1,118
Views
0
CrossRef citations to date
0
Altmetric
Methodology, Apparatus, Experimental Design

Visualization of spin-polarized electronic states by imaging-type spin-resolved photoemission microscopy

ORCID Icon & ORCID Icon
Article: 2328206 | Received 20 Dec 2023, Accepted 04 Mar 2024, Published online: 02 Apr 2024

References

  • Tokura Y, Kawasaki M, Nagaosa N. Emergent functions of quantum materials. Nat Phys. 2017;13(11):1056. doi: 10.1038/nphys4274
  • Gilbert MJ. Topological electronics. Commun Phys. 2021;4:70. doi: 10.1038/s42005-021-00569-5
  • He QL, Hughes TL, Armitage NP, et al. Topological spintronics and magnetoelectronics. Nat Mater. 2022;21:15. doi: 10.1038/s41563-021-01138-5
  • Awschalom DD, Bassett LC, Dzurak AS, et al. Quantum spintronics: engineering and manipulating atom-like spins in semiconductors. Science. 2013;339:1174. doi: 10.1126/science.1231364
  • Lu Y, Sigov A, Ratkin L, et al. Quantum computing and industrial information integration: a review. J Ind Inf Integr. 2023;35:100511. doi: 10.1016/j.jii.2023.100511
  • Johnson PD. Spin-polarized photoemission. Rep Prog Phys. 1997;60(11):1217. doi: 10.1088/0034-4885/60/11/002
  • Okuda T, Kimura A. Spin- and angle-resolved photoemission of strongly spin–orbit coupled systems. J Phys Soc Jpn. 2013;82(2):021002. doi: 10.7566/JPSJ.82.021002
  • Lv B, Qian T, Ding H. Angle-resolved photoemission spectroscopy and its application to topological materials. Nat Rev Phys. 2019;1:609. doi: 10.1038/s42254-019-0088-5
  • Sobota JA, He Y, Shen ZX. Angle-resolved photoemission studies of quantum materials. Rev Mod Phys. 2021;93:025006. doi: 10.1103/RevModPhys.93.025006
  • Okuda T. Recent trends in spin-resolved photoelectron spectroscopy. J Phys Condens Matter. 2017;29(48):483001. doi: 10.1088/1361-648X/aa8f28
  • Gay TJ, Dunning FB. Mott electron polarimetry. Rev Sci Instrum. 1992;63:1635. doi: 10.1063/1.1143371
  • Okuda T, Takeichi Y, Maeda Y, et al. A new spin-polarized photoemission spectrometer with very high efficiency and energy resolution. Rev Sci Instrum. 2008;79(12):123117. doi: 10.1063/1.3058757
  • Yaji K, Harasawa A, Kuroda K, et al. High-resolution three-dimensional spin- and angle-resolved photoelectron spectrometer using vacuum ultraviolet laser light. Rev Sci Instrum. 2016;87(5):053111. doi: 10.1063/1.4948738
  • Zhang P, Yaji K, Hashimoto T, et al. Experimental observation of topological superconductivity on iron-based superconductor topological superconductor. Science. 2018;360:182. doi: 10.1126/science.aan4596
  • Noguchi R, Takahashi T, Kuroda K, et al. A weak topological insulator state in quasi-one-dimensional bismuth iodide. Nature. 2019;588:518. doi: 10.1038/s41586-019-0927-7
  • Zhang P, Wang Z, Wu X, et al. Multiple topological states in iron-based superconductors. Nat Phys. 2019;15:41. doi: 10.1038/s41567-018-0280-z
  • Noguchi R, Kobayashi M, Jiang Z, et al. Evidence for a higher-order topological insulator in a 3D material built from van der waals stacking of bismuth-halide chains. Nat Mater. 2021;20:473. doi: 10.1038/s41563-020-00871-7
  • Zhang P, Noguchi R, Kuroda K, et al. Observation and control of the weak topological insulator state in ZrTe5. Nat Commun. 2021;12:406. doi: 10.1038/s41467-020-20564-8
  • Lin C, Ochi M, Noguchi R, et al. Visualization of the strain-induced topological phase transition in a quasi-one-dimensional superconductor TaSe3. Nat Mater. 2021;20:1093. doi: 10.1038/s41563-021-01004-4
  • Yoshizawa S, Kobayashi T, Nakata Y, et al. Atomic-layer rashba superconductor protected by dynamic spin-momentum locking. Nat Commun. 2021;12:1462. doi: 10.1038/s41467-021-21642-1
  • Yaji K, Kuroda K, Toyohisa S, et al. Spin-dependent quantum interference in photoemission process from spin-orbit coupled states. Nat Commun. 2017;8(1):14588. doi: 10.1038/ncomms14588
  • Kuroda K, Yaji K, Noguchi R, et al. Visualization of optical polarization transfer to photoelectron spin vector emitted from the spin-orbit coupled surface state. Phys Rev B. 2022;105:L121106. doi: 10.1103/PhysRevB.105.L121106
  • Kolbe M, Lushchyk P, Petereit B, et al. Highly efficient multichannel spin-polarization detection. Phys Rev Lett. 2011;107(20):207601. doi: 10.1103/PhysRevLett.107.207601
  • Tusche C, Ellguth M, Ünal AA, et al. Spin-resolved photoelectron microscopy using a two-dimensional spin-polarizing electron mirror. Appl Phys Lett. 2011;99:032505. doi: 10.1063/1.3611648
  • Tusche C, Krasyuk A, Kirschner J. Spin resolved band structure imaging with a high-resolution momentum microscope. Ultramicroscopy. 2015;159:520. doi: 10.1016/j.ultramic.2015.03.020
  • Tusche C, Chen YJ, Plucinski L, et al. From photoemission microscopy to an “all-in-one” photoemission experiment. E-J Surf Sci Nanotechnol. 2020;18:48. doi: 10.1380/ejssnt.2020.48
  • Ji F, Shi T, Ye M, et al. Multichannel exchange-scattering spin polarimetry. Phys Rev Lett. 2016;116(17):177601. doi: 10.1103/PhysRevLett.116.177601
  • Strocov VN, Petrovb VN, Dil JH. Concept of a multichannel spin-resolving electron analyzer based on Mott scattering. J Synchrotron Radiat. 2015;22:708. doi: 10.1107/S160057751500363X
  • Dudin P, Lacovig P, Fava C, et al. Angle-resolved photoemission spectroscopy and imaging with a submicrometre probe at the SPECTROMICROSCOPY-3.2L beamline of Elettra. J Synchrotron Rad. 2010;17:445. doi: 10.1107/S0909049510013993
  • Rotenberg E, Bostwick A. microARPES and nanoARPES at diffraction-limited light sources: opportunities and performance gains. J Synchrotron Rad. 2014;21:1048. doi:10.1107/S1600577514015409
  • Avila J, Razado-Colambo I, Lorcy S, et al. ANTARES, a scanning photoemission microscopy beamline at SOLEIL. J Phys Conf Ser. 2013;425(19):192023. doi: 10.1088/1742-6596/425/19/192023
  • Hoesch M, Kim TK, Dudin P, et al. A facility for the analysis of the electronic structures of solids and their surfaces by synchrotron radiation photoelectron spectroscopy. Rev Sci Instrum. 2017;88(1):013106. doi: 10.1063/1.4973562
  • Yaji K, Tsuda S. Development of a photoemission microscopy apparatus using a vacuum ultraviolet laser. e-J Surf Sci Nanotechnol. 2024;22:46. doi: 10.1380/ejssnt.2023-066
  • Xu RZ, Gu X, Zhao WX, et al. Development of a laser-based angle-resolved-photoemission spectrometer with sub-micrometer spatial resolution and high-efficiency spin detection. Rev Sci Instrum. 2023;94:023903. doi: 10.1063/5.0106351
  • Iwata T, Kousa T, Nishioka Y, Laser-based angle-resolved photoemission spectroscopy with micrometer spatial resolution and detection of three-dimensional spin vector. Sci Rep. 2024;14:127. doi: 10.1038/s41598-023-47719-z
  • Kirschner J, Giebels F, Gollisch H, et al. Spin-polarized electron scattering from pseudomorphic au on Ir(001). Phys Rev B. 2013;88(12):125419. doi: 10.1103/PhysRevB.88.125419
  • Vasilyeva D, Tusche C, Giebels F, et al. Low-energy electron reflection from Au-passivated Ir(001) for application in imaging spin-filters. J Elect Spectr Rel Phenom. 2015;199:10. doi: 10.1016/j.elspec.2014.12.006
  • Tusche C, Ellguth M, Krasyuk A, et al. Quantitative spin polarization analysis in photoelectron emission microscopy with an imaging spin filter. Ultramicroscopy. 2013;130:70. doi: 10.1016/j.ultramic.2013.02.022
  • Kuch W, Offi F, Chelaru LI, et al. Huge magnetocrystalline anisotropy of x-ray linear dichroism observed on Co ∕ Fe Mn bilayers. Phys Rev B. 2007;75:224406. doi: 10.1103/PhysRevB.75.224406
  • Yamaguchi R, Terashima K, Fukumoto K, et al. An XMCD-PEEM study on magnetized Dy-doped Nd-Fe-B permanent magnets. IBM J Res Dev. 2011;55:12. doi: 10.1147/JRD.2011.2159148
  • Koroteev YM, Bihlmayer G, Gayone JE, et al. Strong spin-orbit splitting on bi surfaces. Phys Rev Lett. 2004;93(4):046403. doi: 10.1103/PhysRevLett.93.046403
  • Hirahara T, Miyamoto K, Matsuda I, et al. Direct observation of spin splitting in bismuth surface states. Phys Rev B. 2007;76:153305. doi: 10.1103/PhysRevB.76.153305
  • Hirahara T, Nagao T, Matsuda I, et al. Role of spin-orbit coupling and hybridization effects in the electronic structure of ultrathin bi films. Phys Rev Lett. 2006;97(14):146803. doi: 10.1103/PhysRevLett.97.146803
  • Ito S, Feng B, Arita M, et al. Proving nontrivial topology of pure bismuth by quantum confinement. Phys Rev Lett. 2016;117(23):236402. doi: 10.1103/PhysRevLett.117.236402
  • Hoesch M, Muntwiler M, Petrov VN. Spin structure of the Shockley surface state on au (111). Phys Rev B. 2004;69(24):241401. doi: 10.1103/PhysRevB.69.241401
  • Yaji K, Harasawa A, Kuroda K, et al. Rashba spin splitting of L-gap surface states on Ag(111) and Cu(111). Phys Rev B. 2018;98(4):041404. doi: 10.1103/PhysRevB.98.041404
  • Sakamoto K, Kobayashi T, Yaji K, et al. Spin-polarized electrons in atomic layer materials formed on solid surfaces. Prog Surf Sci. 2022;97(3):100665. doi: 10.1016/j.progsurf.2022.100665
  • Saito K, Sawahata H, Komine T. Tight-binding theory of surface spin states on bismuth thin films. Phys Rev B. 2016;93(4):041301. doi: 10.1103/PhysRevB.93.041301
  • Randeria MT, Feldman BE, Wu F, et al. Ferroelectric quantum hall phase revealed by visualizing Landau level wavefunction interference. Nat Phys. 2018;14(8):796–9. doi: 10.1038/s41567-018-0148-2
  • Heinzmann U, Dil JH. Spin–orbit-induced photoelectron spin polarization in angle-resolved photoemission from both atomic and condensed matter targets. J Phys Condens Matter. 2012;24(17):173001. doi: 10.1088/0953-8984/24/17/173001
  • Kuroda K, Yaji K, Nakayama M, et al. Coherent control over three-dimensional spin polarization for the spin-orbit coupled surface state of Bi2Se3. Phys Rev B. 2016;94(16):165162. doi: 10.1103/PhysRevB.94.165162