242
Views
20
CrossRef citations to date
0
Altmetric
Reviews

An overview of investigational antiapoptotic drugs with potential application for the treatment of neurodegenerative disorders

, PhD, , , , , & show all
Pages 587-604 | Published online: 19 Apr 2010

Bibliography

  • Middleton LE, Yaffe K. Promising strategies for the prevention of dementia. Arch Neurol 2009;66:1210-5
  • Ribe EM, Serrano-Saiz E, Akpan N, Troy CM. Mechanisms of neuronal death in disease: defining the models and the players. Biochem J 2008;415:165-82
  • Caroppi P, Sinibaldi F, Fiorucci L, Santucci R. Apoptosis and human diseases: mitochondrion damage and lethal role of released cytochrome C as proapoptotic protein. Curr Med Chem 2009;16:4058-65
  • Neymotin A, Petri S, Calingasan NY, Lenalidomide (Revlimid) administration at symptom onset is neuroprotective in a mouse model of amyotrophic lateral sclerosis. Exp Neurol 2009;220:191-7
  • Alley GM, Bailey JA, Chen D, Memantine lowers amyloid-beta peptide levels in neuronal cultures and in APP/PS1 transgenic mice. J Neurosci Res 2010;88:143-54
  • Lu PH, Edland SD, Teng E, ; Alzheimer's Disease Cooperative Study Group. Donepezil delays progression to AD in MCI subjects with depressive symptoms. Neurology 2009;72:2115-21
  • Lipton SA. Paradigm shift in neuroprotection by NMDA receptor blockade: memantine and beyond. Nat Rev Drug Discov 2006;5:160-70
  • Van der Schyf CJ, Gal S, Geldenhuys WJ, Youdim MB. Multifunctional neuroprotective drugs targeting monoamine oxidase inhibition, iron chelation, adenosine receptors, and cholinergic and glutamatergic action for neurodegenerative diseases. Expert Opin Investig Drugs 2006;15:873-86
  • Bassil N, Grossberg GT. Novel regimens and delivery systems in the pharmacological treatment of Alzheimer's disease. CNS Drugs 2009;23:293-307
  • Aggarwal S, Cudkowicz M. ALS drug development: reflections from the past and a way forward. Neurotherapeutics 2008;5:516-27
  • Shah RS, Lee HG, Xiongwei Z, Current approaches in the treatment of Alzheimer's disease. Biomed Pharmacother 2008;62:199-207
  • Galluzzi L, Blomgren K, Kroemer G. Mitochondrial membrane permeabilization in neuronal injury. Nat Rev Neurosci 2009;10:481-94
  • Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization in cell death. Physiol Rev 2007;87:99-163
  • Enguita M, DeGregorio-Rocasolano N, Ferrer I, Neuronal pentraxin 1 contributes to the neuronal damage evoked by amyloid-beta and is overexpressed in dystrophic neurites in Alzheimer's brain. J Neurosci 2006;26(49):12735-47
  • Ferrer I. Differential expression of phosphorylated translation initiation factor 2 alpha in Alzheimer's disease and Creutzfeldt-Jakob's disease. Neuropathol Appl Neurobiol 2002;28:441-51
  • Raina AK, Hochman A, Zhu X, Abortive apoptosis in Alzheimer's disease. Acta Neuropathol 2001;101:305-10
  • Rohn TT, Head E. Caspase activation in Alzheimer's disease: early to rise and late to bed. Rev Neurosci 2008;19:383-93
  • Raina AK, Zhu X, Shimohama S, Tipping the apoptotic balance in Alzheimer's disease: the abortosis concept. Cell Biochem Biophys 2003;39:249-55
  • Gastard MC, Troncoso JC, Koliatsos VE. Caspase activation in the limbic cortex of subjects with early Alzheimer's disease. Ann Neurol 2003;54:393-8
  • Wang BS, Wang H, Wei ZH, Efficacy and safety of natural acetylcholinesterase inhibitor huperzine A in the treatment of Alzheimer's disease: an updated meta-analysis. J Neural Transm 2009;116:457-65
  • Gao X, Zheng CY, Yang L, Huperzine A protects isolated rat brain mitochondria against beta-amyloid peptide. Free Radic Biol Med 2009;46:1454-62
  • Desilets AR, Gickas JJ, Dunican KC. Role of huperzine a in the treatment of Alzheimer's disease. Ann Pharmacother 2009;43:514-18
  • Zhou J, Tang XC. Huperzine A attenuates apoptosis and mitochondria-dependent caspase-3 in rat cortical neurons. FEBS Lett 2002;526:21-5
  • Xiao XQ, Zhang HY, Tang XC. Huperzine A attenuates amyloid beta-peptide fragment 25-35-induced apoptosis in rat cortical neurons via inhibiting reactive oxygen species formation and caspase-3 activation. J Neurosci Res 2002;67:30-6
  • Wang R, Xiao XQ, Tang XC. Huperzine A attenuates hydrogen peroxide-induced apoptosis by regulating expression of apoptosis-related genes in rat PC12 cells. Neuroreport 2001;12:2629-34
  • Wang R, Zhang HY, Tang XC. Huperzine A attenuates cognitive dysfunction and neuronal degeneration caused by beta-amyloid protein-(1-40) in rat. Eur J Pharmacol 2001;421:149-56
  • Camins A, Verdaguer E, Junyent F, Potential mechanisms involved in the prevention of neurodegenerative diseases by lithium. CNS Neurosci Ther 2009;15:333-44
  • Wang W, Yang Y, Ying C, Inhibition of glycogen synthase kinase-3beta protects dopaminergic neurons from MPTP toxicity. Neuropharmacology 2007;52:1678-84
  • Koh SH, Kim Y, Kim HY, Inhibition of glycogen synthase kinase-3 suppresses the onset of symptoms and disease progression of G93A-SOD1 mouse model of ALS. Exp Neurol 2007;205:336-46
  • Hampel H, Ewers M, Bürger K, Lithium trial in Alzheimer's disease: a randomized, single-blind, placebo-controlled, multicenter 10-week study. J Clin Psychiatry 2009;70:922-31
  • Leyhe T, Eschweiler GW, Stransky E, In this study lithium treatment neither inhibits GSK-3 activity nor reduces hyperphosphorylation of tau protein in human brain. Increase of BDNF serum concentration in lithium treated patients with early Alzheimer's disease. J Alzheimers Dis 2009;16:649-56
  • Fornai F, Longone P, Cafaro L, Lithium delays progression of amyotrophic lateral sclerosis. Proc Natl Acad Sci USA 2008;105:2052-7
  • Bedlack RS, Maragakis N, Heiman-Patterson T. Lithium may slow progression of amyotrophic lateral sclerosis, but further study is needed. Proc Natl Acad Sci USA 2008;105:E17
  • Nunes PV, Forlenza OV, Gattaz WF. Lithium and risk for Alzheimer's disease in elderly patients with bipolar disorder. Br J Psychiatry 2007;190:359-60
  • Selenica ML, Jensen HS, Larsen AK, Efficacy of small-molecule glycogen synthase kinase-3 inhibitors in the postnatal rat model of tau hyperphosphorylation. Br J Pharmacol 2007;152:959-79
  • Bhat R, Xue Y, Berg S, Structural insights and biological effects of glycogen synthase kinase 3-specific inhibitor AR-A014418. J Biol Chem 2003;278:45937-45
  • Hirohata M, Ono K, Naiki H, Yamada M. Non-steroidal anti-inflammatory drugs have anti-amyloidogenic effects for Alzheimer's beta-amyloid fibrils in vitro. Neuropharmacology 2005;49:1088-99
  • Sanz-Blasco S, Valero RA, Rodríguez-Crespo I, Mitochondrial Ca2+ overload underlies Abeta oligomers neurotoxicity providing an unexpected mechanism of neuroprotection by NSAIDs. PLoS One 2008;3:e2718
  • Van Groen T, Kadish I. Transgenic AD model mice, effects of potential anti-AD treatments on inflammation and pathology. Brain Res Brain Res Rev 2005;48:370-8
  • Imbimbo BP. The potential role of non-steroidal anti-inflammatory drugs in treating Alzheimer's disease. Expert Opin Investig Drugs 2004;13:1469-81
  • Pasqualetti P, Bonomini C, Dal Forno G, A randomized controlled study on effects of ibuprofen on cognitive progression of Alzheimer's disease. Aging Clin Exp Res 2009;21:102-10
  • Galasko DR, Graff-Radford N, May S, Safety, tolerability, pharmacokinetics, and Abeta levels after short-term administration of R-flurbiprofen in healthy elderly individuals. Alzheimer Dis Assoc Disord 2007;21:292-9
  • Greco SJ, Sarkar S, Casadesus G, Leptin inhibits glycogen synthase kinase-3beta to prevent tau phosphorylation in neuronal cells. Neurosci Lett 2009;455:191-4
  • Tezapsidis N, Johnston JM, Smith MA, Leptin: a novel therapeutic strategy for Alzheimer's disease. J Alzheimers Dis 2009;16:731-40
  • Greco SJ, Sarkar S, Johnston JM, Leptin reduces Alzheimer's disease-related tau phosphorylation in neuronal cells. Biochem Biophys Res Commun 2008;376:536-41
  • Lieb W, Beiser AS, Vasan RS, Association of plasma leptin levels with incident Alzheimer disease and MRI measures of brain aging. JAMA 2009;302:2565-72
  • Greco SJ, Bryan KJ, Sarkar S, Chronic leptin supplementation ameliorates pathology and improves cognitive performance in a transgenic mouse model of Alzheimer's disease. J Alzheimers Dis 2010;19(4):1155-67
  • Ramalho RM, Viana RJ, Low WC, Bile acids and apoptosis modulation: an emerging role in experimental Alzheimer's disease. Trends Mol Med 2008;14:54-62
  • Ramalho RM, Borralho PM, Castro RE, Tauroursodeoxycholic acid modulates p53-mediated apoptosis in Alzheimer's disease mutant neuroblastoma cells. J Neurochem 2006;98:1610-8
  • Solá S, Amaral JD, Borralho PM, Functional modulation of nuclear steroid receptors by tauroursodeoxycholic acid reduces amyloid beta-peptide-induced apoptosis. Mol Endocrinol 2006;20:2292-303
  • Rodrigues CM, Sola S, Nan Z, Tauroursodeoxycholic acid reduces apoptosis and protects against neurological injury after acute hemorrhagic stroke in rats. Proc Natl Acad Sci USA 2003;100:6087-92
  • Ramalho RM, Ribeiro PS, Solá S, Inhibition of the E2F-1/p53/Bax pathway by tauroursodeoxycholic acid in amyloid beta-peptide-induced apoptosis of PC12 cells. J Neurochem 2004;90:567-75
  • Cardinali DP, Brusco LI, Liberczuk C, Furio AM. The use of melatonin in Alzheimer's disease. Neuro Endocrinol Lett 2002;23(Suppl 1):20-3
  • Lloret A, Badía MC, Mora NJ, Vitamin E paradox in Alzheimer's disease: it does not prevent loss of cognition and may even be detrimental. J Alzheimers Dis 2009;17:143-9
  • Ramassamy C, Longpre F, Christen Y. Ginkgo biloba extract (EGb 761) in Alzheimer's disease: is there any evidence? Curr Alzheimer Res 2007;4:253-62
  • Aliev G, Obrenovich ME, Reddy VP, Antioxidant therapy in Alzheimer's disease: theory and practice. Mini Rev Med Chem 2008;8:1395-406
  • Wengreen HJ, Munger RG, Corcoran CD, Antioxidant intake and cognitive function of elderly men and women: the Cache County Study. J Nutr Health Aging 2007;11:230-7
  • Hsiung GY, Feldman HH. Pharmacological treatment in moderate-to-severe Alzheimer's disease. Expert Opin Pharmacother 2008;9:2575-82
  • Fu LM, Li JT. A systematic review of single Chinese herbs for Alzheimer's disease treatment. Evid Based Complement Alternat Med 2009
  • Ahlemeyer B, Krieglstein J. Neuroprotective effects of Ginkgo biloba extract. Cell Mol Life Sci 2003;60:1779-92
  • Eckert A, Keil U, Scherping I, Stabilization of mitochondrial membrane potential and improvement of neuronal energy metabolism by Ginkgo biloba extract EGb 761. Ann NY Acad Sci 2005;1056:474-85
  • Massieu L, Morán J, Christen Y. Effect of Ginkgo biloba (EGb 761) on staurosporine-induced neuronal death and caspase activity in cortical cultured neurons. Brain Res 2004;1002:76-85
  • Stackman RW, Eckenstein F, Frei B, Prevention of age-related spatial memory deficits in a transgenic mouse model of Alzheimer's disease by chronic Ginkgo biloba treatment. Exp Neurol 2003;184:510-20
  • Smith JV, Luo Y. Elevation of oxidative free radicals in Alzheimer's disease models can be attenuated by Ginkgo biloba extract EGb 761. J Alzheimers Dis 2003;5:287-300
  • Parsons G. Ginkgo biloba did not prevent dementia or Alzheimer disease in elderly people. Evid Based Nurs 2009;12:56
  • DeKosky ST, Williamson JD, Fitzpatrick AL, ; Ginkgo Evaluation of Memory (GEM) Study Investigators. Ginkgo biloba for prevention of dementia: a randomized controlled trial. JAMA 2008;300:2253-62
  • López A, García JA, Escames G, Melatonin protects the mitochondria from oxidative damage reducing oxygen consumption, membrane potential, and superoxide anion production. J Pineal Res 2009;46:188-98
  • Carretero M, Escames G, López LC, Long-term melatonin administration protects brain mitochondria from aging. J Pineal Res 2009;47:192-200
  • Wang X. The antiapoptotic activity of melatonin in neurodegenerative diseases. CNS Neurosci Ther 2009;15:345-57
  • Weishaupt JH, Bartels C, Pölking E, Reduced oxidative damage in ALS by high-dose enteral melatonin treatment. J Pineal Res 2006;41:313-23
  • Rodríguez MI, Escames G, López LC, Improved mitochondrial function and increased life span after chronic melatonin treatment in senescent prone mice. Exp Gerontol 2008;43:749-56
  • Olcese JM, Cao C, Mori T, Protection against cognitive deficits and markers of neurodegeneration by long-term oral administration of melatonin in a transgenic model of Alzheimer disease. J Pineal Res 2009;47:82-96
  • Furio AM, Brusco LI, Cardinali DP. Possible therapeutic value of melatonin in mild cognitive impairment: a retrospective study. J Pineal Res 2007;43:404-9
  • Baur JA, Sinclair DA. Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 2006;5:493-506
  • Baur JA, Pearson KJ, Price NL, Resveratrol improves health and survival of mice on a high-calorie diet. Nature 2006;444:337-42
  • Pallàs M, Casadesús G, Smith MA, Resveratrol and neurodegenerative diseases: activation of SIRT1 as the potential pathway towards neuroprotection. Curr Neurovasc Res 2009;6:70-81
  • Knutson MD, Leeuwenburgh C. Resveratrol and novel potent activators of SIRT1: effects on aging and age-related diseases. Nutr Rev 2008;66:591-6
  • Orallo F. Trans-resveratrol: a magical elixir of eternal youth? Curr Med Chem 2008;15:1887-98
  • Wang J, Ho L, Zhao Z, Moderate consumption of Cabernet Sauvignon attenuates Abeta neuropathology in a mouse model of Alzheimer's disease. FASEB J 2006;20:2313-20
  • Kim D, Nguyen MD, Dobbin MM, SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer's disease and amyotrophic lateral sclerosis. EMBO J 2007;26:3169-79
  • Anekonda TS. Resveratrol: a boon for treating Alzheimer's disease? Brain Res Rev 2006;52:316-26
  • Lu KT, Ko MC, Chen BY, Neuroprotective effects of resveratrol on MPTP-induced neuron loss mediated by free radical scavenging. J Agric Food Chem 2008;56:6910-3
  • Alvira D, Yeste-Velasco M, Folch J, Comparative analysis of the effects of resveratrol in two apoptotic models: inhibition of complex I and potassium deprivation in cerebellar neurons. Neuroscience 2007;147:746-56
  • Finberg JP, Lamensdorf I, Commissiong JW, Youdim MBH. Pharmacology and neuroprotective properties of rasagiline. J Neural Transm Suppl 1996;48:95-101
  • Weinstock M, Goren T, Youdim MBH. Development of a novel neuroprotective drug (TV3326) for the treatment of Alzheimer's disease, with cholinesterase and monoamine oxidase inhibitory activities. Drug Dev Res 2000;60:216-22
  • Mandel SA, Sagi Y, Amit T. Rasagiline promotes regeneration of substantia nigra dopaminergic neurons in post-MPTP-induced Parkinsonism via activation of tyrosine kinase receptor signaling pathway. Neurochem Res 2007;32:1694-9
  • Mandel S, Weinreb O, Amit T, Youdim MB. Mechanism of neuroprotective action of the anti-Parkinson drug rasagiline and its derivatives. Brain Res Brain Res Rev 2005;48:379-87
  • Olanow CW, Rascol O, Hauser R, ; ADAGIO Study Investigators. A double-blind, delayed-start trial of rasagiline in Parkinson's disease. N Engl J Med 2009;361:1268-78
  • Beal MF. Mitochondrial dysfunction and oxidative damage in Alzheimer's and Parkinson's diseases and coenzyme Q10 as a potential treatment. J Bioenerg Biomembr 2004;36:381-6
  • Yang X, Yang Y, Li G, Coenzyme Q10 attenuates beta-amyloid pathology in the aged transgenic mice with Alzheimer presenilin 1 mutation. J Mol Neurosci 2008;34:165-71
  • Beal MF, Matthews RT, Tieleman A, Shults CW. Coenzyme Q10 attenuates the 1-methyl-4-phenyl-1,2,3,tetrahydropyridine (MPTP) induced loss of striatal dopamine and dopaminergic axons in aged mice. Brain Res 1998;783:109-14
  • de Bustos F, Molina JA, Jiménez-Jiménez FJ, Serum levels of coenzyme Q10 in patients with Alzheimer's disease. J Neural Transm 2000;107:233-9
  • Shults CW, Flint Beal M, Song D, Fontaine D. Pilot trial of high dosages of coenzyme Q10 in patients with Parkinson's disease. Exp Neurol 2004;188:491-4
  • Muller T, Buttner T, Gholipour AF, Kuhn W. Coenzyme Q10 supplementation provides mild symptomatic benefit in patients with Parkinson's disease. Neurosci Lett 2003;8:201-4
  • Strijks E, Kremer HP, Horstink MW. Q10 therapy in patients with idiopathic Parkinson's disease. Mol Aspects Med 1997;18(Suppl):S237-40
  • Feigin A, Kieburtz K, Como P, Assessment of coenzyme Q10 tolerability in Huntington's disease. Mov Disord 1996;11:321-3
  • Shults CW. Coenzyme Q10 in neurodegenerative diseases. Curr Med Chem 2003;10:1971-21
  • Shults CW, Haas RH, Passov D, Beal MF. Coenzyme Q10 levels correlate with the activities of complexes I and II/III in mitochondria from parkinsonian and nonparkinsonian subjects. Ann Neurol 1997;42:261-4
  • Jenner P, Mori A, Hauser R, Adenosine, adenosine A 2A antagonists, and Parkinson's disease. Parkinsonism Relat Disord 2009;15:406-13
  • Stacy M, Silver D, Mendis T, A 12-week, placebo-controlled study (6002-US-006) of istradefylline in Parkinson disease. Neurology 2008;70:2233-40
  • Cieślak M, Komoszyński M, Wojtczak A. Adenosine A(2A) receptors in Parkinson's disease treatment. Purinergic Signal 2008;4(4):305-12
  • LeWitt PA, Guttman M, Tetrud JW, ; 6002-US-005 Study Group. Adenosine A2A receptor antagonist istradefylline (KW-6002) reduces ‘off’ time in Parkinson's disease: a double-blind, randomized, multicenter clinical trial (6002-US-005). Ann Neurol 2008;63:295-302
  • Fernandez HH, Greeley DR, Zweig RM, ; for the 6002-US-051 Study Group. Istradefylline as monotherapy for Parkinson disease: results of the 6002-US-051 trial. Parkinsonism Relat Disord 2010;16:16-20
  • Domercq M, Matute C. Neuroprotection by tetracyclines. Trends Pharmacol Sci 2004;25:609-12
  • Noble W, Garwood C, Stephenson J, Minocycline reduces the development of abnormal tau species in models of Alzheimer's disease. FASEB J 2009;23:739-50
  • Kim HS, Suh YH. Minocycline and neurodegenerative diseases. Behav Brain Res 2009;196:168-79
  • Choi Y, Kim HS, Shin KY, Minocycline attenuates neuronal cell death and improves cognitive impairment in Alzheimer's disease models. Neuropsychopharmacology 2007;32(11):2393-404
  • Reynolds N. Revisiting safety of minocycline as neuroprotection in Huntington's disease. Mov Disord 2007;22:292
  • NINDS NET-PD Investigators. A randomized, double-blind, futility clinical trial of creatine and minocycline in early Parkinson disease. Neurology 2006;66:664-71
  • Gordon PH, Moore DH, Miller RG, ; Western ALS Study Group. Efficacy of minocycline in patients with amyotrophic lateral sclerosis: a phase III randomised trial. Lancet Neurol 2007;6:1045-53
  • Apostol BL, Simmons DA, Zuccato C, CEP-1347 reduces mutant huntingtin-associated neurotoxicity and restores BDNF levels in R6/2 mice. Mol Cell Neurosci 2008;39:8-20
  • Müller GJ, Geist MA, Veng LM, A role for mixed lineage kinases in granule cell apoptosis induced by cytoskeletal disruption. J Neurochem 2006;96:1242-52
  • Lotharius J, Falsig J, van Beek J, Progressive degeneration of human mesencephalic neuron-derived cells triggered by dopamine-dependent oxidative stress is dependent on the mixed-lineage kinase pathway. J Neurosci 2005;25:6329-42
  • Maroney AC, Glicksman MA, Basma AN, Motoneuron apoptosis is blocked by CEP-1347 (KT 7515), a novel inhibitor of the JNK signaling pathway. J Neurosci 1998;18:104-11
  • Parkinson Study Group. The safety and tolerability of a mixed lineage kinase inhibitor (CEP-1347) in PD. Neurology 2004;62:330-2
  • Troy CM, Rabacchi SA, Xu Z, beta-Amyloid-induced neuronal apoptosis requires c-Jun N-terminal kinase activation. J Neurochem 2001;77:157-64
  • Wang LH, Johnson EM Jr. Mixed lineage kinase inhibitor CEP-1347 fails to delay disability in early Parkinson disease. Neurology 2008;71:462-73
  • Waldmeier P, Bozyczko-Coyne D, Williams M, Vaught JL. Recent clinical failures in Parkinson's disease with apoptosis inhibitors underline the need for a paradigm shift in drug discovery for neurodegenerative diseases. Biochem Pharmacol 2006;72:1197-206
  • Kipnis J, Schwartz M. Dual action of glatiramer acetate (Cop-1) in the treatment of CNS autoimmune and neurodegenerative disorders. Trends Mol Med 2002;8:319-23
  • Lee HG, Casadesus G, Zhu X, Cell cycle re-entry mediated neurodegeneration and its treatment role in the pathogenesis of Alzheimer's disease. Neurochem Int 2009;54:84-8
  • Profenno LA, Jakimovich L, Holt CJ, A randomized, double-blind, placebo-controlled pilot trial of safety and tolerability of two doses of divalproex sodium in outpatients with probable Alzheimer's disease. Curr Alzheimer Res 2005;2:553-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.