121
Views
0
CrossRef citations to date
0
Altmetric
Materials data analysis and utilization

Multivariate temperature-series analysis of stress-induced ferroelectricity in SrTiO3: a machine learning approach with K-shape clustering and hierarchical Bayesian estimation

, &
Article: 2342234 | Received 20 Jan 2024, Accepted 04 Apr 2024, Published online: 16 May 2024

References

  • Yeomans YM. Statistical mechanics of phase transitions. Oxford Science Publications; 1992.
  • Gautam R, Vanga S, Ariese F, et al. Review of multidimensional data processing approaches for Raman and infrared spectroscopy. EPJ Techn Instrum. 2015;2(1):8. doi: 10.1140/epjti/s40485-015-0018-6
  • Mueller T, Kusne AG, Ramprasad R. Machine learning in materials science: recent progress and emerging applications. Rev Comput Chem. 2016;29:186–19. doi: 10.1002/9781119148739
  • Rodrigues JF Jr, Florea L, Oliveira MCF. Big data and machine learning for materials science. Discover Materials. 2021;1(1):12. doi: 10.1007/s43939-021-00012-0
  • Turrell G, Corset J. Raman microscopy: developments and applications. London: Academic Press; 1996.
  • Lieber CM. Nanoscale science and technology: building a big future from small things. Mater Res Bull. 2003;28(7):486–491. doi: 10.1557/mrs2003.144
  • Meyer E. Scanning probe microscopy and related methods. Beilstein J Nanotechnol. 2010;1:155–157. doi: 10.3762/bjnano.1.18
  • Fleming A. Dual-stage vertical feedback for high-speed scanning probe microscopy. IEEE Trans Control Syst Technol. 2011;19(1):156–165. doi: 10.1109/TCST.2010.2040282
  • Casola F, Sar T, Yacoby A. Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond. Nat Rev Mater. 2018;3(1):17088. doi: 10.1038/natrevmats.2017.88
  • Uemura Y, Matsuoka S, Tsutsumi J, et al. Birefringent field-modulation imaging of transparent ferroelectrics. Phys Rev Appl. 2020;14(2):024060. doi: 10.1103/PhysRevApplied.14.024060
  • Laskar MDAR, Celano U. Scanning probe microscopy in the age of machine learning. APL Mach Learn. 2023;1(4):041501. doi: 10.1063/5.0160568
  • Trebbia P, Bonnet N. EELS elemental mapping with unconventional methods I. theoretical basis: image analysis with multivariate statistics and entropy concepts. Ultramicroscopy. 1990;34(3):165–178. doi: 10.1016/0304-3991(90)90070-3
  • Bonnet N, Brun N, Colliex C. Extracting information from sequences of spatially resolved EELS spectra using multivariate statistical analysis. Ultramicroscopy. 1999;77(3–4):97–112. doi: 10.1016/S0304-3991(99)00042-X
  • Muto S, Yoshida T, Tatsumi K. Diagnostic nano-analysis of materials properties by multivariate curve resolution applied to spectrum images by S/TEM-EELS. Mater Trans. 2009;50(5):964–969. doi: 10.2320/matertrans.MC200805
  • Shiga M, Tatsumi K, Muto S. Sparse modeling of EELS and EDX spectral imaging data by nonnegative matrix factorization. Ultramicroscopy. 2016;170:43–59. doi: 10.1016/j.ultramic.2016.08.006
  • Manaka H, Uetsubara K, Korogi S, et al. Microscopic observation of ferroelectric and structural phase transitions in SrTiO3 under uniaxial stress using birefringence imaging techniques. J Phys Soc Jpn. 2022;91(8):084704. doi: 10.7566/JPSJ.91.084704
  • Manaka H, Uetsubara K, Miura Y. Stress-induced ferroelectricity in quantum paraelectric SrTiO3 observed by birefringence imaging. JPS Conf Proc. 2023;38:011112.
  • Toyoda K, Manaka H, Miura Y. Improvements of birefringence imaging techniques to observe stress-induced ferroelectricity in SrTiO3 based on K-means clustering with circular statistics. Sci Technol Adv Mater Meth. 2023;3(1):2278322. doi: 10.1080/27660400.2023.2278322
  • Müller KA, Berlinger W, Slonczewski JC. Order parameter and phase transitions of stressed SrTiO3. Phys Rev Lett. 1970;25(11):734. doi: 10.1103/PhysRevLett.25.734
  • Burke WJ, Pressley RJ. Stress induced ferroelectricity in SrTiO3. Solid State Commun. 1971;9(3):191–195. doi: 10.1016/0038-1098(71)90115-3
  • Uwe H, Sakudo T. Stress-induced ferroelectricity and soft phonon modes in SrTiO3. Phys Rev B. 1976;13(1):271–286. doi: 10.1103/PhysRevB.13.271
  • Fujii Y, Uwe H, Sakudo T. Stress-induced quantum ferroelectricity in SrTiO3. J Phys Soc Jpn. 1987;56(6):1940–1942. doi: 10.1143/JPSJ.56.1940
  • Ohtomo A, Hwang HY. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature. 2004;427(6973):423–426. doi: 10.1038/nature02308
  • Honig M, Sulpizio JA, Drori J, et al. Local electrostatic imaging of striped domain order in LaAlO3/SrTiO3. Nat Mater. 2013;12(12):1112. doi: 10.1038/nmat3810
  • Lee PW, Singh VN, Guo GY, et al. Hidden lattice instabilities as origin of the conductive interface between insulating LaAlO3 and SrTiO3. Nat Commun. 2016;7(1):12773. doi: 10.1038/ncomms12773
  • Su CP, Singh AK, Wu TC, et al. Impact of strain-field interference on the coexistence of electron and hole gases in SrTiO3/LaAlO3/SrTiO3. Phys Rev Mat. 2019;3:075003. doi: 10.1103/PhysRevMaterials.3.075003
  • Bishop CM. Pattern recognition and machine learning (information science and statistics). Springer; 2006.
  • Vasudevan RK, Tselev A, Baddorf AP, et al. Big-data reflection high energy electron diffraction analysis for understanding epitaxial film growth processes. ACS Nano. 2014;8(10):10899–10908. doi: 10.1021/nn504730n
  • Provence SR, Thapa S, Paudel R, et al. Machine learning analysis of perovskite oxides grown by molecular beam epitaxy. Phys Rev Mater. 2020;4(8):083807. doi: 10.1103/PhysRevMaterials.4.083807
  • Gliebe K, Sehirlioglu A. Distinct thin film growth characteristics determined through comparative dimension reduction techniques. J Appl Phys. 2021;130(12):125301. doi: 10.1063/5.0059655
  • Yoshinari A, Iwasaki Y, Kotsugi M, et al. Skill-agnostic analysis of reflection high-energy electron diffraction patterns for Si(111) surface superstructures using machine learning. Sci Technol Adv Mater Meth. 2022;2(1):162–174. doi: 10.1080/27660400.2022.2079942
  • Senin P. Dynamic time warping algorithm review. Inf Comput Sci Dep Univ Hawaii Manoa Honol. USA. 2008;855(1–23):40.
  • Box GEP, Jenkins GM, Reinsel GC, et al. Time series analysis: forecasting and control. 5th ed. Wiley; 2015.
  • Paparrizos J, Gravano L. K-shape: efficient and accurate clustering of time series. SIGMOD Rec. 2016;45(1):69–76. doi: 10.1145/2949741.2949758
  • Mohammad-Djafari A, Féro O. Bayesian approach to change points detection in time series. Int J Imaging Syst Tech. 2007;16(5):215–221. doi: 10.1002/ima.20080
  • Iwamitsu K, Aihara S, Okada M, et al. Bayesian analysis of an excitonic absorption spectrum in a Cu2O thin film sandwiched by paired MgO plates. J Phys Soc Jpn. 2016;85(9):094716. doi: 10.7566/JPSJ.85.094716
  • Cowley RA. Lattice dynamics and phase transitions of strontium titanate. Phys Rev. 1964;134(4A):A981. doi: 10.1103/PhysRev.134.A981
  • Courtens E. Birefringence of SrTiO3 produced by the 105°K structural phase transition. Phys Rev Lett. 1972;29(20):1380. doi: 10.1103/PhysRevLett.29.1380
  • Cowley RA. The phase transition of strontium titanate. Phil Trans R Soc A. 1996;354(1720):2799–2814. doi: 10.1098/rsta.1996.0130
  • Haeni JH, Irvin P, Chang W. Room-temperature ferroelectricity in strained SrTiO3. Nature. 2004;430(7001):758. doi: 10.1038/nature02773
  • Kim YS, Kim DJ, Kim TH, et al. Localized electronic states induced by defects and possible origin of ferroelectricity in strontium titanate thin films. Appl Phys Lett. 2007;91(4):042908. doi: 10.1063/1.3139767
  • Iglesias L, Sarantopoulos A, Magén C, et al. Oxygen vacancies in strained SrTiO3 thin films: formation enthalpy and manipulation. Phys Rev B. 2017;95(16):165138. doi: 10.1103/PhysRevB.95.165138
  • Hashimoto T, Nishimatsu T, Mizuseki H, et al. Ab initio study of strain-induced ferroelectricity in SrTiO3. Jpn J Appl Phys. 2005;44(9S):7134. doi: 10.1143/JJAP.44.7134
  • Antons A, Neaton JB, Rabe KM, et al. Tunability of the dielectric response of epitaxially strained SrTiO3 from first principles. Phys Rev B. 2005;71(2):024102. doi: 10.1103/PhysRevB.71.024102
  • Ni L, Liu Y, Song C, et al. First-principle study of strain-driven phase transition in incipient ferroelectric SrTiO3. Physica B. 2011;406(21):4145. doi: 10.1016/j.physb.2011.08.018
  • Ong PV, Lee J. Strain dependent polarization and dielectric properties of epitaxial BaTiO3 from first-principles. J Appl Phys. 2012;112(1):014109. doi: 10.1063/1.4736375
  • Watanabe Y. Ferroelectricity of stress-free and strained pure SrTiO3 revealed by ab initio calculations with hybrid and density functionals. Phys Rev B. 2019;99(6):064107. doi: 10.1103/PhysRevB.99.064107
  • Azzam RM, Bashara NM. Ellipsometry and polarized light. North Holland: Amsterdam; 1977.
  • Manaka H, Yagi G, Miura Y. Development of birefringence imaging analysis method for observing cubic crystals in various phase transitions. Rev Sci Instrum. 2016;87(7):073704. doi: 10.1063/1.4958662
  • Manaka H, Fukuda T, Miura Y. Birefringence imaging measurements on various structural phase transitions in (CnH2n+1NH3)2MnCl4 with n=1,2, and 3 using multiple wavelengths. J Phys Soc Jpn. 2016;85(12):124701. doi: 10.7566/JPSJ.85.124701
  • Manaka H, Nozaki H, Miura Y. Microscopic observation of ferroelectric domains in SrTiO3 using birefringence imaging techniques under high electric fields. J Phys Soc Jpn. 2017;86(11):114702. doi: 10.7566/JPSJ.86.114702
  • Manaka H, Nozaki H, Miura Y. Development of birefringence imaging techniques under high electric fields. J Phys Conf Ser. 2018;969:012119. doi: 10.1088/1742-6596/969/1/012119
  • Manaka H, Sasaki Y, Miura Y. Re-examination of successive structural phase transitions in (C3H7NH3)2CuCl4 using birefringence imaging and electron paramagnetic resonance spectroscopy. J Phys Soc Jpn. 2017;86(11):114710. doi: 10.7566/JPSJ.86.114710
  • Miura Y, Okumura K, Fukuda T, et al. Observation of ferroelastic domains in layered magnetic compounds using birefringence imaging. J Phys Conf Ser. 2018;969:012153. doi: 10.1088/1742-6596/969/1/012153
  • Manaka H, Okumura K, Tokunaga K, et al. Observations of successive local-structure and ferroelectric phase transitions in (C2H5NH3)2CuCl4 using birefringence imaging and electron paramagnetic resonance spectroscopy. J Phys Soc Jpn. 2022;91(11):114701. doi: 10.7566/JPSJ.91.114701
  • Miura Y, Ibushi R, Manaka H. Observation of ferroelectricity in two-dimensional antiferromagnet (C2H5NH3)2CuCl4 using birefringence imaging techniques. JPS Conf Proc. 2023;38:011142. doi: 10.7566/JPSCP.38.011142
  • Fisher NI. Statistical analysis of circular data. Cambridge University Press; 1993.
  • Pewsey A, Neuhauser M, Ruxton GD. Circular statistics in R. Oxford University Press; 2014.
  • Manaka H, Tateishi K, Miura Y. Real-space imaging by magnetic birefringence for KNiF3 under inhomogeneous stress. J Phys Soc Jpn. 2019;88(12):124702. doi: 10.7566/JPSJ.88.124702
  • Schubert E. Stop using the elbow criterion for K-means and how to choose the number of clusters instead. ACM SIGKDD Explorations Newsl. 2023;2(1):36–42. doi: 10.1145/3606274.3606278
  • Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. Routledge; 1988.
  • Hedges LV, Olkin I. Statistical methods for meta-analysis. Academic Press; 1985.
  • Durlak JA. How to select, calculate, and interpret effect sizes. J Pediatr Psychol. 2009;34(9):917–928. doi: 10.1093/jpepsy/jsp004
  • Gelman A, Carlin JB, Stern HS. Bayesian data analysis. Chapman and Hall/CRC; 2013.
  • Tukey JW. Exploratory data analysis. Pearson Education, Ltd.; 1977.
  • Das S, Wang B, Paudel T, et al. Enhanced flexoelectricity at reduced dimensions revealed by mechanically tunable quantum tunnelling. Nature Commun. 2019;10(1):537. doi: 10.1038/s41467-019-08462-0