304
Views
15
CrossRef citations to date
0
Altmetric
Reviews

Growth hormone: does it have a therapeutic role in fracture healing?

, , , , , & show all
Pages 887-911 | Published online: 31 May 2009

Bibliography

  • Giustina A, Veldhuis JD. Pathophysiology of the neuroregulation of growth hormone secretion in experimental animals and the human. Endocr Rev 1998;19(6):717-97
  • Stracke H, Schulz A, Moeller D, et al. Effect of growth hormone on osteoblasts and demonstration of somatomedin-C/IGF I in bone organ culture. Acta Endocrinol (Copenh) 1984;107(1):16-24
  • Sjogren K, Liu JL, Blad K, et al. Liver-derived insulin-like growth factor I (IGF-I) is the principal source of IGF-I in blood but is not required for postnatal body growth in mice. Proc Natl Acad Sci USA 1999;96(12):7088-92
  • Wabitsch M, Heinze E, Debatin KM, Blum WF. IGF-I- and IGFBP-3-expression in cultured human preadipocytes and adipocytes. Horm Metab Res 2000;32(11-12):555-9
  • Isgaard J, Moller C, Isaksson OG, et al. Regulation of insulin-like growth factor messenger ribonucleic acid in rat growth plate by growth hormone. Endocrinology 1988;122(4):1515-20
  • Canalis E, McCarthy T, Centrella M. Isolation and characterization of insulin-like growth factor I (somatomedin-C) from cultures of fetal rat calvariae. Endocrinology 1988;122(1):22-7
  • Daughaday WH, Hall K, Raben MS, et al. Somatomedin: proposed designation for sulphation factor. Nature 1972;235(5333):107
  • Schoenle E, Zapf J, Humbel RE, Froesch ER. Insulin-like growth factor I stimulates growth in hypophysectomized rats. Nature 1982;296(5854):252-3
  • Russell SM, Spencer EM. Local injections of human or rat growth hormone or of purified human somatomedin-C stimulate unilateral tibial epiphyseal growth in hypophysectomized rats. Endocrinology 1985;116(6):2563-7
  • Isaksson OG, Jansson JO, Gause IA. Growth hormone stimulates longitudinal bone growth directly. Science 1982;216(4551):1237-9
  • Kassem M, Blum W, Ristelli J, et al. Growth hormone stimulates proliferation and differentiation of normal human osteoblast-like cells in vitro. Calcif Tissue Int 1993;52(3):222-6
  • Maor G, Hochberg Z, von der Mark K, et al. Human growth hormone enhances chondrogenesis and osteogenesis in a tissue culture system of chondroprogenitor cells. Endocrinology 1989;125(3):1239-45
  • Nilsson A, Isgaard J, Lindahl A, et al. Effects of unilateral arterial infusion of GH and IGF-I on tibial longitudinal bone growth in hypophysectomized rats. Calcif Tissue Int 1987;40(2):91-6
  • Schlechter NL, Russell SM, Greenberg S, et al. A direct growth effect of growth hormone in rat hindlimb shown by arterial infusion. Am J Physiol 1986;250(3 Pt 1):E231-5
  • Green H, Morikawa M, Nixon T. A dual effector theory of growth-hormone action. Differentiation 1985;29(3):195-8
  • Hazel SJ, Gillespie CM, Moore RJ, et al. Enhanced body growth in uremic rats treated with IGF-I and growth hormone in combination. Kidney Int 1994;46(1):58-68
  • Schmidmaier G, Wildemann B, Heeger J, et al. Improvement of fracture healing by systemic administration of growth hormone and local application of insulin-like growth factor-1 and transforming growth factor-beta1. Bone 2002;31(1):165-72
  • Wang J, Zhou J, Cheng CM, et al. Evidence supporting dual, IGF-I-independent and IGF-I-dependent, roles for GH in promoting longitudinal bone growth. J Endocrinol 2004;180(2):247-55
  • Morel G, Chavassieux P, Barenton B, et al. Evidence for a direct effect of growth hormone on osteoblasts. Cell Tissue Res 1993;273(2):279-86
  • Scheven BA, Hamilton NJ, Fakkeldij TM, Duursma SA. Effects of recombinant human insulin-like growth factor I and II (IGF-I/-II) and growth hormone (GH) on the growth of normal adult human osteoblast-like cells and human osteogenic sarcoma cells. Growth Regul 1991;1(4):160-7
  • Lewinson D, Shenzer P, Hochberg Z. Growth hormone involvement in the regulation of tartrate-resistant acid phosphatase-positive cells that are active in cartilage and bone resorption. Calcif Tissue Int 1993;52(3):216-21
  • Nishiyama K, Sugimoto T, Kaji H, et al. Stimulatory effect of growth hormone on bone resorption and osteoclast differentiation. Endocrinology 1996;137(1):35-41
  • Johannsson G, Rosen T, Bosaeus I, et al. Two years of growth hormone (GH) treatment increases bone mineral content and density in hypopituitary patients with adult-onset GH deficiency. J Clin Endocrinol Metab 1996;81(8):2865-73
  • Murphy MG, Bach MA, Plotkin D, et al. Oral administration of the growth hormone secretagogue MK-677 increases markers of bone turnover in healthy and functionally impaired elderly adults. The MK-677 Study Group. J Bone Miner Res 1999;14(7):1182-8
  • Zhao G, Monier-Faugere MC, Langub MC, et al. Targeted overexpression of insulin-like growth factor I to osteoblasts of transgenic mice: increased trabecular bone volume without increased osteoblast proliferation. Endocrinology 2000;141(7):2674-82
  • Tanaka H, Moriwake T, Matsuoka Y, et al. Potential role of rhIGF-I/IGFBP-3 in maintaining skeletal mass in space. Bone 1998;22(5 Suppl):145S-7S
  • Delany AM, Rydziel S, Canalis E. Autocrine down-regulation of collagenase-3 in rat bone cell cultures by insulin-like growth factors. Endocrinology 1996;137(11):4665-70
  • Santhanagopal A, Dixon SJ. Insulin-like growth factor I rapidly enhances acid efflux from osteoblastic cells. Am J Physiol 1999;277(3 Pt 1):E423-32
  • Mochizuki H, Hakeda Y, Wakatsuki N, et al. Insulin-like growth factor-I supports formation and activation of osteoclasts. Endocrinology 1992;131(3):1075-80
  • Langlois JA, Rosen CJ, Visser M, et al. Association between insulin-like growth factor I and bone mineral density in older women and men: the Framingham Heart Study. J Clin Endocrinol Metab 1998;83(12):4257-62
  • Qutob S, Dixon SJ, Wilson JX. Insulin stimulates vitamin C recycling and ascorbate accumulation in osteoblastic cells. Endocrinology 1998;139(1):51-6
  • Herrington J, Carter-Su C. Signaling pathways activated by the growth hormone receptor. Trends Endocrinol Metab 2001;12(6):252-7
  • Werther GA, Haynes K, Edmonson S, et al. Identification of growth hormone receptors on human growth plate chondrocytes. Acta Paediatr Suppl 1993;82(Suppl 391):50-3
  • Barnard R, Ng KW, Martin TJ, Waters MJ. Growth hormone (GH) receptors in clonal osteoblast-like cells mediate a mitogenic response to GH. Endocrinology 1991;128(3):1459-64
  • Xiao G, Gopalakrishnan R, Jiang D, et al. Bone morphogenetic proteins, extracellular matrix, and mitogen-activated protein kinase signaling pathways are required for osteoblast-specific gene expression and differentiation in MC3T3-E1 cells. J Bone Miner Res 2002;17(1):101-10
  • Ghosh-Choudhury N, Abboud SL, Nishimura R, et al. Requirement of BMP-2-induced phosphatidylinositol 3-kinase and Akt serine/threonine kinase in osteoblast differentiation and Smad-dependent BMP-2 gene transcription. J Biol Chem 2002;277(36):33361-8
  • Ishisaki A, Tokuda H, Yoshida M, et al. Activation of p38 mitogen-activated protein kinase mediates thyroid hormone-stimulated osteocalcin synthesis in osteoblasts. Mol Cell Endocrinol 2004;214(1-2):189-95
  • Wu JB, Fong YC, Tsai HY, et al. Naringin-induced bone morphogenetic protein-2 expression via PI3K, Akt, c-Fos/c-Jun and AP-1 pathway in osteoblasts. Eur J Pharmacol 2008;588(2-3):333-41
  • Tsialogiannis E, Polyzois I, Oak Tang Q, et al. Targeting bone morphogenetic protein antagonists: in vitro and in vivo evidence of their role in bone metabolism. Expert Opin Ther Targets 2009;13(1):123-37
  • Herrington J, Smit LS, Schwartz J, Carter-Su C. The role of STAT proteins in growth hormone signaling. Oncogene 2000;19(21):2585-97
  • Cesena TI, Cui TX, Piwien-Pilipuk G, et al. Multiple mechanisms of growth hormone-regulated gene transcription. Mol Genet Metab 2007;90(2):126-33
  • Love DW, Whatmore AJ, Clayton PE, Silva CM. Growth hormone stimulation of the mitogen-activated protein kinase pathway is cell type specific. Endocrinology 1998;139(4):1965-71
  • Edens A, Talamantes F. Alternative processing of growth hormone receptor transcripts. Endocr Rev 1998;19(5):559-82
  • Zhang Y, Jiang J, Black RA, et al. Tumor necrosis factor-alpha converting enzyme (TACE) is a growth hormone binding protein (GHBP) sheddase: the metalloprotease TACE/ADAM-17 is critical for (PMA-induced) GH receptor proteolysis and GHBP generation. Endocrinology 2000;141(12):4342-8
  • Schantl JA, Roza M, Van Kerkhof P, Strous GJ. The growth hormone receptor interacts with its sheddase, the tumour necrosis factor-alpha-converting enzyme (TACE). Biochem J 2004;377(Pt 2):379-84
  • Fisker S. Physiology and pathophysiology of growth hormone-binding protein: methodological and clinical aspects. Growth Horm IGF Res 2006;16(1):1-28
  • Bichell DP, Kikuchi K, Rotwein P. Growth hormone rapidly activates insulin-like growth factor I gene transcription in vivo. Mol Endocrinol 1992;6(11):1899-908
  • Woelfle J, Chia DJ, Massart-Schlesinger MB, et al. Molecular physiology, pathology, and regulation of the growth hormone/insulin-like growth factor-I system. Pediatr Nephrol 2005;20(3):295-302
  • Sims NA, Clement-Lacroix P, Da Ponte F, et al. Bone homeostasis in growth hormone receptor-null mice is restored by IGF-I but independent of Stat5. J Clin Invest 2000;106(9):1095-103
  • Wei S, Tanaka H, Kubo T, et al. Growth hormone increases serum 1,25-dihydroxyvitamin D levels and decreases 24,25-dihydroxyvitamin D levels in children with growth hormone deficiency. Eur J Endocrinol 1997;136(1):45-51
  • Kurose H, Yamaoka K, Okada S, et al. 1,25-Dihydroxyvitamin D3 [1,25-(OH)2D3] increases insulin-like growth factor I (IGF-I) receptors in clonal osteoblastic cells. Study on interaction of IGF-I and 1,25-(OH)2D3. Endocrinology 1990;126(4):2088-94
  • LeRoith D, Werner H, Beitner-Johnson D, Roberts CT Jr. Molecular and cellular aspects of the insulin-like growth factor I receptor. Endocr Rev 1995;16(2):143-63
  • Denley A, Cosgrove LJ, Booker GW, et al. Molecular interactions of the IGF system. Cytokine Growth Factor Rev 2005;16(4-5):421-39
  • Lowenstein EJ, Daly RJ, Batzer AG, et al. The SH2 and SH3 domain-containing protein GRB2 links receptor tyrosine kinases to ras signaling. Cell 1992;70(3):431-42
  • Xiao S, Rose DW, Sasaoka T, et al. Syp (SH-PTP2) is a positive mediator of growth factor-stimulated mitogenic signal transduction. J Biol Chem 1994;269(33):21244-8
  • Li W, Nishimura R, Kashishian A, et al. A new function for a phosphotyrosine phosphatase: linking GRB2-Sos to a receptor tyrosine kinase. Mol Cell Biol 1994;14(1):509-17
  • Fatayerji D, Mawer EB, Eastell R. The role of insulin-like growth factor I in age-related changes in calcium homeostasis in men. J Clin Endocrinol Metab 2000;85(12):4657-62
  • Playford MP, Bicknell D, Bodmer WF, Macaulay VM. Insulin-like growth factor 1 regulates the location, stability, and transcriptional activity of beta-catenin. Proc Natl Acad Sci USA 2000;97(22):12103-8
  • Krishnan V, Bryant HU, Macdougald OA. Regulation of bone mass by Wnt signaling. J Clin Invest 2006;116(5):1202-9
  • Chen J, Wu A, Sun H, et al. Functional significance of type 1 insulin-like growth factor-mediated nuclear translocation of the insulin receptor substrate-1 and beta-catenin. J Biol Chem 2005;280(33):29912-20
  • Borromeo V, Bramani S, Holder AT, et al. Growth hormone stimulates the secretion of insulin-like growth factor binding protein-2 (IGFBP-2) by monolayer cultures of sheep costal growth plate chondrocytes. Mol Cell Biochem 1996;162(2):145-51
  • Feyen JH, Evans DB, Binkert C, et al. Recombinant human [Cys281]insulin-like growth factor-binding protein 2 inhibits both basal and insulin-like growth factor I-stimulated proliferation and collagen synthesis in fetal rat calvariae. J Biol Chem 1991;266(29):19469-74
  • Palermo C, Manduca P, Gazzerro E, et al. Potentiating role of IGFBP-2 on IGF-II-stimulated alkaline phosphatase activity in differentiating osteoblasts. Am J Physiol Endocrinol Metab 2004;286(4):E648-57
  • Ono T, Kanzaki S, Seino Y, et al. Growth hormone (GH) treatment of GH-deficient children increases serum levels of insulin-like growth factors (IGFs), IGF-binding protein-3 and -5, and bone alkaline phosphatase isoenzyme. J Clin Endocrinol Metab 1996;81(6):2111-6
  • Bagi CM, DeLeon E, Brommage R, et al. Systemic administration of rhIGF-I or rhIGF-I/IGFBP-3 increases cortical bone and lean body mass in ovariectomized rats. Bone 1995;16(4 Suppl):263S-9S
  • Ricort JM, Binoux M. Insulin-like growth factor (IGF) binding protein-3 inhibits type 1 IGF receptor activation independently of its IGF binding affinity. Endocrinology 2001;142(1):108-13
  • Longobardi L, Torello M, Buckway C, et al. A novel insulin-like growth factor (IGF)-independent role for IGF binding protein-3 in mesenchymal chondroprogenitor cell apoptosis. Endocrinology 2003;144(5):1695-702
  • Baxter RC, Dai J. Purification and characterization of the acid-labile subunit of rat serum insulin-like growth factor binding protein complex. Endocrinology 1994;134(2):848-52
  • Ooi GT, Cohen FJ, Tseng LY, et al. Growth hormone stimulates transcription of the gene encoding the acid-labile subunit (ALS) of the circulating insulin-like growth factor-binding protein complex and ALS promoter activity in rat liver. Mol Endocrinol 1997;11(7):997-1007
  • Boisclair YR, Rhoads RP, Ueki I, et al. The acid-labile subunit (ALS) of the 150 kDa IGF-binding protein complex: an important but forgotten component of the circulating IGF system. J Endocrinol 2001;170(1):63-70
  • Mohan S, Nakao Y, Honda Y, et al. Studies on the mechanisms by which insulin-like growth factor (IGF) binding protein-4 (IGFBP-4) and IGFBP-5 modulate IGF actions in bone cells. J Biol Chem 1995;270(35):20424-31
  • Kanzaki S, Hilliker S, Baylink DJ, Mohan S. Evidence that human bone cells in culture produce insulin-like growth factor-binding protein-4 and -5 proteases. Endocrinology 1994;134(1):383-92
  • Miyakoshi N, Qin X, Kasukawa Y, et al. Systemic administration of insulin-like growth factor (IGF)-binding protein-4 (IGFBP-4) increases bone formation parameters in mice by increasing IGF bioavailability via an IGFBP-4 protease-dependent mechanism. Endocrinology 2001;142(6):2641-8
  • Lawrence JB, Oxvig C, Overgaard MT, et al. The insulin-like growth factor (IGF)-dependent IGF binding protein-4 protease secreted by human fibroblasts is pregnancy-associated plasma protein-A. Proc Natl Acad Sci USA 1999;96(6):3149-53
  • McCarthy TL, Casinghino S, Centrella M, Canalis E. Complex pattern of insulin-like growth factor binding protein expression in primary rat osteoblast enriched cultures: regulation by prostaglandin E2, growth hormone, and the insulin-like growth factors. J Cell Physiol 1994;160(1):163-75
  • Conover CA, Kiefer MC. Regulation and biological effect of endogenous insulin-like growth factor binding protein-5 in human osteoblastic cells. J Clin Endocrinol Metab 1993;76(5):1153-9
  • Bautista CM, Baylink DJ, Mohan S. Isolation of a novel insulin-like growth factor (IGF) binding protein from human bone: a potential candidate for fixing IGF-II in human bone. Biochem Biophys Res Commun 1991;176(2):756-63
  • Andress DL, Birnbaum RS. Human osteoblast-derived insulin-like growth factor (IGF) binding protein-5 stimulates osteoblast mitogenesis and potentiates IGF action. J Biol Chem 1992;267(31):22467-72
  • Bach LA. IGFBP-6 five years on; not so ‘forgotten’? Growth Horm IGF Res 2005;15(3):185-92
  • Slootweg MC, van Buul-Offers SC, Herrmann-Erlee MP, Duursma SA. Direct stimulatory effect of growth hormone on DNA synthesis of fetal chicken osteoblasts in culture. Acta Endocrinologica 1988;118(2):294-300
  • Slootweg MC, van Buul-Offers SC, Herrmann-Erlee MP, et al. Growth hormone is mitogenic for fetal mouse osteoblasts but not for undifferentiated bone cells. J Endocrinol 1988;116(3):R11-3
  • Argetsinger LS, Campbell GS, Yang X, et al. Identification of JAK2 as a growth hormone receptor-associated tyrosine kinase. Cell 1993;74(2):237-44
  • Gerland K, Bataille-Simoneau N, Basle M, et al. Activation of the Jak/Stat signal transduction pathway in GH-treated rat osteoblast-like cells in culture. Mol Cell Endocrinol 2000;168(1-2):1-9
  • Huang Z, Cheng SL, Slatopolsky E. Sustained activation of the extracellular signal-regulated kinase pathway is required for extracellular calcium stimulation of human osteoblast proliferation. J Biol Chem 2001;276(24):21351-8
  • Lai CF, Chaudhary L, Fausto A, et al. Erk is essential for growth, differentiation, integrin expression, and cell function in human osteoblastic cells. J Biol Chem 2001;276(17):14443-50
  • DiGirolamo DJ, Mukherjee A, Fulzele K, et al. Mode of growth hormone action in osteoblasts. J Biol Chem 2007;282(43):31666-74
  • Crippa GE, Beloti MM, Cardoso CR, et al. Effect of growth hormone on in vitro osteogenesis and gene expression of human osteoblastic cells is donor-age-dependent. J Cell Biochem 2008;104(2):369-76
  • Mohan S, Richman C, Guo R, et al. Insulin-like growth factor regulates peak bone mineral density in mice by both growth hormone-dependent and -independent mechanisms. Endocrinology 2003;144(3):929-36
  • Zhang M, Xuan S, Bouxsein ML, et al. Osteoblast-specific knockout of the insulin-like growth factor (IGF) receptor gene reveals an essential role of IGF signaling in bone matrix mineralization. J Biol Chem 2002;277(46):44005-12
  • Canalis E, Lian JB. Effects of bone associated growth factors on DNA, collagen and osteocalcin synthesis in cultured fetal rat calvariae. Bone 1988;9(4):243-6
  • Canalis E. Effect of insulinlike growth factor I on DNA and protein synthesis in cultured rat calvaria. J Clin Invest 1980;66(4):709-19
  • McCarthy TL, Centrella M, Canalis E. Regulatory effects of insulin-like growth factors I and II on bone collagen synthesis in rat calvarial cultures. Endocrinology 1989;124(1):301-9
  • Canalis E, Rydziel S, Delany AM, et al. Insulin-like growth factors inhibit interstitial collagenase synthesis in bone cell cultures. Endocrinology 1995;136(4):1348-54
  • Farley JR, Stilt-Coffing B. Apoptosis may determine the release of skeletal alkaline phosphatase activity from human osteoblast-line cells. Calcif Tissue Int 2001;68(1):43-52
  • Thomas T, Gori F, Spelsberg TC, et al. Response of bipotential human marrow stromal cells to insulin-like growth factors: effect on binding protein production, proliferation, and commitment to osteoblasts and adipocytes. Endocrinology 1999;140(11):5036-44
  • Lee MH, Kim YJ, Kim HJ, et al. BMP-2-induced Runx2 expression is mediated by Dlx5, and TGF-beta 1 opposes the BMP-2-induced osteoblast differentiation by suppression of Dlx5 expression. J Biol Chem 2003;278(36):34387-94
  • Komori T. Runx2, a multifunctional transcription factor in skeletal development. J Cell Biochem 2002;87(1):1-8
  • Nakashima K, Zhou X, Kunkel G, et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 2002;108(1):17-29
  • Scheid MP, Woodgett JR. PKB/AKT: functional insights from genetic models. Nat Rev 2001;2(10):760-8
  • Fujita T, Azuma Y, Fukuyama R, et al. Runx2 induces osteoblast and chondrocyte differentiation and enhances their migration by coupling with PI3K-Akt signaling. J Cell Biol 2004;166(1):85-95
  • Celil AB, Campbell PG. BMP-2 and insulin-like growth factor-I mediate Osterix (Osx) expression in human mesenchymal stem cells via the MAPK and protein kinase D signaling pathways. J Biol Chem 2005;280(36):31353-9
  • Ziros PG, Georgakopoulos T, Habeos I, et al. Growth hormone attenuates the transcriptional activity of Runx2 by facilitating its physical association with Stat3beta. J Bone Miner Res 2004;19(11):1892-904
  • Guicheux J, Heymann D, Rousselle AV, et al. Growth hormone stimulatory effects on osteoclastic resorption are partly mediated by insulin-like growth factor I: an in vitro study. Bone 1998;22(1):25-31
  • Fiorelli G, Formigli L, Zecchi Orlandini S, et al. Characterization and function of the receptor for IGF-I in human preosteoclastic cells. Bone 1996;18(3):269-76
  • Hill PA, Reynolds JJ, Meikle MC. Osteoblasts mediate insulin-like growth factor-I and -II stimulation of osteoclast formation and function. Endocrinology 1995;136(1):124-31
  • Jonsson KB, Wiberg K, Ljunghall S, Ljunggren O. Insulin-like growth factor I does not stimulate bone resorption in cultured neonatal mouse calvarial bones. Calcif Tissue Int 1996;59(5):366-70
  • Burgess TL, Qian Y, Kaufman S, et al. The ligand for osteoprotegerin (OPGL) directly activates mature osteoclasts. J Cell Biol 1999;145(3):527-38
  • Hofbauer LC, Khosla S, Dunstan CR, et al. The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption. J Bone Miner Res 2000;15(1):2-12
  • Rubin J, Ackert-Bicknell CL, Zhu L, et al. IGF-I regulates osteoprotegerin (OPG) and receptor activator of nuclear factor-kappaB ligand in vitro and OPG in vivo. J Clin Endocr Metab 2002;87(9):4273-9
  • Mrak E, Villa I, Lanzi R, et al. Growth hormone stimulates osteoprotegerin expression and secretion in human osteoblast-like cells. J Endocrinol 2007;192(3):639-45
  • Koskinen EV. The repair of experimental fractures under the action of growth hormone, thyrotropin and cortisone. A tissue analytic, roentgenologic and autoradiographic study. Ann Chir Gynaecol Fenn Suppl 1959;48(90):1-48
  • Bail HJ, Raschke MJ, Kolbeck S, et al. Recombinant species-specific growth hormone increases hard callus formation in distraction osteogenesis. Bone 2002;30(1):117-24
  • Kolbeck S, Bail H, Schmidmaier G, et al. Homologous growth hormone accelerates bone healing: a biomechanical and histological study. Bone 2003;33(4):628-37
  • Raschke M, Kolbeck S, Bail H, et al. Homologous growth hormone accelerates healing of segmental bone defects. Bone 2001;29(4):368-73
  • Theyse LF, Oosterlaken-Dijksterhuis MA, van Doorn J, et al. Growth hormone stimulates bone healing in a critical-sized bone defect model. Clin Orthop Relat Res 2006;446:259-67
  • Nielsen HM, Bak B, Jorgensen PH, Andreassen TT. Growth hormone promotes healing of tibial fractures in the rat. Acta Orthop Scand 1991;62(3):244-7
  • Bak B, Jorgensen PH, Andreassen TT. The stimulating effect of growth hormone on fracture healing is dependent on onset and duration of administration. Clin Orthop Relat Res 1991;(264):295-301
  • Andreassen TT, Oxlund H. Local anabolic effects of growth hormone on intact bone and healing fractures in rats. Calcif Tissue Int 2003;73(3):258-64
  • Bak B, Andreassen TT. The effect of growth hormone on fracture healing in old rats. Bone 1991;12(3):151-4
  • Bak B, Jorgensen PH, Andreassen TT. Dose response of growth hormone on fracture healing in the rat. Acta Orthop Scand 1990;61(1):54-7
  • Guicheux J, Gauthier O, Aguado E, et al. Human growth hormone locally released in bone sites by calcium-phosphate biomaterial stimulates ceramic bone substitution without systemic effects: a rabbit study. J Bone Miner Res 1998;13(4):739-48
  • Hedner E, Linde A, Nilsson A. Systemically and locally administered growth hormone stimulates bone healing in combination with osteopromotive membranes: an experimental study in rats. J Bone Miner Res 1996;11(12):1952-60
  • Schlechter NL, Russell SM, Spencer EM, Nicoll CS. Evidence suggesting that the direct growth-promoting effect of growth hormone on cartilage in vivo is mediated by local production of somatomedin. Proc Natl Acad Sci USA 1986;83(20):7932-4
  • Steinbrech DS, Mehrara BJ, Rowe NM, et al. Gene expression of insulin-like growth factors I and II in rat membranous osteotomy healing. Ann Plast Surg 1999;42(5):481-7
  • Edwall D, Prisell PT, Levinovitz A, et al. Expression of insulin-like growth factor I messenger ribonucleic acid in regenerating bone after fracture: influence of indomethacin. J Bone Miner Res 1992;7(2):207-13
  • Mosekilde L, Bak B. The effects of growth hormone on fracture healing in rats: a histological description. Bone 1993;14(1):19-27
  • Carpenter JE, Hipp JA, Gerhart TN, et al. Failure of growth hormone to alter the biomechanics of fracture-healing in a rabbit model. J Bone Joint Surg Am 1992;74(3):359-67
  • Northmore-Ball MD, Wood MR, Meggitt BF. A biomechanical study of the effects of growth hormone in experimental fracture healing. J Bone Joint Surg Br 1980;62(3):391-6
  • Laftman P, Holmstrom T, Kairento AL, et al. No effect of growth hormone on recovery of load-protected bone. Cortical bone mass and strength studied in rabbits. Acta Orthop Scand 1988;59(1):24-8
  • Herold HZ, Hurvitz A, Tadmor A. The effect of growth hormone on the healing of experimental bone defects. Acta Orthop Scand 1971;42(5):377-84
  • Harris JM 3rd, Bean DA, Banks HH. Effect of phosphate supplementation, thyrocalcitonin, and growth hormone on strength of fracture healing. Surg Forum 1975;26:519-21
  • Misol S, Samaan N, Ponseti IV. Growth hormone in delayed fracture union. Clin Orthop Relat R 1971;74:206-8
  • Weiss S, Henle P, Bidlingmaier M, et al. Systemic response of the GH/IGF-I axis in timely versus delayed fracture healing. Growth Horm IGF Res 2008;18(3):205-12
  • Lindholm RV, Koskinen EV, Puranen J, et al. Human growth hormone in the treatment of fresh fractures. Horm Metab Res 1977;9(3):245-6
  • Koskinen EV, Nieminen RA, Lindholm RV, et al. Human growth hormone in bone regeneration of non-healing fractures. Calcif Tissue Res 1977;22(Suppl):521-3
  • Boonen S, Rosen C, Bouillon R, et al. Musculoskeletal effects of the recombinant human IGF-I/IGF binding protein-3 complex in osteoporotic patients with proximal femoral fracture: a double-blind, placebo-controlled pilot study. J Clin Endocrinol Metab 2002;87(4):1593-9
  • Hedstrom M, Saaf M, Brosjo E, et al. Positive effects of short-term growth hormone treatment on lean body mass and BMC after a hip fracture: a double-blind placebo-controlled pilot study in 20 patients. Acta Orthop Scand 2004;75(4):394-401
  • Van der Lely AJ, Lamberts SW, Jauch KW, et al. Use of human GH in elderly patients with accidental hip fracture. Eur J Endocrinol 2000;143(5):585-92
  • Weissberger AJ, Anastasiadis AD, Sturgess I, et al. Recombinant human growth hormone treatment in elderly patients undergoing elective total hip replacement. Clin Endocrinol (Oxf) 2003;58(1):99-107
  • Yeo AL, Levy D, Martin FC, et al. Frailty and the biochemical effects of recombinant human growth hormone in women after surgery for hip fracture. Growth Horm IGF Res 2003;13(6):361-70
  • Raschke M, Rasmussen MH, Govender S, et al. Effects of growth hormone in patients with tibial fracture: a randomised, double-blind, placebo-controlled clinical trial. Eur J Endocrinol 2007;156(3):341-51
  • Takala J, Ruokonen E, Webster NR, et al. Increased mortality associated with growth hormone treatment in critically ill adults. N Engl J Med 1999;341(11):785-92
  • Bach MA, Rockwood K, Zetterberg C, et al. The effects of MK-0677, an oral growth hormone secretagogue, in patients with hip fracture. J Am Geriatr Soc 2004;52(4):516-23
  • Bak B, Jorgensen PH, Andreassen TT. Increased mechanical strength of healing rat tibial fractures treated with biosynthetic human growth hormone. Bone 1990;11(4):233-9
  • Golde DW, Bersch N, Li CH. Growth hormone: species-specific stimulation of erythropoiesis in vitro. Science 1977;196(4294):1112-3
  • Secchi C, Borromeo V. Structure and function of bovine growth hormone. Bovine growth hormone as an experimental model for studies of protein-protein interactions. J Chromatogr B Biomed Sci Appl 1997;688(2):161-77
  • Behncken SN, Rowlinson SW, Rowland JE, et al. Aspartate 171 is the major primate-specific determinant of human growth hormone. Engineering porcine growth hormone to activate the human receptor. J Biol Chem 1997;272(43):27077-83
  • Souza SC, Frick GP, Wang X, et al. A single arginine residue determines species specificity of the human growth hormone receptor. Proc Natl Acad Sci USA 1995;92(4):959-63
  • van Herpen H, Rijnberk A, Mol JA. Production of antibodies to biosynthetic human growth hormone in the dog. Vet Rec 1994;134(7):171
  • Amit T, Youdim MB, Hochberg Z. Clinical review 112: does serum growth hormone (GH) binding protein reflect human GH receptor function? J Clin Endocrinol Metab 2000;85(3):927-32
  • Einhorn TA. The cell and molecular biology of fracture healing. Clin Orthop Relat Res 1998;(355 Suppl):S7-21
  • Tsiridis E, Upadhyay N, Giannoudis P. Molecular aspects of fracture healing: which are the important molecules? Injury 2007;38(Suppl 1):S11-25
  • Li H, Bartold PM, Zhang CZ, et al. Growth hormone and insulin-like growth factor I induce bone morphogenetic proteins 2 and 4: a mediator role in bone and tooth formation? Endocrinology 1998;139(9):3855-62
  • Jansson JO, Albertsson-Wikland K, Eden S, et al. Effect of frequency of growth hormone administration on longitudinal bone growth and body weight in hypophysectomized rats. Acta Physiol Scand 1982;114(2):261-5
  • Clark RG, Jansson JO, Isaksson O, Robinson IC. Intravenous growth hormone: growth responses to patterned infusions in hypophysectomized rats. J Endocrinol 1985;104(1):53-61
  • Critical evaluation of the safety of recombinant human growth hormone administration: statement from the Growth Hormone Research Society. J Clin Endocr Metab 2001;86(5):1868-70
  • Carroll PV, Van den Berghe G. Safety aspects of pharmacological GH therapy in adults. Growth Horm IGF Res 2001;11(3):166-72
  • Consensus guidelines for the diagnosis and treatment of adults with growth hormone deficiency: summary statement of the Growth Hormone Research Society Workshop on Adult Growth Hormone Deficiency. J Clin Endocr Metab 1998;83(2):379-81
  • Underwood LE, Attie KM, Baptista J. Growth hormone (GH) dose-response in young adults with childhood-onset GH deficiency: a two-year, multicenter, multiple-dose, placebo-controlled study. J Clin Endocr Metab 2003;88(11):5273-80

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.