107
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effects of music composition on structural and functional connectivity in the orbitofrontal cortex

, , , , , & show all
Article: 2346498 | Received 09 Nov 2022, Accepted 18 Apr 2024, Published online: 30 Apr 2024

References

  • Herholz SC, Zatorre RJ. Musical training as a framework for brain plasticity: behavior, function, and structure. Neuron. 2012;76(3):486–502. doi: 10.1016/j.neuron.2012.10.011.
  • Habibi A, Damasio A, Ilari B, et al. Childhood music training induces change in micro and macroscopic brain structure: results from a longitudinal study. Cereb Cortex. 2018;28(12):4336–4347. doi: 10.1093/cercor/bhx286.
  • Angulo-Perkins A, Aube W, Peretz I, et al. Music listening engages specific cortical regions within the temporal lobes: differences between musicians and non-musicians. Cortex. 2014;59:126–137. doi: 10.1016/j.cortex.2014.07.013.
  • Arkin C, Przysinda E, Pfeifer CW, et al. Gray matter correlates of creativity in musical improvisation. Front Hum Neurosci. 2019;13:169. doi: 10.3389/fnhum.2019.00169.
  • Fridriksson J, Yourganov G, Bonilha L, et al. Revealing the dual streams of speech processing. Proc Natl Acad Sci U S A. 2016;113(52):15108–15113. doi: 10.1073/pnas.1614038114.
  • Bücher S, Bernhofs V, Thieme A, et al. Chronology of auditory processing and related co-activation in the orbitofrontal cortex depends on musical expertise. Front Neurosci. 2022;16:1041397. doi: 10.3389/fnins.2022.1041397.
  • Nieminen S, Istók E, Brattico E, et al. The development of aesthetic responses to music and their underlying neural and psychological mechanisms. Cortex. 2011;47(9):1138–1146. doi: 10.1016/j.cortex.2011.05.008.
  • Daniel ES, JRCrawford Jackson EC, Westerman DK. The influence of social media influencers: understanding online vaping communities and parasocial interaction through the lens of taylor’s six-segment strategy wheel. Journal of Interactive Advertising. 2018;18(2):96–109. doi: 10.1080/15252019.2018.1488637.
  • Belden A, Zeng T, Przysinda E, et al. Improvising at rest: differentiating jazz and classical music training with resting state functional connectivity. NeuroImage. 2020;207:116384. doi: 10.1016/j.neuroimage.2019.116384.
  • Pinho AL, DE Manzano Ö, Fransson P, et al. Connecting to create: expertise in musical improvisation is associated with increased functional connectivity between premotor and prefrontal areas. J Neurosci. 2014;34(18):6156–6163. doi: 10.1523/JNEUROSCI.4769-13.2014.
  • Fink A, Benedek M. EEG alpha power and creative ideation. Neurosci Biobehav Rev. 2014;44(100):111–123. doi: 10.1016/j.neubiorev.2012.12.002.
  • Lustenberger C, Boyle MR, Foulser AA, et al. Functional role of frontal alpha oscillations in creativity. Cortex. 2015;67:74–82. doi: 10.1016/j.cortex.2015.03.012.
  • Limb CJ, Braun AR. Neural substrates of spontaneous musical performance: an fMRI study of jazz improvisation. PLoS One. 2008;3(2):e1679. doi: 10.1371/journal.pone.0001679.
  • Bogunović B. Creative cognition in composing music. New Sound International Journal of Music. 2019;53(1):89–117. doi: 10.5937/newso1901089B.
  • Zhou HY, Cheung EFC, Chan R CK. Audiovisual temporal integration: cognitive processing, neural mechanisms, developmental trajectory and potential interventions. Neuropsychologia. 2020;140:107396. doi: 10.1016/j.neuropsychologia.2020.107396.
  • Bashwiner DM, Wertz CJ, Flores RA, et al. Musical creativity "revealed" in brain structure: interplay between motor, default mode, and limbic networks. Sci Rep. 2016;6(1):20482. doi: 10.1038/srep20482.
  • Beaty RE. The neuroscience of musical improvisation. Neurosci Biobehav Rev. 2015;51:108–117. doi: 10.1016/j.neubiorev.2015.01.004.
  • Lu J, Yang H, Zhang X, et al. The brain functional state of music creation: an fMRI study of composers. Sci Rep. 2015;5:12277.
  • Dikaya LA, Skirtach IA. Neurophysiological correlates of musical creativity: the example of improvisation. Psychology in Russia: state of the Art. 2015;8(3):84–97.
  • Yao D, Qin Y, Zhang Y. From psychosomatic medicine, brain–computer interface to brain–apparatus communication. Brain-Apparatus Communication: a Journal of Bacomics. 2022;1(1):66–88. doi: 10.1080/27706710.2022.2120775.
  • Dong L, Luo C, Liu X, et al. Neuroscience information toolbox: an open source toolbox for EEG–fMRI multimodal fusion analysis. Front Neuroinform. 2018;12:56. doi: 10.3389/fninf.2018.00056.
  • Smith SM, Jenkinson M, Johansen-Berg H, et al. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage. 2006;31(4):1487–1505. doi: 10.1016/j.neuroimage.2006.02.024.
  • Nichols TE, Holmes AP. Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp. 2002;15(1):1–25. doi: 10.1002/hbm.1058.
  • Schaefer A, Kong R, Gordon EM, et al. Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. Cereb Cortex. 2018;28(9):3095–3114. doi: 10.1093/cercor/bhx179.
  • Vaquero L, Ramos-Escobar N, Francois C, et al. White-matter structural connectivity predicts short-term melody and rhythm learning in non-musicians. Neuroimage. 2018;181:252–262. doi: 10.1016/j.neuroimage.2018.06.054.
  • DE Manzano Ö, Ullén F. Same genes, different brains: neuroanatomical differences between monozygotic twins discordant for musical training. Cereb Cortex. 2018;28(1):387–394. doi: 10.1093/cercor/bhx299.
  • Schlaug G, Forgeard M, Zhu L, et al. Training‐induced neuroplasticity in young children [J]. Ann N Y Acad Sci. 2009;1169(1):205–208. doi: 10.1111/j.1749-6632.2009.04842.x.
  • Bengtsson SL, Nagy Z, Skare S, et al. Extensive piano practicing has regionally specific effects on white matter development. Nat Neurosci. 2005;8(9):1148–1150. doi: 10.1038/nn1516.
  • Han Y, Yang H, Lv Y-T, et al. Gray matter density and white matter integrity in pianists’ brain: a combined structural and diffusion tensor MRI study. Neurosci Lett. 2009;459(1):3–6. doi: 10.1016/j.neulet.2008.07.056.
  • Hofstetter S, Assaf Y. The rapid development of structural plasticity through short water maze training: a DTI study. Neuroimage. 2017;155:202–208. doi: 10.1016/j.neuroimage.2017.04.056.
  • Acer N, Bastepe-Gray S, Sagiroglu A, et al. Diffusion tensor and volumetric magnetic resonance imaging findings in the brains of professional musicians. J Chem Neuroanat. 2018;88:33–40. doi: 10.1016/j.jchemneu.2017.11.003.
  • Oechslin MS, Imfeld A, Loenneker T, et al. The plasticity of the superior longitudinal fasciculus as a function of musical expertise: a diffusion tensor imaging study. Front Hum Neurosci. 2009;3:76. doi: 10.3389/neuro.09.076.2009.
  • Schlaug G, Jäncke L, Huang Y, et al. Increased corpus callosum size in musicians [J]. Neuropsychologia. 1995;33(8):1047–1055. doi: 10.1016/0028-3932(95)00045-5.
  • Moore E, Schaefer RS, Bastin ME, et al. Can musical training influence brain connectivity? Evidence from diffusion tensor MRI. Brain Sci. 2014;4(2):405–427. doi: 10.3390/brainsci4020405.
  • Fukushima M, Betzel RF, He Y, et al. Structure–function relationships during segregated and integrated network states of human brain functional connectivity. Brain Struct Funct. 2018;223(3):1091–1106. doi: 10.1007/s00429-017-1539-3.
  • Zamorano AM, Cifre I, Montoya P, et al. Insula-based networks in professional musicians: evidence for increased functional connectivity during resting state fMRI. Hum Brain Mapp. 2017;38(10):4834–4849. doi: 10.1002/hbm.23682.
  • Damoiseaux JS, Greicius MD. Greater than the sum of its parts: a review of studies combining structural connectivity and resting-state functional connectivity. Brain Struct Funct. 2009;213(6):525–533. doi: 10.1007/s00429-009-0208-6.
  • Koch MA, Norris DG, Hund-Georgiadis M. An investigation of functional and anatomical connectivity using magnetic resonance imaging. Neuroimage. 2002;16(1):241–250. doi: 10.1006/nimg.2001.1052.
  • Xi L, Jiu W, Dan W XI, et al. Comparative analysis of brainwave music translated from spontaneous EEG between major depression disorders and healthy people. Brain-Apparatus Communication: A Journal of Bacomics. 2022;1(1):107–125. doi: 10.1080/27706710.2022.2112535.