1,248
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Common sources and needs of weather information for rice disease forecasting and management in coastal Bangladesh

, , , , & ORCID Icon
Article: 2191794 | Received 09 Jun 2022, Accepted 10 Mar 2023, Published online: 24 Mar 2023

References

  • Afroz, S., Cramb, R., & Grünbühel, C. (2018). Vulnerability and response to cyclones in coastal Bangladesh. Asian Journal of Social Science, 46(6), 601–29. https://doi.org/10.1163/15685314-04606002
  • Aggarwal, S., Suchithra, M., Chandramouli, N., Sarada, M., Verma, A., Vetrithangam, D., Ambachew Adugna, B., & Pant, B. (2022). Rice disease detection using artificial intelligence and machine learning techniques to improvise agro-business. Scientific Programming, 2022, 1–13.
  • Agrios, G. N. (2005). Plant pathology. Elsevier Science. https://books.google.com.bd/books?id=CnzbgZgby60C
  • Ahmad, H. (2019). Bangladesh coastal zone management status and future trends. Journal of Coastal Zone Management. https://doi.org/10.24105/2473-3350.22.466
  • Aina, L. O. (2006). Information provision to farmers in Africa: The LibraryExtension service linkage. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.150.7778&rep=rep1&type=pdf
  • Al Mamun, M. A., Nihad, S. A. I., Sarkar, M. A. R., Aziz, M. A., Qayum, M. A., Ahmed, R., Rahman, N. M. F., Hossain, M. I., & Kabir, M. S. (2021). Growth and trend analysis of area, production and yield of rice: A scenario of rice security in Bangladesh. Plos One, 16(12), e0261128. https://doi.org/10.1371/journal.pone.0261128
  • Alam, G. M. M., Alam, K., & Mushtaq, S. (2017). Climate change perceptions and local adaptation strategies of hazard-prone rural households in Bangladesh. Climate Risk Management, 17, 52–63. https://doi.org/10.1016/j.crm.2017.06.006
  • Ayanlade, A., Radeny, M., Morton, J. F., & Muchaba, T. (2018). Rainfall variability and drought characteristics in two agro-climatic zones: An assessment of climate change challenges in Africa. The Science of the Total Environment, 630, 728–737. https://doi.org/10.1016/j.scitotenv.2018.02.196
  • Barbetti, M. J., Banga, S. S., & Salisbury, P. A. (2012). Challenges for crop production and management from pathogen biodiversity and diseases under current and future climate scenarios – case study with oilseed brassicas. Field Crops Research, 127, 225–240. https://doi.org/10.1016/j.fcr.2011.11.021
  • BBS, Ministry of Planning. (2018). 45 years agriculture statistics of major crops (aus, Amon, Boro, Jute, Potato& Wheat). http://bbs.portal.gov.bd/sites/default/files/files/bbs.portal.gov.bd/page/b343a8b4_956b_45ca_872f_4cf9b2f1a6e0/45%20years%20Major%20Crops.pdf
  • BBS. (2019). Statistical yearbook of Bangladesh. Bangladesh Bureau of Statistics, Statistics Division, Ministry of Planning, Government of the People’s Republic of Bangladesh. http://bcpabd.com/wp-content/uploads/2021/04/Statistical-Yearbook-of-Bangladesh-2019.pdf
  • Benard, R., Frankwell, D., & Ngalapa, H. (2014). Assessment of information needs of rice farmers in Tanzania; a case study of Kilombero District, Morogoro. https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=2666&context=libphilprac
  • Biswas, A., Ahmed, M. M. E., Halder, T., Akter, S., Yasmeen, R., & Rahman, M. S. (2020). Photosensitive rice (Oryza sativa L.) varieties under delayed planting as an option to minimize rice yield loss in flood affected T. Aman season. Bangladesh Rice Journal, 23, 65–72.
  • Carr, E. R., Fleming, G., & Kalala, T. (2016). Understanding women’s needs for weather and climate information in agrarian settings: The case of ngetou maleck, Senegal. Weather, Climate, and Society, 8(3), 247–264. https://doi.org/10.1175/wcas-d-15-0075.1
  • Chaudhury, M. K. P., Kyagazze, F., Naab, J. B., & Neelormi, S. (2012). Participatory gender-sensitive approaches for addressing key climate change-related research issues: Evidence from Bangladesh, Ghana, and Uganda. [Working Paper 19]. Copenhagen, CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). https://ccafs.cgiar.org/resources/publications/participatory-gender-sensitive-approaches-addressing-key-climate-change
  • Chavas, J. -P., DiFalco, S., Adinolfi, F., & Capitanio, F. (2019). Weather effects and their long-term impact on the distribution of agricultural yields: Evidence from Italy. European Review of Agricultural Economics, 46(1), 29–51. https://doi.org/10.1093/erae/jby019
  • Clarke, D., Williams, S., Jahiruddin, M., Parks, K., & Salehin, M. (2015). Projections of on-farm salinity in coastal Bangladesh. Environmental Science: Processes & Impacts, 17(6), 1127–1136. https://doi.org/10.1039/c4em00682h
  • Das, S. K. (2017). Rice cultivation under changing climate with mitigation practices: A mini review. Universal Journal of Agricultural Research, 5(6), 333–337. https://doi.org/10.13189/ujar.2017.050603
  • Debnath, O., & Saha, H. N. (2022). An IoT-based intelligent farming using CNN for early disease detection in rice paddy. Microprocessors and Microsystems, 94, 104631.
  • Duan, W., Chen, Y., Zou, S., & Nover, D. (2019). Managing the water-climate- food nexus for sustainable development in Turkmenistan. Journal of Cleaner Production, 220, 212–224. https://doi.org/10.1016/j.jclepro.2019.02.040
  • FAO. (2021). Global outlook on climate services in agriculture – Investment opportunities to reach the last mile. https://doi.org/10.4060/cb6941en
  • Ferdous, Z., Datta, A., & Anwar, M. (2017). Plastic mulch and indigenous microorganism effects on yield and yield components of cauliflower and tomato in inland and coastal regions of Bangladesh. Journal of Crop Improvement, 31(3), 261–279. https://doi.org/10.1080/15427528.2017.1293578
  • Findlay, A. (2021). Ozone trade-offs. Nature Climate Change, 11(9), 719. https://doi.org/10.1038/s41558-021-01143-1
  • Garrett, K. A., Dobson, A. D. M., Kroschel, J., Natarajan, B., Orlandini, S., Tonnang, H. E. Z., & Valdivia, C. (2013). The effects of climate variability and the color of weather time series on agricultural diseases and pests, and on decisions for their management. Agricultural and Forest Meteorology, 170, 216–227. https://doi.org/10.1016/j.agrformet.2012.04.018
  • Ghini, R., & Bevitori, R. (2014). Rice blast disease in climate change times. Rice Research: Open Access, 03(01). https://doi.org/10.4172/2375-4338.1000e111
  • Guido, Z., Rountree, V., Greene, C., Gerlak, A., & Trotman, A. (2016). Connecting climate information producers and users: Boundary organization, knowledge networks, and information brokers at Caribbean climate outlook forums. Weather, Climate, and Society, 8(3), 285–298. https://doi.org/10.1175/wcas-d-15-0076.1
  • Gupta, S., Sharma, D., & Gupta, M. (2017). Climate change impact on plant diseases (microbes for climate resilient agriculture. https://doi.org/10.1002/9781119276050.ch3
  • Habib, M. S., & Nura, B. M. (2021). Improving rice production by detecting diseases using IoT in North West Nigeria.
  • Habiba, U., Abedin, M. A., Hassan, A. W. R., & Shaw, R. (2015). FoodSecurityandriskreductionin Bangladesh. Springer. https://doi.org/10.1007/978-4-431-55411-0
  • Haq, M., Mia, M. A. T., Rabbi, M. F., & Ali, M. A. (2011). Incidence and severity of rice diseases and insect pests in relation to climate change (climate change and food security in South Asia. https://doi.org/10.1007/978-90-481-9516-9_27
  • Hasan, M. K., & Kumar, L. (2020). Meteorological data and farmers’ perception of coastal climate in Bangladesh. The Science of the Total Environment, 704, 135384.
  • Holden, P. B., Edwards, N. R., Ridgwell, A., Wilkinson, R. D., Fraedrich, K., Lunkeit, F., Pollitt, H., Mercure, J. F., Salas, P., Lam, A., Knobloch, F., Chewpreecha, U., & Viñuales, J. E. (2018). Climate–carbon cycle uncertainties and the Paris agreement. Nature Climate Change, 8(7), 609–613. https://doi.org/10.1038/s41558-018-0197-7
  • Hoque, M. Z., Cui, S., Xu, L., Islam, I., Tang, J., & Ding, S. (2019). Assessing agricultural livelihood vulnerability to climate change in coastal Bangladesh. International Journal of Environmental Research and Public Health, 16(22), 4552. https://doi.org/10.3390/ijerph16224552
  • Horino, O. M. T., & Yamada, T. (1982). The effect of temperature on the development of bacterial leaf blight on rice. Japanese Journal of Phytopathology, 48, 72–75.
  • Islam, A. K. M., Simon, A., Braun, M., Kamp, K., & Aggarwal, P. (2013). Assessment of capabilities, needs of communities, opportunities and limitations of weather forecasting for coastal regions of Bangladesh. https://doi.org/10.13140/RG.2.1.1706.6485
  • Jakariya, M., Sarker, S. R., Sayem, S. M., Saad, S., Islam, M. N., Rahman, A., Alam, M. S., Ali, M. S., & Akter, D. (2020). Nexus among rice production and environmental factors in the coastal region of Bangladesh: A stochastic modeling approach for future forecasting. Modeling Earth Systems and Environment, 7(2), 1121–1131. https://doi.org/10.1007/s40808-020-00969-6
  • Kabir, J., Cramb, R., Alauddin, M., Gaydon, D. S., & Roth, C. H. (2020). Farmers’ perceptions and management of risk in rice/shrimp farming systems in South-West coastal Bangladesh. Land Use Policy, 95, 104577.
  • Kashem, M. A., Faroque, G. M. F., Ahmed, G., & Bilkas, S. E. (2013). The complementary roles of information and communication technology in Bangladesh agriculture. Journal of Science Foundation, 8(1–2), 161–169. https://doi.org/10.3329/jsf.v8i1-2.14639
  • Kim, K. H., & Jung, I. (2020). Development of a daily epidemiological model of rice blast tailored for seasonal disease early warning in South Korea. The Plant Pathology Journal, 36(5), 406–417. https://doi.org/10.5423/PPJ.OA.07.2020.0135
  • Kim, K. -H., & Cho, J. (2015). Predicting potential epidemics of rice diseases in Korea using multi-model ensembles for assessment of climate change impacts with uncertainty information. Climatic Change, 134(1–2), 327–339. https://doi.org/10.1007/s10584-015-1503-2
  • Kim, K. -H., & Choi, E. D. (2020). Retrospective study on the seasonal forecast-based disease intervention of the wheat blast outbreaks in Bangladesh [original research]. Frontiers in Plant Science, 11(1738). https://doi.org/10.3389/fpls.2020.570381
  • Kobayashi, T., Ishiguro, K., Nakajima, T., Kim, H. Y., Okada, M., & Kobayashi, K. (2006). Effects of elevated atmospheric CO(2) concentration on the infection of rice blast and sheath blight. Phytopathology, 96(4), 425–431. https://doi.org/10.1094/PHYTO-96-0425
  • Kumar, U., Werners, S., Paparrizos, S., Datta, D. K., & Ludwig, F. (2020). Hydroclimatic information needs of smallholder farmers in the lower Bengal delta, Bangladesh. Atmosphere, 11(9), 1009. https://doi.org/10.3390/atmos11091009
  • Kumar, U., Werners, S., Roy, S., Ashraf, S., Hoang, L. P., Kumar Datta, D., & Ludwig, F. (2020). Role of information in farmers’ response to weather and water related stresses in the lower Bengal Delta, Bangladesh. Sustainability, 12(16), 6598. https://doi.org/10.3390/su12166598
  • Lackstrom, K., Kettle, N. P., Haywood, B., & Dow, K. (2014). Climate-sensitive decisions and time frames: A cross-sectoral analysis of information pathways in the carolinas. Weather, Climate, and Society, 6(2), 238–252. https://doi.org/10.1175/wcas-d-13-00030.1
  • Lal, R., Sivakumar, M. V. K., Faiz, S., Rahman, M. A., & Islam, K. R. (2014). Climate change and food security in South Asia (2011 ed.). Springer.
  • Launay, M., Caubel, J., Bourgeois, G., Huard, F., Garcia de Cortazar-Atauri, I., Bancal, M. -O., & Brisson, N. (2014). Climatic indicators for crop infection risk: Application to climate change impacts on five major foliar fungal diseases in Northern France. Agriculture, Ecosystems & Environment, 197, 147–158. https://doi.org/10.1016/j.agee.2014.07.020
  • Lebel, L. (2012). Local knowledge and adaptation to climate change in natural resource-based societies of the Asia-Pacific. Mitigation and Adaptation Strategies for Global Change, 18(7), 1057–1076. https://doi.org/10.1007/s11027-012-9407-1
  • Magarey, R. D., Sutton, T. B., & Thayer, C. L. (2005). A simple generic infection model for foliar fungal plant pathogens. Phytopathology, 95(1), 92–100. https://doi.org/10.1094/PHYTO-95-0092
  • Md, A. S., Md, A. M. M., Debashish, S. D., & Kamrun, N. K. (2016). Preference of information sources by the fish farming communities of Muktagacha Upazila in Bangladesh. Journal of Agricultural Extension and Rural Development, 8(9), 166–170. https://doi.org/10.5897/jaerd2016.0796
  • Mir Kabir, M. M., Naher, U. A., Panhwar, Q. A., Shamshuddin, J., & Khan, F. H. (2014). Effect of transplanting dates on growth and yield of inbred and hybrid rice varieties grown during rainfed season in Bangladesh. The Philippine Agricultural Scientist, 97(4), 347–354.
  • Morshed, M. (2007). Indigenous coping mechanisms in combating flood]. https://core.ac.uk/download/pdf/61801787.pdf
  • Nieto, H., Rasmussen, K., Mertz, O., Rasmussen, L. V., Ali, A., & Maiga, I. (2014). Weather, climate, and resource information should meet the needs of Sahelian pastoralists. Weather, Climate, and Society, 6(4), 482–494. https://doi.org/10.1175/wcas-d-14-00010.1
  • Ouedraogo, I., Diouf, N. S., Ouédraogo, M., Ndiaye, O., & Zougmoré, R. (2018). Closing the gap between climate information producers and users: assessment of needs and uptake in Senegal. Climate, 6(1), 13. https://doi.org/10.3390/cli6010013
  • Paparrizos, S., Kumar, U., Amjath-Babu, T. S., & Ludwig, F. (2021). Are farmers willing to pay for participatory climate information services? Insights from a case study in peri-urban Khulna, Bangladesh. Climate Services, 23, 23. https://doi.org/10.1016/j.cliser.2021.100241
  • Paparrizos, S., Smolenaars, W., Gbangou, T., Slobbe, E., & Ludwig, F. (2020). Verification of weather and seasonal forecast information concerning the peri-urban farmers’ needs in the lower Ganges delta in Bangladesh. Atmosphere, 11(10), 1041. https://doi.org/10.3390/atmos11101041
  • Pender J and Gebremedhin B. (2007). Determinants of Agricultural and Land Management Practices and Impacts on Crop Production and Household Income in the Highlands of Tigray, Ethiopia. Journal of African Economies, 17(3), 395–450. https://doi.org/10.1093/jae/ejm028
  • Rahman, M. H., & Alam, K. (2016). Forest dependent indigenous communities’ perception and adaptation to climate change through local knowledge in the protected area—A Bangladesh case study. Climate, 4(1), 12. https://doi.org/10.3390/cli4010012
  • Rahman, M. S., Haque, M. M., Kabir, M. J., Islam, A. K. M. S., Sarkar, M. A. R., Mamun, M. A. A., Kabir, M. J., Salam, M. U., & Kabir, M. S. (2020). Enhancing rice productivity in the unfavourable ecosystems of Bangladesh. Bangladesh Rice Journal, 24(2), 83–102.
  • Rengalakshmi, R., Manjula, M., & Devaraj, M. (2018). Making climate information communication gender sensitive: Lessons from Tamil Nadu. https://www.researchgate.net/publication/324982446_Making_climate_information_communication_gender_sensitive_Lessons_from_Tamil_Nadu
  • Senanayake, S. G. J. N. (2006). Indigenous knowledge as a key to sustainable development. Journal of Agricultural Sciences, 2(1), 87. https://doi.org/10.4038/jas.v2i1.8117
  • Shameem, M. I. M., Momtaz, S., & Kiem, A. S. (2015). Local perceptions of and adaptation to climate variability and change: The case of shrimp farming communities in the coastal region of Bangladesh. Climatic Change, 133, 253–266. https://doi.org/10.1007/s10584-015-1470-7
  • Singh, C. (2016). From pilots to systems: Barriers and enablers to scaling up the use of climate information services in smallholder farming communities. CARIAA Working Pper no. 3. International Development Research Centre, Ottawa, Canada and UK Aid, London, United Kingdom. https://doi.org/10.13140/RG.2.1.2440.2320
  • Singh, C., Daron, J., Bazaz, A., Ziervogel, G., Spear, D., Krishnaswamy, J., Zaroug, M., & Kituyi, E. (2017). The utility of weather and climate information for adaptation decision-making: Current uses and future prospects in Africa and India. Climate and Development, 10(5), 389–405. https://doi.org/10.1080/17565529.2017.1318744
  • Stigter, K. (2002). Opportunities to improve the use of seasonal climate forecas. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.531.9624&rep=rep1&type=pdf
  • Swart, R. J., de Bruin, K., Dhenain, S., Dubois, G., Groot, A., & von der Forst, E. (2017). Developing climate information portals with users: Promises and pitfalls. Climate Services, 6, 12–22. https://doi.org/10.1016/j.cliser.2017.06.008
  • Szabo, S., Hossain, M. S., Adger, W. N., Matthews, Z., Ahmed, S., Lazar, A. N., & Ahmad, S. (2016). Soil salinity, household wealth and food insecurity in tropical deltas: Evidence from south-west coast of Bangladesh. Sustainability Science, 11(3), 411–421. https://doi.org/10.1007/s11625-015-0337-1
  • Tall, A., Coulibaly, J. Y., & Diop, M. (2018). Do climate services make a difference? A review of evaluation methodologies and practices to assess the value of climate information services for farmers: Implications for Africa. Climate Services, 11, 1–12. https://doi.org/10.1016/j.cliser.2018.06.001
  • Tall, A., Hansen, J., Jay, A., Campbell, B., Kinyangi, J., Aggarwal, P. K., & Zougmoré, R. (2014). Scaling up climate services for farmers: Mission possible. Learning from good practice in Africa and South Asia. https://cgspace.cgiar.org/handle/10568/42445
  • Uddin, M. J., Li, Y., Cheung, K. K., Nasrin, Z. M., Wang, H., Wang, L., & Gao, Z. (2019). Rainfall contribution of tropical cyclones in the Bay of Bengal between 1998 and 2016 using TRMM satellite data. Atmosphere, 10(11), 699. https://doi.org/10.3390/atmos10110699
  • Vaughan, C., & Dessai, S. (2014). Climate services for society: Origins, institutional arrangements, and design elements for an evaluation framework. WIREs Climate Change, 5(5), 587–603. https://doi.org/10.1002/wcc.290
  • Vincent, K., Dougill, A. J., Dixon, J. L., Stringer, L. C., & Cull, T. (2015). Identifying climate services needs for national planning: Insights from Malawi. Climate Policy, 17(2), 189–202. https://doi.org/10.1080/14693062.2015.1075374
  • Vogel, C., Steynor, A., & Manyuchi, A. (2019). Climate services in Africa: Re-imagining an inclusive, robust and sustainable service. Climate Services, 15, 15. https://doi.org/10.1016/j.cliser.2019.100107
  • WMO. (2015). Valuing weather and climate: Economic assessment of meteorological and hydrological service. https://library.wmo.int/doc_num.php?explnum_id=3314