machine learning model. JOM. 2020;72:420–428. doi: 10.1007/s11837-019-03792-2
  • Yan F, Song K, Gao L, et al. DCLF: a divide-and-conquer learning framework for the predictions of steel hardness using multiple alloy datasets. Mater Today Commun. 2022;30:103195. doi: 10.1016/j.mtcomm.2022.103195
  • Jeon J, Seo N, Jung J-G, et al. Prediction and mechanism explain of austenite-grain growth during reheating of alloy steel using XAI. J Mater Res Technol. 2022;21:1408–1418. doi: 10.1016/j.jmrt.2022.09.119
  • Tapia G, Elwany AH, Sang H. Prediction of porosity in metal-based additive manufacturing using spatial Gaussian process models. Addit Manuf. 2016;12:282–290. doi: 10.1016/j.addma.2016.05.009
  • Guo Z, Sha W. Modelling the correlation between processing parameters and properties of maraging steels using artificial neural network. Comput Mater Sci. 2004;29(1):12–28. doi: 10.1016/S0927-0256(03)00092-2
  • Rao KP, YKDV P. Neural network approach to flow stress evaluation in hot deformation. J Mater Process Technol. 1995;53:552–566. https://linkinghub.elsevier.com/retrieve/pii/092401369401744L
  • Gocheva-Ilieva S, Dobrev G study of the tensile strength of alloy steels using polynomial regression. 2022. p. 050005. https://pubs.aip.org/aip/acp/article/2828445.
  • Paulson NH, Priddy MW, McDowell DL, et al. Data-driven reduced-order models for rank-ordering the high cycle fatigue performance of polycrystalline microstructures. Mater Des. 2018;154:170–183. doi: 10.1016/j.matdes.2018.05.009
  • Rahnama A, Clark S, Sridhar S. Machine learning for predicting occurrence of interphase precipitation in HSLA steels. Comput Mater Sci. 2018;154:169–177. doi: 10.1016/j.commatsci.2018.07.055
  • Ma W, Kautz EJ, Baskaran A, et al. Image-driven discriminative and generative machine learning algorithms for establishing microstructure–processing relationships. J Appl Phys. 2020;128:128. doi: 10.1063/5.0013720
  • Ling J, Hutchinson M, Antono E, et al. High-dimensional materials and process optimization using data-driven experimental design with well-calibrated uncertainty estimates. Integr Mater Manuf Innov. 2017;6(3):207–217. doi: 10.1007/s40192-017-0098-z
  • Li Z, Long Z, Lei S, et al. Machine learning driven rationally design of amorphous alloy with improved elastic models. Mater Des. 2022;220:110881. doi: 10.1016/j.matdes.2022.110881
  • Xiong J, Shi SQ, Zhang TY. A machine-learning approach to predicting and understanding the properties of amorphous metallic alloys. Mater Des. 2020;187:108378. doi: 10.1016/j.matdes.2019.108378
  • Tang Y, Wan Y, Wang Z, et al. Machine learning and Python assisted design and verification of Fe–based amorphous/nanocrystalline alloy. Mater Des. 2022;219:110726. doi: 10.1016/j.matdes.2022.110726
  • Artrith N, Kolpak AM. Grand canonical molecular dynamics simulations of Cu-Au nanoalloys in thermal equilibrium using reactive ANN potentials. Comput Mater Sci. 2015;110:20–28. doi: 10.1016/j.commatsci.2015.07.046
  • Mueller T. Ab initio determination of structure-property relationships in alloy nanoparticles. Phys Rev B. 2012;86(14):144201. doi: 10.1103/PhysRevB.86.144201
  • Cao L, Niu L, Mueller T. Computationally generated maps of surface structures and catalytic activities for alloy phase diagrams. Proc Natl Acad Sci. 2019;116(44):22044–22051. doi: 10.1073/pnas.1910724116
  • Tran K, Ulissi ZW. Active learning across intermetallics to guide discovery of electrocatalysts for CO2 reduction and H2 evolution. Nat Catal. 2018;1(9):696–703. doi: 10.1038/s41929-018-0142-1
  • Gao S, Zhen H, Wen B, et al. Exploring the physical origin of the electrocatalytic performance of an amorphous alloy catalyst via machine learning accelerated DFT study. Nanoscale. 2022;14(7):2660–2667. doi: 10.1039/D1NR07661B
  • Keong KG, Sha W, Malinov S. Artificial neural network modelling of crystallization temperatures of the Ni–P based amorphous alloys. Mater Sci Eng A. 2004;365(1–2):212–218. doi: 10.1016/j.msea.2003.09.030
  • Kankanamge UMHU, Reiner J, Ma X, et al. Machine learning guided alloy design of high-temperature NiTiHf shape memory alloys. J Mater Sci. 2022;57:19447–19465. doi: 10.1007/s10853-022-07793-6
  • Solomou A, Zhao G, Boluki S, et al. Multi-objective Bayesian materials discovery: application on the discovery of precipitation strengthened NiTi shape memory alloys through micromechanical modeling. Mater Des. 2018;160:810–827. doi: 10.1016/j.matdes.2018.10.014
  • Liu S, Kappes BB, Amin-Ahmadi B, et al. Physics-informed machine learning for composition – process – property design: shape memory alloy demonstration. Appl Mater Today. 2021;22:100898. doi: 10.1016/j.apmt.2020.100898
  • Xue D, Xue D, Yuan R, et al. An informatics approach to transformation temperatures of NiTi-based shape memory alloys. Acta Mater. 2017;125:532–541. doi: 10.1016/j.actamat.2016.12.009
  • Lenzen N, Altay O. Machine learning enhanced dynamic response modelling of superelastic shape memory alloy wires. Materials. 2022;15(1):15. doi: 10.3390/ma15010304
  • Trehern W, Ortiz-Ayala R, Atli KC, et al. Data-driven shape memory alloy discovery using artificial intelligence materials selection (AIMS) framework. Acta Mater. 2022;228:117751. doi: 10.1016/j.actamat.2022.117751
  • Cai A, Wang H, Li X, et al. Progress of component design methods for bulk metallic glass. Mater Des. 2007;28(10):2694–2697. doi: 10.1016/j.matdes.2006.10.002
  • Cai AH, Xiong X, Liu Y, et al. Artificial neural network modeling of reduced glass transition temperature of glass forming alloys. Appl Phys Lett. 2008;92(11):12–15. doi: 10.1063/1.2899633
  • Hui CA, Xiong X, Liu Y, et al. Artificial neural network modeling for undercooled liquid region of glass forming alloys. Comput Mater Sci. 2010;48:109–114. doi: 10.1016/j.commatsci.2009.12.012
  • Cai AH, Liu Y, An WK, et al. Prediction of critical cooling rate for glass forming alloys by artificial neural network. Mater Des. 2013;52:671–676. doi: 10.1016/j.matdes.2013.06.012
  • Zhang YX, Xing GC, Sha ZD, et al. A two-step fused machine learning approach for the prediction of glass-forming ability of metallic glasses. J Alloys Compd. 2021;875:160040. doi: 10.1016/j.jallcom.2021.160040
  • Tripathi MK, Chattopadhyay PP, Ganguly S. Multivariate analysis and classification of bulk metallic glasses using principal component analysis. Comput Mater Sci. 2015;107:79–87. doi: 10.1016/j.commatsci.2015.05.010
  • Sun YT, Bai HY, Li MZ, et al. Machine learning approach for prediction and understanding of glass-forming ability. J Phys Chem Lett. 2017;8(14):3434–3439. doi: 10.1021/acs.jpclett.7b01046
  • Xiong J, Zhang TY, Shi SQ. Machine learning prediction of elastic properties and glass-forming ability of bulk metallic glasses. MRS Commun. 2019;9(2):576–585. doi: 10.1557/mrc.2019.44
  • Ward L, O’Keeffe SC, Stevick J, et al. A machine learning approach for engineering bulk metallic glass alloys. Acta Mater. 2018;159:102–111. doi: 10.1016/j.actamat.2018.08.002
  • Ren F, Ward L, Williams T, et al. Accelerated discovery of metallic glasses through iteration of machine learning and high-throughput experiments. Sci Adv. 2018;4(4):4. doi: 10.1126/sciadv.aaq1566
  • Zhang X, Li K, Wen B, et al. Machine learning accelerated DFT research on platinum-modified amorphous alloy surface catalysts. Chinese Chem Lett. 2023;34(5):107833. doi: 10.1016/j.cclet.2022.107833
  • Ghosal S, Dey S, Chattopadhyay PP, et al. Designing optimized ternary catalytic alloy electrode for efficiency improvement of semiconductor gas sensors using a machine learning approach. Decis Mak Appl Manag Eng. 2021;4:126–139. doi: 10.31181/dmame210402126g
  • Zhang J-Y, Xia C, Wang H-F, et al. Recent advances in electrocatalytic oxygen reduction for on-site hydrogen peroxide synthesis in acidic media. J Energy Chem. 2022;67:432–450. doi: 10.1016/j.jechem.2021.10.013
  • Artrith N, Kolpak AM. Understanding the composition and activity of electrocatalytic nanoalloys in aqueous solvents: a combination of DFT and accurate neural network potentials. Nano Lett. 2014;14(5):2670–2676. doi: 10.1021/nl5005674
  • Jinnouchi R, Asahi R. Predicting catalytic activity of nanoparticles by a DFT-Aided machine-learning algorithm. J Phys Chem Lett. 2017;8(17):4279–4283. doi: 10.1021/acs.jpclett.7b02010
  • Li Z, Ma X, Xin H. Feature engineering of machine-learning chemisorption models for catalyst design. Catal Today. 2017;280:232–238. doi: 10.1016/j.cattod.2016.04.013
  • Li Z, Wang S, Chin WS, et al. High-throughput screening of bimetallic catalysts enabled by machine learning. J Mater Chem A. 2017;5(46):24131–24138. doi: 10.1039/C7TA01812F
  • Andersen M, Levchenko SV, Scheffler M, et al. Beyond scaling relations for the description of catalytic materials. ACS Catal. 2019;9:2752–2759. doi: 10.1021/acscatal.8b04478
  • Back S, Yoon J, Tian N, et al. Convolutional neural network of atomic surface structures to predict binding energies for high-throughput screening of catalysts. J Phys Chem Lett. 2019;10(15):4401–4408. doi: 10.1021/acs.jpclett.9b01428
  • Zhong M, Tran K, Min Y, et al. Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature. 2020;581(7807):178–183. doi: 10.1038/s41586-020-2242-8
  • Kang J, Noh SH, Hwang J, et al. First-principles database driven computational neural network approach to the discovery of active ternary nanocatalysts for oxygen reduction reaction. Phys Chem Chem Phys. 2018;20(38):24539–24544. doi: 10.1039/C8CP03801E
  • Sah AK, Agilan M, Dineshraj S, et al. Machine learning-enabled prediction of density and defects in additively manufactured inconel 718 alloy. Mater Today Commun. 2022;30:103193. doi: 10.1016/j.mtcomm.2022.103193
  • Sparks TD, Gaultois MW, Oliynyk A, et al. Data mining our way to the next generation of thermoelectrics. Scr Mater. 2016;111:10–15. doi: 10.1016/j.scriptamat.2015.04.026
  • Ma X, Li Z, Achenie LEK, et al. Machine-learning-augmented chemisorption model for CO 2 electroreduction catalyst screening. J Phys Chem Lett. 2015;6(18):3528–3533. doi: 10.1021/acs.jpclett.5b01660
  • Fung V, Ganesh P, Sumpter BG. Physically informed machine learning prediction of electronic density of states. Chem Mater. 2022;34(11):4848–4855. doi: 10.1021/acs.chemmater.1c04252
  • Jäger MOJ, Morooka EV, Federici Canova F, et al. Machine learning hydrogen adsorption on nanoclusters through structural descriptors. Npj Comput Mater. 2018;4:37. https://www.nature.com/articles/s41524-018-0096-5
  • Mao X, Wang L, Xu Y, et al. Computational high-throughput screening of alloy nanoclusters for electrocatalytic hydrogen evolution. Npj Comput Mater. 2021;7:1–9. doi: 10.1038/s41524-021-00514-8
  • Slavkovic R, Jugovic Z, Dragicevic S, et al. An application of learning machine methods in prediction of wear rate of wear resistant casting parts. Comput Ind Eng. 2013;64(3):850–857. doi: 10.1016/j.cie.2012.12.021
  • Gong X, Dong C, Xu J, et al. Machine learning assistance for electrochemical curve simulation of corrosion and its application. Mater Corros. 2020;71(3):474–484. doi: 10.1002/maco.201911224
  • Zhang H, Fu H, Zhu S, et al. Machine learning assisted composition effective design for precipitation strengthened copper alloys. Acta Mater. 2021;215:117118. doi: 10.1016/j.actamat.2021.117118
  • Hajinazar S, Sandoval ED, Cullo AJ, et al. Multitribe evolutionary search for stable Cu-Pd-Ag nanoparticles using neural network models. Phys Chem Chem Phys. 2019;21:8729–8742. doi: 10.1039/C9CP00837C
  • Mangal A, Holm EA. Applied machine learning to predict stress hotspots I: face centered cubic materials. Int J Plast. 2018;111:122–134. doi: 10.1016/j.ijplas.2018.07.013
  • Kusne AG, Gao T, Mehta A, et al. On-the-fly machine-learning for high-throughput experiments: search for rare-earth-free permanent magnets. Sci Rep. 2014;4(1):6367. doi: 10.1038/srep06367
  • Nelson J, Sanvito S. Predicting the curie temperature of ferromagnets using machine learning. Phys Rev Mater. 2019;3(10):104405. doi: 10.1103/PhysRevMaterials.3.104405
  • Legrain F, Carrete J, Van Roekeghem A, et al. Materials screening for the discovery of new half-heuslers: machine learning versus ab initio methods. J Phys Chem B. 2018;122(2):625–632. doi: 10.1021/acs.jpcb.7b05296
  • Carrete J, Li W, Mingo N, et al. Finding unprecedentedly low-thermal-conductivity half-heusler semiconductors via high-throughput materials modeling. Phys Rev X. 2014;4(1):011019. doi: 10.1103/PhysRevX.4.011019
  • Carrete J, Mingo N, Wang S, et al. Nanograined half-heusler semiconductors as advanced thermoelectrics: an Ab Initio high-throughput statistical study. Adv Funct Mater. 2014;24(47):7427–7432. doi: 10.1002/adfm.201401201
  • de Jong M, Chen W, Notestine R, et al. A statistical learning framework for materials science: application to elastic moduli of k-nary inorganic polycrystalline compounds. Sci Rep. 2016;6(1):34256. doi: 10.1038/srep34256
  • Legrain F, van Roekeghem A, Curtarolo S, et al. Vibrational properties of metastable polymorph structures by machine learning. J Chem Inf Model. 2018;58(12):2460–2466. doi: 10.1021/acs.jcim.8b00279
  • Artrith N, Urban A, Ceder G, Constructing first-principles phase diagrams of amorphous LixSi using machine-learning-assisted sampling with an evolutionary algorithm. J Chem Phys. 2018;148. doi: 10.1063/1.5017661
  • Chen H, Shang Z, Lu W, et al. A Property‐Driven stepwise design strategy for multiple low‐melting alloys via machine learning. Adv Eng Mater. 2021;23(12). doi: 10.1002/adem.202100612
  • Ward L, Agrawal A, Choudhary A, et al. A general-purpose machine learning framework for predicting properties of inorganic materials. Npj Comput Mater. 2016;2(1):16028. doi: 10.1038/npjcompumats.2016.28
  • Jha R, Chakraborti N, Diercks DR, et al. Combined machine learning and CALPHAD approach for discovering processing-structure relationships in soft magnetic alloys. Comput Mater Sci. 2018;150:202–211. doi: 10.1016/j.commatsci.2018.04.008
  • Tancret F. Computational thermodynamics, Gaussian processes and genetic algorithms: combined tools to design new alloys. Model Simul Mater Sci Eng. 2013;21(4):21. doi: 10.1088/0965-0393/21/4/045013
  • Menou E, Ramstein G, Bertrand E, et al. Multi-objective constrained design of nickel-base superalloys using data mining- and thermodynamics-driven genetic algorithms. Model Simul Mater Sci Eng. 2016;24(5):055001. doi: 10.1088/0965-0393/24/5/055001
  • Conduit BD, Jones NG, Stone HJ, et al. Design of a nickel-base superalloy using a neural network. Mater Des. 2017;131:358–365. doi: 10.1016/j.matdes.2017.06.007
  • Jiang X, Yin HQ, Zhang C, et al. An materials informatics approach to Ni-based single crystal superalloys lattice misfit prediction. Comput Mater Sci. 2018;143:295–300. doi: 10.1016/j.commatsci.2017.09.061
  • Chandran M, Lee SC, Shim J-H. Machine learning assisted first-principles calculation of multicomponent solid solutions: estimation of interface energy in Ni-based superalloys. Model Simul Mater Sci Eng. 2018;26(2):025010. doi: 10.1088/1361-651X/aa9f37
  • Schooling J, Brown M, Reed PA. An example of the use of neural computing techniques in materials science—the modelling of fatigue thresholds in Ni-base superalloys. Mater Sci Eng A. 1999;260(1–2):222–239. doi: 10.1016/S0921-5093(98)00957-5
  • Taylor PL, Conduit G. Machine learning predictions of superalloy microstructure. Comput Mater Sci. 2022;201:201. doi: 10.1016/j.commatsci.2021.110916
  • Wu L, Wei G, Wang G, et al. Creating win-wins from strength–ductility trade-off in multi-principal element alloys by machine learning. Mater Today Commun. 2022;32:104010. doi: 10.1016/j.mtcomm.2022.104010
  • Islam N, Huang W, Zhuang HL. Machine learning for phase selection in multi-principal element alloys. Comput Mater Sci. 2018;150:230–235. doi: 10.1016/j.commatsci.2018.04.003
  • Xue D, Balachandran PV, Hogden J, et al. Accelerated search for materials with targeted properties by adaptive design. Nat Commun. 2016;7:1–9. doi: 10.1038/ncomms11241
  • Vasudevan RK, Choudhary K, Mehta A, et al. Materials science in the artificial intelligence age: high-throughput library generation, machine learning, and a pathway from correlations to the underpinning physics. MRS Commun. 2019;9(3):821–838. doi: 10.1557/mrc.2019.95
  • Hu X, Wang J, Wang Y, et al. Two-way design of alloys for advanced ultra supercritical plants based on machine learning. Comput Mater Sci. 2018;155:331–339. doi: 10.1016/j.commatsci.2018.09.003
  • Viswanadhapalli B, BR VK, Nagaraju KC. Experimental study and machine learning model to predict formability of magnesium alloy sheet. F1000Res. 2022;11:1118. doi: 10.12688/f1000research.124085.1
  • Géron A. Hands-on machine learning with Scikit-Learn, Keras, and Tensorflow. 2nd ed. O’Reilly Media. Advanced theory and simulations; 2022.
  • Vecchio KS, Dippo OF, Kaufmann KR, et al. High-throughput rapid experimental alloy development (HT-READ). Acta Mater. 2021;221:117352. doi: 10.1016/j.actamat.2021.117352
  • Dehghannasiri R, Xue D, Balachandran PV, et al. Optimal experimental design for materials discovery. Comput Mater Sci. 2017;129:311–322. doi: 10.1016/j.commatsci.2016.11.041
  • Gopakumar AM, Balachandran PV, Xue D, et al. Multi-objective optimization for materials discovery via adaptive design. Sci Rep. 2018;8:1–12. doi: 10.1038/s41598-018-21936-3
  • Gao J, Zhong J, Liu G, et al. A machine learning accelerated distributed task management system (malac-distmas) and its application in high-throughput CALPHAD computation aiming at efficient alloy design. Adv Powder Mater. 2022;1:100005. doi: 10.1016/j.apmate.2021.09.005
  • Takahashi K, Tanaka Y. Material synthesis and design from first principle calculations and machine learning. Comput Mater Sci. 2016;112:364–367. doi: 10.1016/j.commatsci.2015.11.013
  • Toyao T, Suzuki K, Kikuchi S, et al. Toward effective utilization of methane: machine learning prediction of adsorption energies on metal alloys. J Phys Chem C. 2018;122(15):8315–8326. doi: 10.1021/acs.jpcc.7b12670
  • Fernandez-Zelaia P, Roshan Joseph V, Kalidindi SR, et al. Estimating mechanical properties from spherical indentation using Bayesian approaches. Mater Des. 2018;147:92–105. doi: 10.1016/j.matdes.2018.03.037
  • Thankachan T, Prakash KS, David Pleass C, et al. Artificial neural network to predict the degraded mechanical properties of metallic materials due to the presence of hydrogen. Int J Hydrogen Energy. 2017;42(47):28612–28621. doi: 10.1016/j.ijhydene.2017.09.149
  • Mangal A, Holm EA. A comparative study of feature selection methods for stress hotspot classification in materials. Integr Mater Manuf Innov. 2018;7(3):87–95. doi: 10.1007/s40192-018-0109-8
  • Bustillo A, Reis R, Machado AR, et al. Improving the accuracy of machine-learning models with data from machine test repetitions. J Intell Manuf. 2022;33(1):203–221. doi: 10.1007/s10845-020-01661-3
  • Huang X, Jin C, Zhang C, et al. Machine learning assisted modelling and design of solid solution hardened high entropy alloys. Mater Des. 2021;211:110177. doi: 10.1016/j.matdes.2021.110177
  • Huang DJ, Li H. A machine learning guided investigation of quality repeatability in metal laser powder bed fusion additive manufacturing. Mater Des. 2021;203:109606. doi: 10.1016/j.matdes.2021.109606
  • Godaliyadda GMD, Ye DH, Uchic MD, et al. A supervised learning approach for dynamic sampling. Electron Imaging. 2016;28:1–8. https://library.imaging.org/ei/articles/28/19/art00020