796
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Effects of brain network segregation and integration on motor imagery sensorimotor rhythm

, , , , , & show all
Article: 2147404 | Received 18 Mar 2022, Accepted 09 Nov 2022, Published online: 29 Nov 2022

References

  • Jin J, Wang Z, Xu R, et al. Robust similarity measurement based on a novel time filter for SSVEPs detection. IEEE Trans Neural Netw Learning Syst. 2021;1–10.
  • Zhou Z, Yin E, Liu Y, et al. A novel task-oriented optimal design for P300-based brain–computer interfaces. J Neural Eng. 2014;11(5):056003.
  • Lotze M, Halsband U. Motor imagery. J Physiol Paris. 2006;99(4-6):386–395.
  • Wang Z, Zhou Y, Chen L, et al. A BCI based visual-haptic neurofeedback training improves cortical activations and classification performance during motor imagery. J Neural Eng. 2019;16(6):066012.
  • Pfurtscheller G, Neuper C. Motor imagery and direct brain-computer communication. Proc IEEE. 2001;89(7):1123–1134.
  • Wolpaw JR, McFarland DJ, Neat GW, et al. An EEG-based brain–computer interface for cursor control. Electroencephalogr Clin Neurophysiol. 1991;78(3):252–259.
  • Neuper C, Wörtz M, Pfurtscheller G. ERD/ERS patterns reflecting sensorimotor activation and deactivation. Prog Brain Res. 2006;159:211–222.
  • Pfurtscheller G. Functional brain imaging based on ERD/ERS. Vision Res. 2001;41(10-11):1257–1260.
  • Pfurtscheller G. EEG event-related desynchronization (ERD) and synchronization (ERS). Electroencephalogr Clin Neurophysiol. 1997;103(1):26.
  • Pfurtscheller G, Neuper C, Flotzinger D, et al. EEG-based discrimination between imagination of right and left hand movement. Electroencephalogr Clin Neurophysiol. 1997;103(6):642–651.
  • Pfurtscheller G, Stancak A Jr, Neuper C. Event-related synchronization (ERS) in the alpha band—an electrophysiological correlate of cortical idling: a review. Int J Psychophysiol. 1996;24(1-2):39–46.
  • Varela F, Lachaux J-P, Rodriguez E, et al. The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci. 2001;2(4):229–239.
  • McFarland DJ, Miner LA, Vaughan TM, et al. Mu and beta rhythm topographies during motor imagery and actual movements. Brain Topogr. 2000;12(3):177–186.
  • Neuper C, Pfurtscheller G. Event-related dynamics of cortical rhythms: frequency-specific features and functional correlates. Int J Psychophysiol. 2001;43(1):41–58.
  • Athanasiou A, Klados MA, Styliadis C, et al. Investigating the role of alpha and beta rhythms in functional motor networks. Neuroscience 2018;378:54–70.
  • Yu H, Ba S, Guo Y, et al. Effects of motor imagery tasks on brain functional networks based on EEG Mu/beta rhythm. Brain Sci. 2022;12(2):194.
  • Yang H, Hou C, Lu J, et al. Functional brain network study on resting state of composers. Chin J Biomed Eng. 2016;35(5):612–615.
  • Si Y, Jiang L, Tao Q, et al. Predicting individual decision-making responses based on the functional connectivity of resting-state EEG. J Neural Eng. 2019;16(6):066025.
  • Fong AHC, Yoo K, Rosenberg MD, et al. Dynamic functional connectivity during task performance and rest predicts individual differences in attention across studies. Neuroimage 2019;188:14–25.
  • Nunez PL, Silberstein RB, Shi Z, et al. EEG coherency II: experimental comparisons of multiple measures. Clin Neurophysiol. 1999;110(3):469–486.
  • Nunez PL, Srinivasan R, Westdorp AF, et al. EEG coherency: I: statistics, reference electrode, volume conduction, Laplacians, cortical imaging, and interpretation at multiple scales. Electroencephalogr Clin Neurophysiol. 1997;103(5):499–515.
  • Stam CJ, Nolte G, Daffertshofer A. Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Hum Brain Mapp. 2007;28(11):1178–1193.
  • Zhang R, Yao D, Valdés-Sosa PA, et al. Efficient resting-state EEG network facilitates motor imagery performance. J Neural Eng. 2015;12(6):066024.
  • Zhang R, Xu P, Chen R, et al. Predicting inter-session performance of SMR-based brain–computer interface using the spectral entropy of resting-state EEG. Brain Topogr. 2015;28(5):680–690.
  • Wang R, Lin P, Liu M, et al. Hierarchical connectome modes and critical state jointly maximize human brain functional diversity. Phys Rev Lett. 2019;123(3):038301.
  • Sporns O. Network attributes for segregation and integration in the human brain. Curr Opin Neurobiol. 2013;23(2):162–171.
  • Braun U, Schäfer A, Walter H, et al. Dynamic reconfiguration of frontal brain networks during executive cognition in humans. Proc Natl Acad Sci USA. 2015;112(37):11678–11683.
  • Shine JM, Bissett PG, Bell PT, et al. The dynamics of functional brain networks: integrated network states during cognitive task performance. Neuron 2016;92(2):544–554.
  • Wang R, Liu M, Cheng X, et al. Segregation, integration, and balance of large-scale resting brain networks configure different cognitive abilities. Proc Natl Acad Sci USA. 2021;118(23):1–11.
  • Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods. 2004;134(1):9–21.
  • Yao D. A method to standardize a reference of scalp EEG recordings to a point at infinity. Physiol Meas. 2001;22(4):693–711.
  • Kerick SE, Oie KS, McDowell K. Assessment of EEG signal quality in motion environments[R]. Army Research Lab Aberdeen Proving Ground MD Human Research and Engineering Directorate 2009;1–36.
  • Blankertz B, Sannelli C, Halder S, et al. Neurophysiological predictor of SMR-based BCI performance. Neuroimage 2010;51(4):1303–1309.
  • Xie J, Peng M, Lu J, et al. Enhancement of event-related desynchronization in motor imagery based on transcranial electrical stimulation. Front Hum Neurosci. 2021;15:635351.
  • Kıymık MK, Güler İ, Dizibüyük A, et al. Comparison of STFT and wavelet transform methods in determining epileptic seizure activity in EEG signals for real-time application. Comput Biol Med. 2005;35(7):603–616.
  • Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations. Neuroimage 2010;52(3):1059–1069.
  • Christodoulakis M, Hadjipapas A, Papathanasiou ES, et al. On the effect of volume conduction on graph theoretic measures of brain networks in epilepsy. Modern electroencephalographic assessment techniques. New York: Springer; 2013. p. 103–130.
  • Nolte G, Bai O, Wheaton L, et al. Identifying true brain interaction from EEG data using the imaginary part of coherency. Clin Neurophysiol. 2004;115(10):2292–2307.
  • Huck SW, McLean RA. Using a repeated measures ANOVA to analyse the data from a pretest-posttest design: a potentially confusing task. Psychol Bull. 1975;82(4):511–518.
  • Perrett D, Schaffer J, Piccone A, et al. Bonferroni adjustments in tests for regression coefficients. Multiple Linear Regression Viewpoints. 2006;32(1):1–6.
  • Nam CS, Jeon Y, Kim Y-J, et al. Movement imagery-related lateralization of event-related (de) synchronization (ERD/ERS): motor-imagery duration effects. Clin Neurophysiol. 2011;122(3):567–577.
  • Burgess A, Gruzelier J. Individual reliability of amplitude distribution in topographical mapping of EEG. Electroencephalogr Clin Neurophysiol. 1993;86(4):219–223.
  • Stolk A, Brinkman L, Vansteensel MJ, et al. Electrocorticographic dissociation of alpha and beta rhythmic activity in the human sensorimotor system. Elife 2019;8:e48065.
  • Michelon P, Vettel JM, Zacks JM. Lateral somatotopic organization during imagined and prepared movements. J Neurophysiol. 2006;95(2):811–822.
  • Li F, Peng W, Jiang Y, et al. The dynamic brain networks of motor imagery: time-varying causality analysis of scalp EEG. Int J Neural Syst. 2019;29(1):1850016.
  • Pfurtscheller G, Neuper C. Motor imagery activates primary sensorimotor area in humans. Neurosci Lett. 1997;239(2-3):65–68.
  • Miraglia F, Vecchio F, Rossini PM. Brain electroencephalographic segregation as a biomarker of learning. Neural Netw. 2018;106:168–174.
  • Welcome SE, Chiarello C. How dynamic is interhemispheric interaction? Effects of task switching on the across-hemisphere advantage. Brain Cogn. 2008;67(1):69–75.
  • Waters S, Wiestler T, Diedrichsen J. Cooperation not competition: bihemispheric tDCS and fMRI show role for ipsilateral hemisphere in motor learning. J Neurosci. 2017;37(31):7500–7512.
  • Nitsche MA, Nitsche MS, Klein CC, et al. Level of action of cathodal DC polarisation induced inhibition of the human motor cortex. Clin Neurophysiol. 2003;114(4):600–604.
  • Serrien DJ, Ivry RB, Swinnen SP. Dynamics of hemispheric specialization and integration in the context of motor control. Nat Rev Neurosci. 2006;7(2):160–166.
  • Friston KJ. Models of brain function in neuroimaging. Annu Rev Psychol. 2005;56:57–87.
  • Samogin J, Marino M, Porcaro C, et al. Frequency‐dependent functional connectivity in resting state networks. Hum Brain Mapp. 2020;41(18):5187–5198.
  • Henry MJ, Herrmann B, Obleser J. Entrained neural oscillations in multiple frequency bands comodulate behavior. Proc Natl Acad Sci USA. 2014;111(41):14935–14940.
  • Barbey AK. Network neuroscience theory of human intelligence. Trends Cogn Sci. 2018;22(1):8–20.