154
Views
22
CrossRef citations to date
0
Altmetric
Review

Heat shock protein inhibitors and vaccines as new agents in cancer treatment

, & , MD MBBS
Pages 161-174 | Published online: 21 Jan 2009

Bibliography

  • Ritossa P. Problems of prophylactic vaccinations of infants. Riv Ist Sieroter Ital 1962;37:79-108
  • Lindquist S, Craig EA. The heat-shock proteins. Annu Rev Genet 1988;22:631-77
  • Georgopoulos C, Welch WJ. Role of the major heat shock proteins as molecular chaperones. Annu Rev Cell Biol 1993;9:601-34
  • Bukau B, Horwich AL. The Hsp70 and Hsp60 chaperone machines. Cell 1998;92:351-66
  • Tang D, Khaleque MA, Jones EL, et al. Expression of heat shock proteins and heat shock protein messenger ribonucleic acid in human prostate carcinoma in vitro and in tumors in vivo. Cell Stress Chaperones 2005;10:46-58
  • Easton DP, Kaneko Y, Subjeck JR. The hsp110 and Grp1 70 stress proteins: newly recognized relatives of the Hsp70s. Cell Stress Chaperones 2000;5:276-90
  • Rachel A, Tyson JR, Stirling CJ. A novel subfamily of Hsp70s in the endoplasmic reticulum. Trends Cell Biol 1997;7:277-82
  • Nollen EA, Morimoto RI. Chaperoning signaling pathways: molecular chaperones as stress-sensing ‘heat shock’ proteins. J Cell Sci 2002;115:2809-16
  • Wegele H, Muller L, Buchner J. Hsp70 and Hsp90--a relay team for protein folding. Rev Physiol Biochem Pharmacol 2004;151:1-44
  • Mayer MP, Bukau B. Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 2005;62:670-84
  • Pratt WB, Toft DO. Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp Biol Med (Maywood) 2003;228:111-33
  • Spiess C, Meyer AS, Reissmann S, et al. Mechanism of the eukaryotic chaperonin: protein folding in the chamber of secrets. Trends Cell Biol 2004;14:598-604
  • Young JC, Agashe VR, Siegers K, et al. Pathways of chaperone-mediated protein folding in the cytosol. Nat Rev Mol Cell Biol 2004;5:781-91
  • Arrigo AP. Heat shock proteins as molecular chaperones. Med Sci (Paris) 2005;21:619-25
  • Nakai A, Tanabe M, Kawazoe Y, et al. HSF4, a new member of the human heat shock factor family which lacks properties of a transcriptional activator. Mol Cell Biol 1997;17:469-81
  • Rabindran SK, Giorgi G, Clos J, et al. Molecular cloning and expression of a human heat shock factor, HSF1. Proc Natl Acad Sci USA 1991;88:6906-10
  • Schuetz TJ, Gallo GJ, Sheldon L, et al. Isolation of a cDNA for HSF2: evidence for two heat shock factor genes in humans. Proc Natl Acad Sci USA 1991;88:6911-5
  • Sorger PK, Pelham HR. Yeast heat shock factor is an essential DNA-binding protein that exhibits temperature-dependent phosphorylation. Cell 1988;54:855-64
  • Wu C. Heat shock transcription factors: structure and regulation. Annu Rev Cell Dev Biol 1995;11:441-69
  • Nadeau K, Das A, Walsh CT. Hsp90 chaperonins possess ATPase activity and bind heat shock transcription factors and peptidyl prolyl isomerases. J Biol Chem 1993;268:1479-87
  • Baler R, Dahl G, Voellmy R. Activation of human heat shock genes is accompanied by oligomerization, modification, and rapid translocation of heat shock transcription factor HSF1. Mol Cell Biol 1993;13:2486-96
  • Sarge KD, Murphy SP, Morimoto RI. Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress. Mol Cell Biol 1993;13:1392-407
  • Trinklein ND, Murray JI, Hartman SJ, et al. The role of heat shock transcription factor 1 in the genome-wide regulation of the mammalian heat shock response. Mol Biol Cell 2004;15:1254-61
  • McMillan DR, Xiao X, Shao L, et al. Targeted disruption of heat shock transcription factor 1 abolishes thermotolerance and protection against heat-inducible apoptosis. J Biol Chem 1998;273:7523-8
  • Schmitt E, Gehrmann M, Brunet M, et al. Intracellular and extracellular functions of heat shock proteins: repercussions in cancer therapy. J Leukoc Biol 2007;81:15-27
  • Arispe N, Doh M, Simakova O, et al. Hsc70 and Hsp70 interact with phosphatidylserine on the surface of PC12 cells resulting in a decrease of viability. FASEB J 2004;18:1636-45
  • Todryk SM, Melcher AA, Dalgleish AG, et al. Heat shock proteins refine the danger theory. Immunology 2000;99:334-7
  • Singh-Jasuja H, Toes RE, Spee P, et al. Cross-presentation of glycoprotein 96-associated antigens on major histocompatibility complex class I molecules requires receptor-mediated endocytosis. J Exp Med 2000;191:1965-74
  • Schild H, Rammensee HG. gp96–the immune system's Swiss army knife. Nat Immunol 2000;1:100-1
  • Syrigos KN, Harrington KJ, Karayiannakis AJ, et al. Clinical significance of heat shock protein-70 expression in bladder cancer. Urology 2003;61:677-80
  • Matzinger P. The danger model: a renewed sense of self. Science 2002;296:301-5
  • Asea A, Kraeft SK, Kurt-Jones EA, et al. HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med 2000;6:435-42
  • Wang Y, Kelly CG, Singh M, et al. Stimulation of Th1-polarizing cytokines, C-C chemokines, maturation of dendritic cells, and adjuvant function by the peptide binding fragment of heat shock protein 70. J Immunol 2002;169:2422-9
  • Lehner T, Wang Y, Whittall T, et al. Functional domains of HSP70 stimulate generation of cytokines and chemokines, maturation of dendritic cells and adjuvanticity. Biochem Soc Trans 2004;32:629-32
  • Moretta A, Bottino C, Vitale M, et al. Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis. Annu Rev Immunol 2001;19:197-223
  • Long EO. Regulation of immune responses through inhibitory receptors. Annu Rev Immunol 1999;17:875-904
  • Gastpar R, Gehrmann M, Bausero MA, et al. Heat shock protein 70 surface-positive tumor exosomes stimulate migratory and cytolytic activity of natural killer cells. Cancer Res 2005;65:5238-47
  • Chen X, Tao Q, Yu H, et al. Tumor cell membrane-bound heat shock protein 70 elicits antitumor immunity. Immunol Lett 2002;84:81-7
  • Strbo N, Oizumi S, Sotosek-Tokmadzic V, et al. Perforin is required for innate and adaptive immunity induced by heat shock protein gp96. Immunity 2003;18:381-90
  • Gross C, Koelch W, DeMaio A, et al. Cell surface-bound heat shock protein 70 (Hsp70) mediates perforin-independent apoptosis by specific binding and uptake of granzyme B. J Biol Chem 2003;278:41173-81
  • Sreedhar AS, Kalmar E, Csermely P, et al. Hsp90 isoforms: functions, expression and clinical importance. FEBS Lett 2004;562:11-5
  • Pratt WB, Galigniana MD, Harrell JM, DeFranco DB. Role of hsp90 and the hsp90-binding immunophilins in signalling protein movement. Cell Signal 2004;16:857-72
  • Neckers L, Ivy SP. Heat shock protein 90. Curr Opin Oncol 2003;15:419-24
  • Neckers L, Neckers K. Heat-shock protein 90 inhibitors as novel cancer chemotherapeutic agents. Expert Opin Emerg Drugs 2002;7:277-88
  • Nimmanapalli R, O'Bryan E, Bhalla K. Geldanamycin and its analogue 17-allylamino-17-demethoxygeldanamycin lowers Bcr-Abl levels and induces apoptosis and differentiation of Bcr-Abl-positive human leukemic blasts. Cancer Res 2001;61:1799-804
  • Pandey P, Saleh A, Nakazawa A, et al. Negative regulation of cytochrome c-mediated oligomerization of Apaf-1 and activation of procaspase-9 by heat shock protein 90. EMBO J 2000;19:4310-22
  • Cardone MH, Roy N, Stennicke HR, et al. Regulation of cell death protease caspase-9 by phosphorylation. Science 1998;282:1318-21
  • Ozes ON, Mayo LD, Gustin JA, et al. NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature 1999;401:82-5
  • Lewis J, Devin A, Miller A, et al. Disruption of hsp90 function results in degradation of the death domain kinase, receptor-interacting protein (RIP), and blockage of tumor necrosis factor-induced nuclear factor-kappaB activation. J Biol Chem 2000;275:10519-26
  • Chen G, Cao P, Goeddel DV. TNF-induced recruitment and activation of the IKK complex require Cdc37 and Hsp90. Mol Cell 2002;9:401-10
  • Bando Y, Katayama T, Kasai K, et al. GRP94 (94 kDa glucose-regulated protein) suppresses ischemic neuronal cell death against ischemia/reperfusion injury. Eur J Neurosci 2003;18:829-40
  • Workman P. Altered states: selectively drugging the Hsp90 cancer chaperone. Trends Mol Med 2004;10:47-51
  • Sun J, Liao JK. Induction of angiogenesis by heat shock protein 90 mediated by protein kinase Akt and endothelial nitric oxide synthase. Arterioscler Thromb Vasc Biol 2004;24:2238-44
  • Pfosser A, Thalgott M, Buttner K, et al. Liposomal Hsp90 cDNA induces neovascularization via nitric oxide in chronic ischemia. Cardiovasc Res 2005;65:728-36
  • Hoang AT, Huang J, Rudra-Ganguly N, et al. A novel association between the human heat shock transcription factor 1 (HSF1) and prostate adenocarcinoma. Am J Pathol 2000;156:857-64
  • Price JT, Quinn JM, Sims NA, et al. The heat shock protein 90 inhibitor, 17-allylamino-17-demethoxygeldanamycin, enhances osteoclast formation and potentiates bone metastasis of a human breast cancer cell line. Cancer Res 2005;65:4929-938
  • Grenert JP, Sullivan WP, Fadden P, et al. The amino-terminal domain of heat shock protein 90 (hsp90) that binds geldanamycin is an ATP/ADP switch domain that regulates hsp90 conformation. J Biol Chem 1997;272:23843-50
  • Schulte TW, An WG, Neckers LM. Geldanamycin-induced destabilization of Raf-1 involves the proteasome. Biochem Biophys Res Commun 1997;239:655-9
  • Hostein I, Robertson D, DiStefano F, et al. Inhibition of signal transduction by the Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin results in cytostasis and apoptosis. Cancer Res 2001;61:4003-9
  • Supko JG, Hickman RL, Grever MR, et al. Preclinical pharmacologic evaluation of geldanamycin as an antitumor agent. Cancer Chemother Pharmacol 1995;36:305-15
  • Goetz MP, Toft D, Reid J, et al. Phase I trial of 17-allylamino-17-demethoxygeldanamycin in patients with advanced cancer. J Clin Oncol 2005;23:1078-87
  • Banerji U, O'Donnell A, Scurr M, et al. Phase I pharmacokinetic and pharmacodynamic study of 17-allylamino, 17-demethoxygeldanamycin in patients with advanced malignancies. J Clin Oncol 2005;23:4152-61
  • Grem JL, Morrison G, Guo XD, et al. Phase I and pharmacologic study of 17-(allylamino)-17-demethoxygeldanamycin in adult patients with solid tumors. J Clin Oncol 2005;23:1885-93
  • Ramanathan RK, Belani CP, Friedland D, et al. Phase I study (twice weekly schedule) of 17-allylamino-17 demethoxygeldanamycin (17-AAG, NSC-704057) in patients with advanced refractory tumours [abstract 3050]. ASCO Meetings Abstracts; 2005
  • Musquire LA, Ramalingam S, Egorin MJ, et al. Phase I and pharmacokinetic (PK) study of 17-allylamino-17 demethoxygeldanamycin (17-combination with weekly paclitaxel for advanced solid mAAG) in alignancies. 2007 ASCO Annual Meeting Proceedings (Post-Meeting Edition). J Clin Oncol 2007;25(18 Suppl)
  • Solit DB, Egorin M, Valentin G, et al. Phase 1 pharmacokinetic and pharmacodynamic trial of docetaxel and 17AAG (17-allylamino-17-demethoxygeldanamycin) [abstract 3032]. ASCO Meetings Abstracts; 2004
  • Haluska P, Toft DO, Steinmetz SM, et al. A phase I trial of gemcitabine (Gem), 17-allylaminogeldanamycin (17-AAG) and cisplatin (CDDP) in solid tumor patients [abstract 3058]. 2004 ASCO Annual Meeting Proceedings (Post-Meeting Edition). J Clin Oncol 2004;22(14 Suppl)
  • A Phase II Trial of 17-N-Allylamino-17-Demethoxygeldanamycin (17-AAG) in Combination with Gemcitabine in Patients with Metastatic Pancreatic Adenocarcinoma. clinicaltrials.gov2008.
  • Heath EI, Hillman D, Vaishampayan U, et al. A phase II trial of 17-allylamino-17-demethoxygeldanamycin (17-AAG) in patients with hormone-refractory metastatic prostate cancerE. I [abstract 15553]. 2007 ASCO Annual Meeting Proceedings (Post-Meeting Edition). J Clin Oncol 2007;25(18 Suppl)
  • Modi S, Stopeck AT, Gordon MS, et al. Combination of trastuzumab and tanespimycin (17-AAG, KOS-953) is safe and active in trastuzumab-refractory HER-2 overexpressing breast cancer: a phase I dose-escalation study. J Clin Oncol 2007;25:5410-7
  • Modi S, Sugarman S, Stopeck A, et al. Phase II trial of the Hsp90 inhibitor tanespimycin (Tan) + trastuzumab (T) in patients (pts) with HER2-positive metastatic breast cancer (MBC) [abstract 1027]. J Clin Oncol 2008;26
  • Saif MW, Erlichman C, Dragovich T, et al. Phase I study of CNF1010 (lipid formulation of 17-(allylamino)-17-demethoxygeldanamycin: 17-AAG) in patients with advanced solid tumors [abstract10062]. ASCO Annual Meeting. 2006 ASCO Annual Meeting Proceedings. J Clin Oncol 2006;24(18 Suppl)
  • Flaherty KT, Gore L, Avadhani A, et al. Phase 1, pharmacokinetic (PK) and pharmacodynamic (PD) study of oral alvespimycin (A; KOS-1022; 17-DMAG): Two different schedules in patients with advanced malignancies [abstract140]. ASCO Annual Meeting Proceedings. J Clin Oncol 2007;25(18 Suppl)
  • Wagner AJ, Morgan JA, Chugh R, et al. Inhibition of heat shock protein 90 (Hsp90) with the novel agent IPI-in metastatic GIST following failure of tyrosine kinase inhibitors (TKIs) or other sarcomas: Clinical results from phase I trial [abstract 10503]. ASCO Anual Meeting. J Clin Oncol 2008;26
  • Demetri GD, George S, Morgan JA, et al. Inhibition of the Heat Shock Protein 90 (Hsp90) chaperone with the novel agent IPI-504 to overcome resistance to tyrosine kinase inhibitors (TKIs) in metastatic GIST: Updated results of a phase I trial [abstract 10024]. ASCO Annual Meeting Proceedings. J Clin Oncol 2007;25(18 Suppl)
  • A Phase 2, Open-Label, Single-Arm, Multicenter Study Evaluating the Safety and Antitumor Activity of IPI-504, A Novel Small Molecule Inhibitor of Heat Shock Protein 90 (HSP90), in Patients With Metastatic Melanoma.clinicaltrials@gov2008. Ref Type: Electronic Citation
  • Bryson JC, Infante JR, Ramanathan RK, et al. A Phase 1 dose-escalation study of the safety and pharmacokinetics (PK) of the oral Hsp90 inhibitor SNX-5422 [abstract 14613]. J Clin Oncol 2008;26
  • STA 9090 clinicaltrials@gov. 2008. Ref Type: Electronic Citation
  • Elfiky A, Saif MW, Beeram M, et al. BIIB021, an oral, synthetic non-ansamycin Hsp90 inhibitor: Phase I experience [abstract2503]. ASCO Annual Meeting. J Clin Oncol 2008;26
  • Wood C, Srivastava P, Bukowski R, et al. An adjuvant autologous therapeutic vaccine (HSPPC-96; vitespen) versus observation alone for patients at high risk of recurrence after nephrectomy for renal cell carcinoma: a multicentre, open-label, randomised phase III trial. Lancet 2008;372:145-54
  • Jonasch E, Wood C, Tamboli P, et al. Vaccination of metastatic renal cell carcinoma patients with autologous tumour-derived vitespen vaccine: clinical findings. Br J Cancer 2008;98:1336-41
  • Testori A, Richards J, Whitman E, et al. Phase III comparison of vitespen, an autologous tumor-derived heat shock protein gp96 peptide complex vaccine, with physician's choice of treatment for stage IV melanoma: the C-100-21 Study Group. J Clin Oncol 2008;26:955-62
  • Pilla L, Patuzzo R, Rivoltini L, et al. A phase II trial of vaccination with autologous, tumor-derived heat-shock protein peptide complexes Gp96, in combination with GM-CSF and interferon-alpha in metastatic melanoma patients. Cancer Immunol Immunother 2006;55:958-68
  • Richards J, Testori A, Whitman E, et al. Autologous tumor-derived HSPPC-96 vs. physician's choice (PC) in a randomized phase III trial in stage IV melanoma [abstract 8002]. ASCO Annual Meeting. J Clin Oncol 2006;24(18 Suppl)
  • Hertkorn C, Lehr A, Woelfel T, et al. Phase I trial of vaccination with autologous tumor-derived gp96 (oncophage) in patients after surgery for gastric cancer [abstract 117]. ASCO Annual Meeting 21; 2002
  • Mazzafero V, Coppa JC, Carrabba MG, et al. Vaccination with autologous tumor derived heat-shock protein peptide complex-96 (Oncophage®) after curative resection of colorectal liver metastases [abstract 2290]. ASCO Annual Meeting 21; 2002
  • Manjili MH, Henderson R, Wang XY, et al. Development of a recombinant HSP110-HER-2/neu vaccine using the chaperoning properties of HSP110. Cancer Res 2002;62:1737-42
  • Manjili MH, Wang XY, Chen X, et al. HSP110-HER2/neu chaperone complex vaccine induces protective immunity against spontaneous mammary tumors in HER-2/neu transgenic mice. J Immunol 2003;171:4054-61

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.