161
Views
29
CrossRef citations to date
0
Altmetric
Review

Targeting cellular energy production in neurological disorders

&
Pages 1655-1679 | Published online: 02 Mar 2005

Bibliography

  • LUFT R, IKKOS D, PALMIERI G, ERNSTER L, AFZELIUS B: A case of severe hypermetabolism of nonthyroid origin with a defect in the maintenance of mitochondrial respiratory control: a correlated clinical, biochemical, and morphological study. Clin. Invest. (1962) 41:1776–1804.
  • ••A landmark paper that initiated the floodof investigations into the role of mitochondria in diseases of the central and peripheral nervous systems.
  • SIMON DK, JOHNS DR: Mitochondrial disorders: clinical and genetic features. Ann. Rev. Med. (1999) 50:111–127.
  • •An excellent discussion of the pleiotropic phenotypes due to mitochondrial DNA mutations.
  • SIMON DK, UN MT, AHN CH et al: Low mutational burden of individual acquired mitochondrial DNA mutations in brain. Cenomics (2001) 73(1):113–116.
  • STEEGHS K, BENDERS A, OERLEMANS F et al: Altered Ca2+ responses in muscles with combined mitochondrial and cytosolic creatine kinase deficiencies. Cell (1997) 89:93–103.
  • GREEN DR, REED JC: Mitochondria and apoptosis. Science (1998) 281:1309–1312.
  • PENG TI, JOU MJ, SHEU SS, GREENAMYRE JT: Visualization of NMDA receptor-induced mitochondrial calcium accumulation in striatal neurons. Exp. Neurol. (1998) 149:1–12.
  • MCLENNAN HR, DEGLI ESPOSTI M: The contribution of mitochondrial respiratory complexes to the production of reactive oxygenspecies. Bioenerg. Biomembr. (2000) 32(2):153–162.
  • GENOVA ML, VENTURA B, GIULIANO G et al: The site of production of superoxide radical in mitochondrial complex I is not a bound ubisemiquinone but presumably iron-sulfur cluster N2. FEBS Lett (2001) 505(3):364–368.
  • RICHTER C: Do mitochondrial DNA fragments promote cancer and aging? FEBS Lett. (1988) 241(1-2):1–5.
  • CHANCE C, SIES H, BOVERIS A: Hydroperwdde metabolism in mammalian organs. Physiol Rey (1979) 59(3):527–605.
  • DOHERTY TJ, LOUGHEED K, MARKEZ J, TARNOPOLSKY MA: Creatine monohydrate does not increase strength in patients with hereditary neuropathy. Neurology (2001) 57(3):559–560.
  • DERAVE W, EIJNDE BO, HESPEL P: Creatine supplementation in health and disease: what is the evidence for long-term efficacy? Ma Cell. Biochem. (2003) 244(1-2):49–55.
  • WYSS M, KADDURAH-DAOUK R: Creatine and creatinine metabolism. Physiol Rev (2000) 80(3):1107–1213.
  • ••The most thorough published work on thephysiology of Cr and related compounds.
  • GUTHMILLER P, VAN PILSUM JF, BOEN JR, MCGUIRE DM: Cloning and sequencing of rat kidney L-arginine:glycine amidinotransferase. Studies on the mechanism of regulation by growth hormone and creatine. J. Biol. Chem (1994) 269(26):17556–17560.
  • WALKER JB: Creatine: biosynthesis, regulation, and function. Adv. Enzymol. Relat. Areas Ma Biol (1979) 50:177–242.
  • SIPILA I: Inhibition of arginine-glycine amidinotransferase by ornithine. A possible mechanism for the muscular and chorioretinal atrophies in gyrate atrophy of the choroid and retina with hyperornithinemia. Biochim. Biophys. Acta (1980) 613(1):79–84.
  • SANDBERG AA, HECHT HH, TYLER FH: studies in disorders of muscle. X. The site of creatine synthesis in the human. Metabolism (1953) 2:22–29.
  • SORA I, RICHMAN J, SANTORO G et al.: The cloning and expression of a human creatine transporter. Biochem. Biophys. Res. Commun. (1994) 204:419–427.
  • BRAULT JJ, TERJUNG RL: Creatine uptake and creatine transporter expression among rat skeletal muscle fiber types. Am. J. Physiol Cell Physiol (2003) 284(6):C1481–C1489.
  • STEENGE GR, LAMBOURNE J, CASEY A et al: Stimulatory effect of insulin on creatine accumulation in human skeletal muscle. Am. .1 Physiol. (1998) 275:E974–E979.
  • WILLOT CA, YOUNG ME, LEIGHTON B et al.: Creatine uptake in isolated soleus muscle: kinetics and dependence on sodium, but not on insulin. Acta Physiol Scand. (1999) 166(2):99–104.
  • ODOOM JE, KEMP GJ, RADDA GK: The regulation of total creatine content in a myoblast cell line. Mol. Cell. Biochem. (1996) 158(2):179–188.
  • LOIKE JD, ZALUTSKY DL, KABACK E et al.: Extracellular creatine regulates creatine transport in rat and human muscle cell. Proc. Nati Acad. Sci. USA (1988) 85:807–811.
  • GUERRERO-ONTIVEROS ML, WALLIMANN T: Creatine supplementation in health and disease. Effects of chronic creatine ingestion in vivo: down-regulation of the expression of creatine transporter isoforms in skeletal muscle. Ma Cell. Biochem. (1998) 184:427–437.
  • TARNOPOLSKY MA, PARISE G, FU MH et al.: Acute and moderate-term creatine monohydrate supplementation does not affect creatine transporter mRNA or protein content in either young or elderly humans. Mol. Cell. Biochem. (2003) 244(1-2):159–166.
  • TRAN TT, DAI W, SARKAR HK: Cyclosporin A inhibits creatine uptake by altering surface expression of the creatine transporter. Biol. Chem. (2000) 275(46):35708–35714.
  • BREIL M, CHARIOT P: Muscle disorders associated with cyclosporine treatment. Muscle Nerve (1999) 22(12):1631–1636.
  • BOGDANIS GC, NEVILL ME, BOOBIS LH, LAKOMY HK: Contribution of phosphocreatine and aerobic metabolism to energy supply during repeated sprint exercise. Appl. Physiol (1996) 80:876–884.
  • BOGDANIS GC, NEVILL ME, BOOBIS LH et al.: Recovery of power output and muscle metabolites following 30 s of maximal sprint cycling in man. Physiol (Lond) (1995) 482:467–480.
  • SAHLIN K, HARRIS RC, HULTMAN E: Resynthesis of creatine phosphate in human muscle after exercise in relation to intramuscular pH and availability of oxygen. Scand. I Clin. Lab. Invest. (1979) 39:551–558.
  • MATTHEWS PM, ALLAIRE C, SHOUBRIDGE EA et al.: ha vivo muscle magnetic resonance spectroscopy in the clinical investigation of mitochondrial disease. Neurology (1991) 41:114–120.
  • RADDA GK, TAYLOR DJ, ARNOLD DL: Investigation of human mitochondrial myopathies by phosphorus magnetic resonance spectroscopy. Biochem. Soc. Trans. (1985) 13:654.
  • •A seminal paper describing the deranged cellular energetics in mitochondrial myopathies.
  • KAMINSKY P, ROBIN-LHERBIER B, BRUNOTTE F et al.: Energetic metabolism in hypothyroid skeletal muscle, as studied by phosphorus magnetic resonancespectroscopy. Clin. Endoccinol Metab. (1992) 74(1):124–129.
  • SMITH CD, AIN KB: Brain metabolism in hypothyroidism studied with 31P magnetic-resonance spectroscopy. Lancet (1995) 345(8950):619–620.
  • WESTERBLAD H, LANNERGREN J: Reduced maximum shortening velocity in the absence of phosphocreatine observed in intact fibres of Xenopus skeletal muscle. Physiol (Lond) (1995) 482:383–390.
  • KUROSAWA Y, HAMAOKA T, KATSUMURA T et al: Creatine supplementation enhances anaerobic ATP synthesis during a single 10 sec maximal handgrip exercise. Ma. Cell. Biochem. (2003) 244(1-2):105–112.
  • CASEY A, GREENHAFF PL: Does dietary creatine supplementation play a role in skeletal muscle metabolism and performance? Am. J. Clin. Nutr. (2000) 72\(Suppl. 2):6075–6175.
  • KALDIS P, HEMMER W, ZANOLLA E et al.: 'Hot spots' of creatine kinase localization in brain: cerebellum, hippocampus and choroid plexus. Dev. Neurosci (1996) 18:542–554.
  • KEKELIDZE T, KHAIT I, TOGLIATTI A, HOLTZMAN D: Brain creatine kinase and creatine transporter proteins in normal and creatine-treated rabbit pups. Dev. Neurosci (2000) 22(5-6):437–443.
  • CHEN L, ROBERTS R, FRIEDMAN DL: Expression of brain-type creatine kinase and ubiquitous mitochondrial creatine kinase in the fetal rat brain: evidence for a nuclear energy shuttle." Comp. Neurol. (1995) 363(3):389–401.
  • DA SILVA CG, BUENO AR, SCHUCK PF et al.: L-2-hydroxyglutaric acid inhibits mitochondrial creatine kinase activity from cerebellum of developing rats. Int. J. Dev. Neurosci. (2003) 21(4):217–224.
  • STADHOUDERS AM, JAP PH, WINKLER HP et al.: Mitochondrial creatine kinase: a major constituent of pathological inclusions seen in mitochondrial myopathies. Proc. Natl. Acad. Sci. USA (1994) 91:5089–5093.
  • BRDICZKA D, WALLIMANN T: The importance of the outer mitochondrial compartment in regulation of energy metabolism. Ma Cell. Biochem. (1994) 133–134:69–83.
  • ROJO M, HOVIUS R, DEMEL RA et al.:Mitochondrial creatine kinase mediates contact formation between mitochondrial membranes.' Biol. Chem. (1991) 266:20290–20295.
  • SCHLATTNER U, DOLDER M, WALLIMANN T, TOKARSKA-SCHLATTNER M: Mitochondrial creatine kinase and mitochondrial outer membrane porin show a direct interaction that is modulated by calcium. J. Biol. Chem. (2001) 276(51):48027–48030.
  • BRDICZKA D, BEUTNER G, RUCK A et al.: The molecular structure of mitochondrial contact sites. Their role in regulation of energy metabolism and permeability transition. Biofactors (1998) 8:235–242.
  • HAN D, ANTUNES F, DANERI F, CADENAS E: Mitochondrial superoxide anion production and release into intermembrane space. Methods Enzymol (2002) 349:271–280.
  • •This paper found that up to 50% of the 02 production is directed to the intermembrane space, which is important in relation to mtCK function.
  • KONOREV EA, HOGG N, KALYANARAMAN B: Rapid and irreversible inhibition of creatine kinase by peroxynitrite. FEBS Lett (1998) 427(2):171–174.
  • WENDT S, SCHLATTNER U, WALLIMANN T: Differential effects of peroxynitrite on human mitochondrial creatine kinase isoenzymes. Inactivation, octamer destabilization, and identification of involved residues." Biol. Chem (2003) 278(2):1125–1130.
  • STACHOWIAK 0, DOLDER M, WALLIMANN T, RICHTER C: Mitochondrial creatine kinase is a prime target of peroxynitrite-induced modification and inactivation. J. Biol. Chem. (1998) 273:16694–16699.
  • O'GORMAN E, BEUTNER G, DOLDER M, KORETSKY AP, BRDICKA D, WALLIMANN T: The role of creatine kinase in inhibition of mitochondrial permeability transition. FEBS Lett. (1997) 414(2):253–257.
  • •An important paper establishing mtCK as a key component in the apoptotic cascade.
  • ARSTALL MA, BAILEY C, GROSS WL, BAK M, BALLIGAND J-L, KELLY RA: Reversible S-nitrosation of creatine kinase by nitric oxide in adult rat ventricular myocytes. Ma Cell. Cardiol (1998) 30(5):979–988.
  • KAASIK A, MINAJEVA A, DE SOUSA E, VENTURA-CLAPIER R, VEKSLER V: nitric oxide inhibits cardiac energy production via inhibition of mitochondrial creatine kinase. FEBS Lett (1999) 444(1):75–77.
  • WALSH B, TONKONOGI M, SODERLUND K, HULTMAN E, SAKS V, SAHLIN K: The role of phosphorylcreatine and creatine in the regulation of mitochondrial respiration in human skeletal muscle. " Physiol (2001) 537(Pt 3):971–978.
  • BROSNAN MJ, CHEN LH, WHEELER CE, VAN DYKE TA, KORETSKY AP: Phosphocreatine protects ATP from a fructose load in transgenic mouse liver expressing creatine kinase. Am. J. Physiol (1991) 260(6, Pt 1):C1191–C1200.
  • MILLER K, HALOW J, KORETSKY AP: Phosphocreatine protects transgenic mouse liver expressing creatine kinase from hypoxia and ischemia. Am. J. Physiol (1993) 265(6, Pt 1):C1544–C1551.
  • DOLDER M, WALZEL B, SPEER 0, SCHLATTNER U, WALLIMANN T: Inhibition of the mitochondrial permeability transition by creatine kinase substrates. Requirement for microcompartmentation. J. Biol. Chem. (2003) 278(20):17760–17766.
  • O'GORMAN E, PIENDL T, MULLER M et al.: Mitochondrial intermembrane inclusion bodies: the common denominator between human mitochondrial myopathies and creatine depletion, due to impairment of cellular energetics. Ma. Cell. Biochem. (1997) 174:283–289.
  • O'GORMAN E, FUCHS KH, TITTMANN P et al.: Crystalline mitochondrial inclusion bodies isolated from creatine depleted rat soleus muscle. J. Cell Sci. (1997) 110:1403–1411.
  • TARNOPOLSKY MA, CHORNEYKO K, SIMON D, JOHNS D: Reversal of paracrystalline inclusions in a patient with a G15497A missense mutation following creatine monohydrate supplementation. Mitochondria] Interest Group Minisymposium (Mitochondria: Interaction of Two Genomes), NIH, Bethesda, USA (2000).
  • KLIVENYI P, FERRANTE RJ, MATTHEWS RT et al.: Neuroprotective effects of creatine in a transgenic animal model of ALS. Nat. Med. (1998) 5:347–350.
  • LAWLER JM, BARNES WS, WU G, SONG W, DEMAREE S: Direct antioxidant properties of creatine. Biochem. Biophys. Res. Commun. (2002) 290(1):47–52.
  • PULIDO SM, PASSAQUIN AC, LEIJENDEKKER WJ et al.: Creatine supplementation improves intracellular Ca2+ handling and survival in mdx skeletal muscle cells. FEBS Lett (1998) 439:357–362.
  • KOUFEN P, RUCK A, BRDICZKA D et al.: Free radical-induced inactivation of creatine kinase: influence on the octameric and dimeric states of the mitochondrial enzyme (Mib-CK). Biochem. .1. (1999) 344\(Pt 2):413–417.
  • INGWALL JS: Creatine and the control ofmuscle-specific protein synthesis in cardiac and skeletal muscle. Circ. Res. (1976) 38:1115–1123.
  • INGWALL JS, WEINER CD, MORALES MF et al.: Specificity of creatine in the control of muscle protein synthesis.' Cell Biol. (1974) 62:145–151.
  • WILLOUGHBY DA, ROSENE JM: Effects of oral creatine and resistance training on myogenic regulatory factor expression. Med. Sci. Sports Exert (2003) 35(6):923–929.
  • EARNEST CP, SNELL PG, RODRIGUEZ R et al: The effect of creatine monohydrate ingestion on anaerobic power indices, muscular strength and body composition. Acta Physic] Scand. (1995) 153:207–209.
  • MIHIC S, MACDONALD JR, MCKENZIE S, TARNOPOLSKY MA: Acute creatine loading increases fat-free mass, but does not affect blood pressure, plasma creatinine, or CK activity in men and women. Med. Sd. Sports Exert (2000) 32:291–296.
  • PARISE G, MIHIC S, MACLENNAN D, YARESHESKI KE, TARNOPOLSKY MA: Effects of acute creatine monohydrate supplementation on leucine kinetics and mixed-muscle protein synthesis. Appl. Physiol (2001) 91(3):1041–1047.
  • DANGOTT B, SCHULTZ E, MOZDZIAK PE: Dietary creatine monohydrate supplementation increases satellite cell mitotic activity during compensatory hypertrophy. Int. I Sports Med (2000) 21:13–16.
  • VIERCK JL, ICENOGGLE DL, BUCCI L, DODSON MV: The effects of ergogenic compounds on myogenic satellite cells. Med. Sd. Sports Exert (2003) 35(5):769–76.
  • DE GROOF AJ, FRANSEN JA, ERRINGTON RJ, WILLEMS PH, WIERINGA B, KOOPMAN WJ: The creatine kinase system is essential for optimal refill of the sarcoplasmic reticulum Ca2+ store in skeletal muscle. I Biol. Chem. (2002) 277(7):5275–5284.
  • VAN LEEMPUTTE M, VANDENBERGHE K, HESPEL P: Shortening of muscle relaxation time after creatine loading." Appl. Physic' (1999) 86:840–844.
  • GOMEZ-ANGELATS M, CIDLOWSKI JA: Cell volume control and signal transduction in apoptosis. Toxicol Pathol (2002) 30(5):541–551.
  • SCHULZE A: Creatine deficiency syndromes. Mol Cell. Biochem. (2003) 244(1-2):143–150.
  • LEUZZI V: Inborn errors of creatine metabolism and epilepsy: clinical features, diagnosis, and treatment. " Child Neurol. (2002) 17\(Suppl. 3):3S89-3S97.
  • STOCKLER S, ISBRANDT D, HANEFELD F, SCHMIDT B, VON FIGURA K: Guanidinoacetate methyltransferase deficiency: the first inborn error of creatine metabolism in man. Am. J. Hum. Genet. (1996) 58(5):914–922.
  • ITEM CB, STOCKLER-IPSIROGLU S, STROMBERGER C et al.: Arginine:glycine amidinotransferase deficiency: the third inborn error of creatine metabolism in humans. Am. I Hum. Genet. (2001) 69(5):1127–1133.
  • STOCKLER S, HANEFELD F, FRAHM J: Creatine replacement therapy in guanidinoacetate methyltransferase deficiency, a novel inborn error of metabolism. Lancet (1996) 348(9030):789–790.
  • STOCKLER S, HOLZBACH U, HANEFELD F et al.: Creatine deficiency in the brain: a new, treatable inborn error of metabolism. Pediatr. Res. (1994) 36(3):409–413.
  • LEUZZI V, BIANCHI MC, TOSETTI M et al.: Brain creatine depletion: guanidinoacetate methyltransferase deficiency (improving with creatine supplementation). Neurology (2000) 55(9):1407–1409.
  • SCHULZE A, BACHERT P, SCHLEMMER H et al.: Lack of creatine in muscle and brain in an adult with GAMT deficiency. Ann. Neurol (2003) 53(2):248–251.
  • SALOMONS GS, VAN DOOREN SJ, VERHOEVEN NM et al: X-linked creatine-transporter gene (SLC6A8) defect: a new creatine-deficiency syndrome. Am. Hum. Genet. (2001) 68(6):1497–1500.
  • DEGRAUW TJ, CECIL KM, BYARS AW, SALOMONS GS, BALL WS, JAKOBS C: The clinical syndrome of creatine transporter deficiency. Mol Cell. Biochem. (2003) 244(1-2):45–48.
  • HOLTZMAN D, MCFARLAND E, MOERLAND T, KOUTCHER J, KUSHMERICK MJ, NEURINGER LJ: Brain creatine phosphate and creatine kinase in mice fed an analogue of creatine. Brain Res. (1989) 483(1):68–77.
  • WOOD IS, TRAYHURN P: Glucose transporters (GLUT and SGLT): expanded families of sugar transport proteins. Br. Nutt (2003) 89(1):3–9.
  • BONEN A: The expression of lactate transporters (MCT1 and MCT4) in heart and muscle. Eur: Appl. Physiol (2001) 86(1):6–11.
  • SMITH CD, AIN KB: Brain metabolism in hypothyroidism studied with 31P magnetic-resonance spectroscopy. Lancet (1995) 345(8950):619–620.
  • FATTERPARKER P, MARFATIA U SREENIVASAN A: Influence of folic acid and vitamin B12 on formation of creatine in vitro and in vivo. Nature (1951) 167:1067–1068.
  • VAN PILSUM JF, WAHMAN RE: Creatine and creatinine in the carcass and urine of vitamin E-deficient rabbits. I Biol. Chem. (1960) 235:2092–2094.
  • KIM GS, CHEVLI KD, FITCH CD: Fasting modulates creatine entry into skeletal muscle in the mouse. Experimentia (1983) 39:1360–1362.
  • HOBERMAN HD, SIMS EAH, ENGSTROM WW: The effect of methyltestosterone on the rate of synthesis of creatine. J. Biol Chem (1948) 173:111–116.
  • SIPILA I, RAPOLA J, SIMELL 0, VANNAS A: Supplementary creatine as a treatment for gyrate atrophy of the choroid and retina. N. Engl. J. Med. (1981) 304:867–870.
  • BRODY LC, MITCHELL GA, OBIE C et al.: Ornithine delta-aminotransferase mutations in gyrate atrophy. Allelic heterogeneity and functional consequences. J Biol. Chem (1992) 267(5):3302–3307.
  • NANTO-SALONEN K, KOMU M, LUNDBOM N et al.: Reduced brain creatine in gyrate atrophy of the choroid and retina with hyperornithinemia. Neurology(1999) 53:303–307.
  • HEINANEN K, NANTO-SALONEN K, KOMU M et al.: Creatine corrects muscle 31P spectrum in gyrate atrophy with hyperornithinaemia. Eur: I Clin. Invest. (1999) 29:1060–1065.
  • VANNAS-SULONEN K, SIPILA I, VANNAS A et al.: Gyrate atrophy of the choroid and retina. A five-year follow-up of creatine supplementation. Ophthalmology (1985) 92:1719–1727.
  • HAND CK, ROULEAU GA: Familial amyotrophic lateral sclerosis. Muscle Nerve (2002) 25(2):135–159.
  • KONG J, XU Z: Massive mitochondrial degeneration in motor neurons triggers the onset of amyotrophic lateral sclerosis in mice expressing a mutant SOD1. .1 Neurosci. (1998) 18(9):3241–3250.
  • BEAL MF: Bioenergetic approaches for neuroprotection in Parkinson's disease. Ann. Neural. (2003) 53\(Suppl. 3):S39–S47.
  • ••An outstanding review of neuroprotectivesupplementation strategies in PD.
  • MATTHEWS RT, FERRANTE RJ, KLIVENYI P et al.: Creatine and cyclocreatine attenuate MPTP neurotoxicity. Exp. Neurol (1999) 157(1):142–149.
  • MATTHEWS RT, YANG L, JENKINS BG et al: Neuroprotective effects of creatine and cyclocreatine in animal models of Huntington's disease..1 Neurosci (1998) 18(1):156–163.
  • ANDREASSEN OA, JENKINS BG, DEDEOGLU A et al.: Increases in cortical glutamate concentrations in transgenic amyotrophic lateral sclerosis mice are attenuated by creatine supplementation. Neurochem. (2001) 77(2):383–390.
  • XU CJ, KLUNK WE, KANFERJN et al: Phosphocreatine-dependent glutamate uptake by synaptic vesicles. J. Biol. Chem. (1996) 271:13435–13440.
  • BREWER GJ, WALLIMANN TW: Protective effect of the energy precursor creatine against toxicity of glutamate and I3-amyloid in rat hippocampal neurons. J. Neurochem. (2000) 74:1968–1978.
  • IKEDA K, IWASAKI Y, KINOSHITA M: Oral administration of creatine monohydrate retards progression of motor neuron disease in the wobbler mouse. Arnyotmph. Lateral Scler. Other Motor Neuron Disord. (2000) 1(3):207–212.
  • SNOW RJ, TURNBULL J, DA SILVA S, JIANG F, TARNOPOLSKY MA: Creatine supplementation and riluzole treatment provide similar beneficial effects in copper, zinc superoxide dismutase (G93A) transgenic mice. Neuroscience (2003) 119(3):661–667.
  • ZHANG W, NARAYANAN M, FRIEDLANDER RM: Additive neuroprotective effects of minocycline with creatine in a mouse model of ALS. Ann. Neurol (2003) 53(2):267–270.
  • •This paper provides recent evidence for targeting 'multiple pathways' when devising neuroprotection trials.
  • SARCHIELLI P, PELLICIOLLI GP, TARDUCCI R et al.: Magnetic resonance imaging and 1H-magnetic resonance spectroscopy in amyotrophic lateral sclerosis. Neuroradiology (2001) 43(3):189–197.
  • MAZZINI L, BALZARINI C, COLOMBO R et al.: Effects of creatine supplementation on exercise performance and muscular strength in amyotrophic lateral sclerosis: preliminary results. J. Neurol Sci (2001) 191(1-2):139–144.
  • GROENEVELD JG, VELDINK JH, VAN DER TWEEL I et al.: A randomized sequential trial of creatine in amyotrophic lateral sclerosis. Ann. Neurol (2003) 53(4):437–445.
  • DRORY VE, GROSS D: No effect of creatine on respiratory distress in amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Other Motor Neuron Disord. (2002) 3(1):43–46.
  • THE HUNTINGTON'S DISEASE COLLABORATIVE RESEARCH GROUP: A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell (1993) 72:971–983.
  • GUM, GASH MT, MANN VM, JAVOY-AGIG F, COOPER JM, SCHAPIRA AH: Mitochondrial defect in Huntington's disease caudate nucleus. Ann. Neurol (1996) 39(3):385–389.
  • BROWNE SE, BOWLING AC, MAC GARVEY U et al.: Oxidative damage and metabolic dysfunction in Huntington's disease: selective vulnerability of the basal ganglia. Ann. Neurol (1997) 41(5):646–653.
  • JENKINS B, KOROSHETZ W, BEAL ME ROSEN B: Evidence for an energy metabolism defect in Huntington's disease using localized proton spectroscopy. Neurology (1993) 43(12):2689–2695.
  • •111-NMR (nuclear magnetic resonance) technology was employed to discern clear dysregulation in energy metabolism in patients with HD.
  • JENKINS BG, ROSAS HD, CHEN YC et al.: 1H NMR spectroscopy studies of Huntington's disease: correlations with CAG repeat numbers. Neurology (1998) 50(5):1357–1365.
  • KOROSHETZ WJ, JENKINS BG, ROSAS HD, BEAL MF: Energy metabolism defects in Huntington's disease and effects of coenzyme Q10. Ann. Neurol (1997) 41(2):160–165.
  • LODI R, SCHAPIRA AH, MANNERS D et al.: Abnormal in vivo skeletal muscle energy metabolism in Huntington's disease and dentatorubropallidoluysian atrophy. Ann. Neurol (2000) 48(1):72–76.
  • BEAL ME BROUILLET E, JENKINS B, HENSHAW R, ROSEN B, HYMAN BT: Age-dependent striatal excitotoxic lesions produced by the endogenous mitochondrial inhibitor malonate. J. Neurochem. (1993) 61(3):1147–1150.
  • BOGDANOV MB, FERRANTE RJ, KUEMMEREL S, KLIVENYI P, BEAL MF: Increased vulnerability to 3-nitropropionic acid in an animal model of Huntington's disease. J Neurochem. (1998) 71(6):2642–2644.
  • SANCHEZ-PERNAUTE R, GARCIA-SEGURA JM, DEL BARRIO ALBA A, VIANO J, YEBENES JG: Clinical correlation of striatal 1H MRS changes in Huntington's disease. Neurology (1999) 53(4):806–812.
  • HOANG TQ, BLUML S, DUBOWITZ DJ et al: Quantitative proton-decoupled 31P MRS and 1H MRS in the evaluation of Huntington's and Parkinson's diseases. Neurology (1998) 50(4):1033–1040.
  • TKAC I, KEENE CD, PFEUFFER J, LOW WC, GRUETTER R: Metabolic changes in quinolinic acid-lesioned rat striatum detected non-invasively by in vivo 1H NMR spectroscopy. I Neurosci. Res. (2001) 66(5):891–898.
  • SHEAR DA, HAIK KL, DUNBAR GL: Cane reduces 3-nitropropionic-acid-induced cognitive and motor abnormalities in rats. Neuroreport (2000) 11(9):1833–1837.
  • FERRANTE RJ, ANDREASSEN OA, JENKINS BJ et al: Neuroprotective effects of creatine in a transgenic mouse model of Huntington's disease. Neurosci (2000) 20(12):4389–4397.
  • ANDREASSEN OA, DEDEOGLU A, FERRANTE RJ et al.: Creatine increases survival and delays motor symptoms in a transgenic animal model of Huntington's disease. Neuronic] Dis. (2001) 8(3):479–491.
  • DEDEOGLU A, KUBILUS JK, YANG L et al.: Creatine therapy provides neuroprotection after onset of clinical symptoms in Huntington's disease transgenic mice. Neurochein. (2003) 85(6):1359–1367.
  • •This paper has added potential clinical relevance as Cr treatment was deemed protective even after symptom onset.
  • MALCON C, KADDURAH-DAOUK R, BEAL MF: Neuroprotective effects of creatine administration against NMDA and malonate toxicity. Brain Res. (2000) 860(1-2):195–198.
  • KIEBURTZ K, HUNTINGTON STUDY GROUP: Placebo-controlled trial of creatine in HD. Neurology (2001) 56\(Suppl. 3):A386.
  • VERBESSEM P, HESPEL P, DOM R: Oral creatine supplementation in patients with Huntington's disease. Neurology(2002) 58\(Suppl. 7):A334.
  • TABRIZI SJ, BLAMIRE AM, MANNERS DN et al.: Creatine therapy for Huntington's disease: Clinical and MRS findings in a 1-year pilot study. Neurology (2003) 61(1):141–142.
  • MARDER K, ZHAO H, MYERS RH et al.: Rate of functional decline in Huntington's disease. Huntington Study Group. Neurology (2000) 54(2):452–458.
  • KLOPSTOCK T, SCHLAMP V, SCHMIDT F et al: Creatine monohydrate in mitochondrial diseases: a double-blind, placebo-controlled, cross-over study in 16 patients with chronic progressive external opthalmolegia or mitochondrial myopathy. Neurology(1999) 52:A543–A544.
  • TARNOPOLSKY MA, ROY BD, MACDONALD JR: A randomized, controlled trial of creatine monohydrate in patients with mitochondrial cytopathies. Muscle Nerve (1997) 20(12):1502–1509.
  • •The first report of the beneficial effects of Cr in mitochondrial disorders.
  • BORCHERT A, WILICHOWSKI E, HANEFELD F: Supplementation with creatine monohydrate in children with mitochondrial encephalomyopathies. Muscle Nerve (1999) 22:1299–1300.
  • HAGENFELDT L, VON DOBELN U, SOLDERS G, KAIJSER L: Creatine treatment in MELAS. Muscle Nerve (1994) 17(10):1236–1237.
  • BARISIC N, BERNERT G, IPSIROGLU 0 et al.: Effects of oral creatine supplementation in a patient with MELAS phenotype and associated nephropathy. Neuropediatrics (2002) 33(3):157–161.
  • KOMURA K, HOBBIEBRUNKEN E, WILICHOWSKI EK, HANEFELD FA: Effectiveness of creatine monohydrate in mitochondrial encephalomyopathies. Pediatr. Neurol (2003) 28(1):53–58.
  • TARNOPOLSKY MA, PARISE G: Direct measurement of high-energy phosphate compounds in patients with neuromuscular disease. Muscle Nerve (1999) 22:1228–1233.
  • WALTER MC, LOCHMULLER H, REILICH P et al.: Creatine monohydrate in muscular dystrophies: A double-blind, placebo-controlled clinical study. Neurology (2000) 54:1848–1850.
  • FELBER S, SKLADAL D, WYSS M, KREMSER C, KOLLER A, SPERL W: Oral creatine supplementation in Duchenne muscular dystrophy: a clinical and 31P magnetic resonance spectroscopy study. Neurol Res. (2000) 22(2):145–150.
  • LOUIS M, LEBACQ J, POORTMANS JR et al.: Beneficial effects of creatine supplementation in dystrophic patients. Muscle Nerve (2003) 27(5):604–610.
  • WALTER MC, REILICH P, LOCHMULLER H et al: Creatine monohydrate in myotonic dystrophy: a double-blind, placebo-controlled clinical study. J. Neurol (2002) 249(12):1717–1722.
  • SCHNEIDER-GOLD C, BECK M, WESSIG C et al.: Creatine monohydrate in DM2/PROMM: a double-blind placebo-controlled clinical study. Proximal myotonic myopathy. Neurology (2003) 60(3):500–502.
  • TARNOPOLSKY M, MARTIN J: Creatine monohydrate increases strength in patients with neuromuscular disease. Neurology (1999b) 52:854–857.
  • VORGERD M, GREHL T, JAGER M et al.: Creatine therapy in myophosphorylase deficiency (McArdle disease): a placebo-controlled crossover trial. Arch. Neurol (2000) 57:956–963.
  • VOGERD M, ZANGE J, KLEY R et al: Effect of high-dose creatine therapy on symptoms of exercise intolerance in McArdle disease: double-blind, placebo-controlled crossover study. Arch. Neurol (2002) 59(1):97–101.
  • BARNES PRJ, KEMP GJ, TAYLOR DJ, RADDA GK: Skeletal muscle metabolism in myotonic dystrophy. Brain (1997) 120:1699–1711.
  • KEMP GJ, TAYLOR GJ, DUNN JF, FROSTICK SP, RADDA GK: Cellular energetics of dystrophic muscle. J. Neurol Sci. (1993) 116:201–206.
  • •31P-MRS data revealed lower resting PCr levels and increased acid (i.e., L pH) whereas forearm exercise caused greater PCr depletion and an attenuated fall in pH, possibly due to either impaired glycolysis or enhanced proton efflux (i.e., lactate-/H+ symport).
  • OFT EIJNDE B, RICHTER EA, HENQUIN JC, KIENS B, HESPEL P: Effect of creatine supplementation on creatine and glycogen content in rat skeletal muscle. Acta Physiol Scand (2001) 171(2):169–176.
  • NELSON AG, ARNALL DA, KOKKONEN J, DAY R, EVANS J: Muscle glycogen supercompensation is enhanced by prior creatine supplementation. Med. Sci. Sports Exerc. (2001) 33(7):1096–1100.
  • O'REILLY DS, CARTER R, BELL E, HINNIE J, GALLOWAY PJ: Exercise to exhaustion in the second-wind phase of exercise in a case of McArdle's disease with and without creatine supplementation. Scott. Med. J. (2003) 48(2):46–48.
  • PARODI M, REBAUDO R, PERASSO L, GANDOLFO C, CUPELLO A, BALESTRINO M: Effects of exogenous creatine on population spike amplitude and on postanoxic hyperexcitability in brain slices. Thalia Res. (2003) 963(1-2):197–202.
  • BALESTRINO M, LENSMAN M, PARODI M et al.: Role of creatine and phosphocreatine in neuronal protection from anoxic and ischemic damage. Amino Acids (2002) 23(1-3):221–229.
  • WILKEN B, RAMIREZ JM, PROBST I, RICHTER DW, HANEFELD F: Anoxic ATP depletion in neonatal mice brainstem is prevented by creatine supplementation. Arch. Dis. Child Fetal Neonatal Ed. (2000) 82(3):F224–F227.
  • ADCOCK KH, NEDELCU J, LEONNEKER T, MARTIN E, WALLIMANN T, WAGNER BP: Neuroprotection of creatine supplementation in neonatal rats with transient cerebral hypwda-ischemia. Dev. Neurosci. (2002) 24(5):382–388.
  • MICHAELIS T, WICK M, FUJIMORI H, MATSUMURA A, FRAHM J: Proton MRS of oral creatine supplementation in rats. Cerebral metabolite concentrations and ischemic challenge. NMR Biomed. (1999) 12(5):309–314.
  • HAUSMANN ON, FOUAD K, WALLIMANN T, SCHWAB ME: Protective effects of oral creatine supplementation on spinal cord injury in rats. Spinal Cord (2002) 40(9):449–456.
  • SULLIVAN PG, GEIGER JD, MATTSON MP, SCHEFF SW: Dietary supplement creatine protects against traumatic brain injury. Ann. Neurol (2000) 48(5):723–729.
  • HARRIS RC, SODERLUND K, HULTMAN E: Elevation of creatine in resting and exercised muscle of normal subjects by creatine supplementation. Clin. Sci (1992) 83:367–374.
  • HULTMAN E, SODERLUND K, TIMMONS JA et al: Muscle creatine loading men.' Appl. Physiol (1996) 81:232–237.
  • GREENHAFF PL, CASEY A, SHORT AH et al.: Influence of oral creatine supplementation of muscle torque during repeated bouts of maximal voluntary exercise in man. Ctin. Sci. (Co/ch) (1993) 84:565–571.
  • VANDENBERGHE K, GORIS M, VAN HECKE P et al.: Long-term creatine intake is beneficial to muscle performance during resistance training. I Appl. Physiol (1997) 83:2055–2063.
  • GREENHAFF PL, BODIN K, SODERLUND K, HULTMAN E: Effect of oral creatine supplementation on skeletal muscle phosphocreatine resynthesis. Am. Physiol (1994) 266:E725–E730.
  • VANDENBERGHE K, VAN HECKE P, VAN LEEMPUTTE M et al.: Phosphocreatine resynthesis is not affected by creatine loading. Med. Sci. Sports Exerc. (1999) 31:236–242.
  • MIHIC S, MACDONALD JR, MCKENZIE S, TARNOPOLSKY MA: Acute creatine loading increases fat-free mass, but does not affect blood pressure, plasma creatinine, or CK activity in men and women. Med. ScL Sports Exerc. (2099) 32:291–296.
  • GORDON A, HULTMAN E, KUSER L et al.: Creatine supplementation in chronic heart failure increases skeletal muscle creatine phosphate and muscle performance. Cardiovasc. Res. (1995) 30:413–418.
  • KOSHY KM, GRISWOLD E, SCHNEEBERGER EE: Interstitial nephritis in a patient taking creatine. N. Engl. Med. (1999) 340:814-815 (Letter).
  • PRITCHARD NR, KALRA PA: Renal dysfunction accompanying oral creatine supplements. Lancet (1998) 351:1252–1253.
  • POORTMANS JR, AUQUIER H, RENAUT V et al: Effect of short-term creatine supplementation on renal responses in men. Lim .1. Appl. Physiol (1997) 76:566–567.
  • POORTMANS JR, FRANCAUX M: Long-term oral creatine supplementation does not impair renal function in healthy athletes. Med. Sci. Sports Exerc. (1999) 31:1108–1110.
  • VAHEDI K, DOMIGO V, AMARENCO P, BOUSSER MG: Ischaemic stroke in a sportsman who consumed MaHuang extract and creatine monohydrate for body building. Neurol Neurosurg. Psychiatry (2000) 68:112–113.
  • LEE MK, CHENG BW, CHE CT, HSIEH DP: Cytotoidcity assessment of Ma-huang (Ephedra) under different conditions of preparation. Toxica. Sci (2000) 56:424–430.
  • GRUNLER J, ERICSSON J, DALLNER G: Branch-point reactions in the biosynthesis of cholesterol, dolichol, ubiquinone and prenylated proteins. Biochim. Biophys. Acta (1994) 1212(3):259–277.
  • MURTHY V: Coenzyme-Q and related isoprenoid compounds: biosynthesis, regulation, functions, and biomedical implications. In: Mitochondria] Ubiquinone (Coenzyme Q d. Biomedical, Functional, Medical, and Therapeutic Aspects M Human Health and Diseases (Volume 1). Ebadi M, Marwah J, Chopra R (Eds), Prominent Press, Scottsdale, USA (2001):231–345.
  • •A detailed chapter on the biosynthesis of C°Q10.
  • FOLKERS K, SIMONSEN R: Two successful double-blind trials with coenzyme Q10 (vitamin Q10) on muscular dystrophies and neurogenic atrophies. Biochim. Biophys. Acta (1995) 1271(1):281–286.
  • WILLIS R, ANTHONY M, SUN L, HONSE Y, OIAO G: Clinical implications of the correlation between coenzyme Q10 and vitamin B6 status. Biofactors (1999) 9(2-4):359–363.
  • FOLKERS K, KAJI M, BAKER L, RICHARDSON PC, SAJI S, SHIZUKUISHI S: Cardiac outputs of control individuals and cancer patients and evidence of deficiencies of coenzyme Q10 and vitamin B6. Res. Commun. Chem. Pathol Pharmacol. (1980) 28(1):145–152.
  • NESS GC, CHAMBERS CM: Feedback and hormonal regulation of hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase: the concept of cholesterol buffering capacity. Proc. Soc. Exp. Biol. Med (2000) 224:8–19.
  • NESS GC, ZHAO Z, WIGGINS L: Insulin and glucagon modulate hepatic 3-hydroxy-3-methylglutaryl- coenzyme A reductase activity by affecting immunoreactive protein levels. J. Biol. Chem. (1994) 269:29168–29172.
  • CHARIOT P, ABADIA R, AGNUS D, DANAN C, CHARPENTIER C, GHERARDI RK: Simvastatin-induced rhabdomyolysis followed by a MELAS syndrome. Am.' Med. (1993) 94:109–110.
  • MORTENSEN SA, LETH A, AGNER E, ROHDE M: Dose-related decrease of serum coenzyme Q10 during treatment with HMG- CoA reductase inhibitors. Ma Aspects Med. (1997) 18(Suppl.):S137–S144.
  • NAMBUDIRI AM, RANGANATHAN S, RUDNEY H: The role of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in the regulation of ubiquinone synthesis in human fibroblasts., / Biol. Chem. (1980) 255:5894–5899.
  • WALRAVENS PA, GREENE C, FRERMAN FE: Lovastatin, isoprenes, and myopathy. Lancet (1989) 2:1097–1098.
  • DE PINIEUX G, CHARIOT P, AMMI-SAID M et al.: Lipid-lowering drugs and mitochondrial function: effects of HMG-CoA reductase inhibitors on serum ubiquinone and blood lactate/pyruvate ratio. Br: J. Clin. Pharmacol (1996) 42:333–337.
  • GHIRLANDA G, ORADEI A, MANTO A et al.: Evidence of plasma CoQ10-lowering effect by HMG-CoA reductase inhibitors: a double-blind, placebo-controlled study. J Clin. Pharmacol (1993) 33:226–229.
  • LAAKSONEN R, JOKELAINEN K, LAAKSO J et al.: The effect of simvastatin treatment on natural antioxidants in low-density lipoproteins and high-energy phosphates and ubiquinone in skeletal muscle. Am.! Cardiol (1996) 77:851–854.
  • LAAKSONEN R, JOKELAINEN K, SAHI T, TIKKANEN MJ, HIMBERG JJ: Decreases in serum ubiquinone concentrations do not result in reduced levels in muscle tissue during short-term simvastatin treatment in humans. Clin. Pharmacol Ther. (1995) 57:62–66.
  • THIBAULT A, SAMID D, TOMPKINS AC et al: Phase I study of lovastatin, an inhibitor of the mevalonate pathway, in patients with cancer. Clin. Cancer Res. (1996) 2:483–491.
  • BAKER SK, VLADUTIU GD, TARNOPOLSKY MA: McArdle disease unmasked by statin exposure. 50th Scientific Meeting of the American Association of Electrodiagnostic Medicine. San Francisco, CA, USA (2003) (In press).
  • ELMBERGER PG, KALEN A, BRUNK UT, DALLNER G: Discharge of newly-synthesized dolichol and ubiquinone with lipoproteins to rat liver perfusate and to the bile. Lipids (1989) 24:919–930.
  • JOHANSEN K, THEORELL H, KARLSSON J, DIAMANT B, FOLKERS K: Coenzyme Q10, alpha-tocopherol and free cholesterol in HDL and LDL fractions. Ann. Med. (1991) 23:649–656.
  • LAAKSONEN R, OJALA JP, TIKKANEN MJ, HIMBERG JJ: Serum ubiquinone concentrations after short- and long-term treatment with HMG-CoA reductase inhibitors. Ear: Clin. Pharmacol (1994) 46:313–317.
  • SANTOS-OCANA C, DO TQ, PADILLA S, NAVAS P, CLARKE CF: Uptake of exogenous coenzyme Q and transport to mitochondria is required for bci complex stability in yeast cog mutants. ./ Biol. Chem (2002) 277(13):10973–10981.
  • ZHANG Y, ABERG F, APPELKVIST EL, DALLNER G, ERNSTER L: Uptake of dietary coenzyme Q supplement is limited in rats. J Nair. (1995) 125(3):446–453.
  • ZHANG Y, TURUNEN M, APPELKVIST EL: Restricted uptake of dietary coenzyme Q is in contrast to the unrestricted uptake of alpha-tocopherol into rat organs and cells. Nun: (1996) 126(9):2089–2097.
  • NERI B, NERI GC, BANDINELLI M: Differences between carnitine derivatives and coenzyme Q10 in preventing M vitro doxorubicin-related cardiac damages. Oncology (1988) 45(3):242–246.
  • MUNKHOLM H, HANSEN HH, RASMUSSEN K: Coenzyme Q10 treatment in serious heart failure. Biofactors (1999) 9(2-4):285–289.
  • RUSTIN P, VON KLEIST-RETZOW JC, CHANTREL-GROUSSARD K, SIDI D, MUNNICH A, ROTIG A: Effect of idebenone on cardiomyopathy in Friedreicfts ataxia: a preliminary study. Lancet (1999) 354(9177):477–479.
  • •This paper provides the first clinical evidence that quinones may be cardioprotective in FA.
  • BEYER RE: An analysis of the role of coenzyme Q in free radical generation and as an antioxidant. Biochem. Cell. Biol (1992) 70:390–403.
  • ERNSTER L, DALLNER G: Biochemical, physiological and medical aspects of ubiquinone function. Biochim. Biophys. Acta (1995) 1271:195–204.
  • NOACK H, KUBE U, AUGUSTIN W: Relations between tocopherol depletion and coenzyme Q during lipid perwddation in rat liver mitochondria. Free Radic. Res. (1994) 20:375–386.
  • FORSMARK-ANDREE P, LEE CP, DALLNER G, ERNSTER L: Lipid peroxidation and changes in the ubiquinone content and the respiratory chain enzymes of submitochondrial particles. Free Radic. Biol. Med (1997) 22:391–400.
  • FREI B, KIM MC, AMES BN: Ubiquinol-10 is an effective lipid-soluble antioxidant at physiological concentrations. Proc. Natl. Acad. Sci. USA (1990) 87(12):4879–4883.
  • LASS A, FORSTER MJ, SOHAL RS: Effects of coenzyme Q10 and alpha-tocopherol administration on their tissue levels in the mouse: elevation of mitochondrial alpha-tocopherol by coenzyme Q10. Free Radic. Biol. Med. (1999) 26(11-12):1375–1382.
  • LASS A, SOHAL RS: Effect of coenzyme Q(10) and alpha-tocopherol content of mitochondria on the production of superoxide anion radicals. FASEB (2000) 14(1):87–94.
  • IBRAHIM WH, BHAGAVAN HN, CHOPRA RK, CHOW CK: Dietary coenzyme Q10 and vitamin E alter the status of these compounds in rat tissues and mitochondria. Nun: (2000) 130(9):2343–2348.
  • CRANE FL: Biochemical functions of coenzyme Q10. J. Am. Coll. Nun: (2001) 20(6):591–598.
  • ARROYO A, NAVARRO F, GOMEZ-DIAZ C et al: Interactions between ascorbyl free radical and coenzyme Q at the plasma membrane.,/ Bioenerg. Biomembr. (2000) 32(2):199–210.
  • KOZLOV AV, GILLE L, STANIEK K, NOHL H: Dihydrolipoic acid maintains ubiquinone in the antioxidant active form by two-electron reduction of ubiquinone and one-electron reduction of ubisemiquinone. Arch. Biochem. Biophys. (1999) 363(1):148–154.
  • GOTZ ME, DIRR A, BURGER R et al: Effect of lipoic acid on redox state of coenzyme Q in mice treated withl-methy1-4-pheny1-1,2,3,6-tetrahydropyridine and diethyldithio-carbamate. Ear: I Pharmacol (1994) 266:291–300.
  • TOMASETTI M, ALLEVA R, BORGHI B, COLLINS AR: In vivo supplementation with coenzyme Q enhances the recovery of human lymphocytes from oxidative DNA damage. FASEB (2001) 15(8):1425–1427.
  • CAMMER W: Protection of cultured oligodendrocytes against tumor necrosis factor-alpha by the antioxidants coenzyme Q(10) and N-acetyl cysteine. Blain Res. Bull. (2002) 58(6):587–592.
  • •CoQu) (ETC bypass agent plus antioxidant) provides additive protection with N-acetyl cysteine (antioxidant) against TNF-a-mediated neurotoxicity.
  • JUURLINK BH, THORBURNE SK, HERTZ L: Peroxide-scavenging deficit underlies oligodendrocyte susceptibility to oxidative stress. Clio (1998) 22(4):371–378.
  • SANCHEZ-ALCAZAR JA, SCHNEIDER E, HERNANDEZ-MUNOZ I et al.: Reactive oxygen species mediate the down-regulation of mitochondrial transcripts and proteins by tumour necrosis factor-alpha in L929 cells. Biochem. J. (2003) 370(Pt 2):609–619.
  • VILLALBA JM, NAVAS P: Plasma membrane redox system in the control of stress-induced apoptosis. Antioxid. Redox Signal. (2000) 2(2):213–230.
  • MARTINUCCI S, SZABO I, TOMBOLA F, ZORATTI M: Ca2+-reversible inhibition of the mitochondrial megachannel by ubiquinone analogues. FEBS Lett (2000) 480(2-3):89–94.
  • WALTER L, MIYOSHI H, LEVERVE X, BERNARD P, FONTAINE E: Regulation of the mitochondrial permeability transition pore by ubiquinone analogs. A progress report. Free Radic. Res. (2002) 36(4):405–412.
  • PAPUCCI L, SCHIAVONE N, WITORT E et al.: Coenzyme Q10 prevents apoptosis by inhibiting mitochondrial depolarization independently of its free radical scavenging property. Biol. Chem. (2003) 278(30):28220–28228.
  • FERNANDEZ-AYALA DJ, MARTIN SF, BARROSO MP et al.: Coenzyme Q protects cells against serum withdrawal-induced apoptosis by inhibition of ceramide release and caspase-3 activation. Antioxid. Redox Signal (2000) 2(2):263–275.
  • NAVAS P, FERNANDEZ-AYALA DM, MARTIN SF et al.: Ceramide-dependent caspase 3 activation is prevented by coenzyme Q from plasma membrane in serum-deprived cells. Free Radic. Res. (2002) 36(4):369–374.
  • DI GIOVANNI S, MIRABELLA M, SPINAZZOLA A et al.: Coenzyme Q10 reverses pathological phenotype and reduces apoptosis in familial CoQ10 deficiency. Neurology(2001) 57:515–518.
  • CHUANG YC, CHAN JY, CHANG AY et al.: Neuroprotective effects of coenzyme Qi0 at rostral ventrolateral medulla against fatality during experimental endotoxemia in the rat. Shock (2003) 19(5):427–432.
  • YAMAMURA T, OTANI H, NAKAO Y et al.: Dual involvement of coenzyme Q10 in redox signaling and inhibition of death signaling in the rat heart mitochondria. Antioxid. Redox Signal. (2001) 3(1):103–112.
  • LINNANE AW, KOPSIDAS G, ZHANG C et al.: Cellular redox activity of coenzyme Q10: effect of CoQ10 supplementation on human skeletal muscle. Free Radic. Res. (2002) 36(4):445–453.
  • ECHTAY KS, WINKLER E, KLINGENBERG M: Coenzyme Q is an obligatory cofactor for uncoupling protein function. Nature (2000) 408(6812):609–613.
  • •A novel role is ascribed to CoQm in this pivotal paper.
  • CASTEILLA L, RIGOULET M, PENICAUD L: Mitochondrial ROS metabolism: modulation by uncoupling proteins. IUBMB Life (2001) 52(3-5):181–188.
  • SCHRAUWEN P, HESSELINK M: UCP2 and UCP3 in muscle controlling body metabolism. Exp. Biol. (2002) 205(Pt 15):2275–2285.
  • ECHTAY KS, WINKLER E, FRISCHMUTH K, KLINGENBERG M: Uncoupling proteins 2 and 3 are highly active H(+) transporters and highly nucleotide sensitive when activated by coenzyme Q (ubiquinone). Proc. Natl. Acad. Sci. USA (2001) 98(4):1416–1421.
  • ECHTAY KS, ROUSSEL D, ST-PIERRE J et al.: Superoxide activates mitochondrial uncoupling proteins. Nature (2002) 415(6867):96–99.
  • BEAL MF: Coenzyme Q10 administration and its potential for treatment of neurodegenerative diseases. Biofactors (1999) 9(2-4):261–266.
  • BEAL MF: Coenzyme Q10 as a possible treatment for neurodegenerative diseases. Free Radic. Res. (2002) 36(4):455–460.
  • ROMAGNOLI A, ORADEI A, DESTITO C, IACOCAGNI A, MARIN AW, LITTARRU GP: Protective role in vivo of coenzyme Q10 during reperfusion of ischemic limbs. Ma Aspects Med. (1994) 15(Suppl.):S177–S185.
  • TAKEO S, TANONAKA K, TAZUMA Y, MIYAKE K, MURAI R: Possible mechanism by which coenzyme Q10 improves reoxygenation-induced recovery of cardiac contractile force after hypcoda. Pharmacol Exp. Ther. (1987) 243(3):1131–1138.
  • CRESTANELLO JA, DOLIBA NM, BABSKY AM, NIBORII K, OSBAKKEN MD, WHITMAN GJ: Effect of coenzyme Q10 supplementation on mitochondrial function after myocardial ischemia reperfusion. Surg. Res. (2002) 102(2):221–228.
  • OSTROWSKI RP: Effect of coenzyme Q(10) on biochemical and morphological changes in experimental ischemia in the rat brain. Brain Res. Bull. (2000) 53(4):399–407.
  • BROUILLET E, HENSHAW DR, SCHULZ JB, BEAL MF: Aminooxyacetic acid striatal lesions attenuated by 1,3-butanediol and coenzyme Q10. Neurosci. Lett. (1994) 177(1-2):58–62.
  • BEAL ME HENSHAW DR, JENKINS BG, ROSEN BR, SCHULZ JB: Coenzyme Q10 and nicotinamide block striatal lesions produced by the mitochondrial toxin malonate. Ann. Neuroi (1994) 36(6):882–888.
  • SCHULZ JB, MATTHEWS RT, HENSHAW DR, BEAL MF: Neuroprotective strategies for treatment of lesions produced by mitochondrial toxins: implications for neurodegenerative diseases. Neuroscience (1996) 71(4):1043–1048.
  • MATTHEWS RT, YANG L, BROWNE S, BAIK M, BEAL MF: Coenzyme Q10 administration increases brain mitochondrial concentrations and exerts neuroprotective effects. Proc. Natl. Acad. Sci. USA (1998) 95(15):8892–8897.
  • •An important paper establishing that exogenous Coq.° can permeate the blood-brain barrier and gain access into the CNS.
  • SCHILLING G, COONFIELD ML, ROSS CA, BORCHELT DR: Coenzyme Q10 and remacemide hydrochloride ameliorate motor deficits in a Huntington's disease transgenic mouse model. Neurosci. Lett. (2001) 315(3):149–153.
  • FERANTE RJ, ANDREASSEN OA, DEDEOGLU A et al: Therapeutic effects of coenzyme Q10 and remacemide in transgenic mouse models of Huntington's disease. Neurosci. (2002) 22(5):1592–1599.
  • SANDHU JK, PANDEY S, RIBECCO-LUTKIEWICZ M et al.: Molecular mechanisms of glutamate neurotoxicity in mixed cultures of NT2-derived neurons and astrocytes: protective effects of coenzyme Q10. j Neurosci. Res. (2003) 72(6):691–703.
  • AKANEYA Y, TAKAHASHI M, HATANAKA H: Involvement of free radicals in MPP+ neurotoxicity against rat dopaminergic neurons in culture. Neurosci. Lett. (1995) 193(1):53–56.
  • BEAL ME MATTHEWS RT, TIELEMAN A, SHULTS CW: Coenzyme Qio attenuates the 1-methy1-4-phenyl-1,2,3,tetrahydropyridine (MPTP) induced loss of striatal dopamine and dopaminergic axons in aged mice. Brain Res. (1998) 783(1):109–114.
  • HASEGAWA E, TAKESHIGE K, OISHI T, MURAI Y, MINAKAMI S: 1-Methyl-4-phenylpyridinium (MPP-F) induces NADH-dependent superoxide formation and enhances NADH-dependent lipid perwddation in bovine heart submitochondrial particles. Biochem. Biophys. Res. Commun. (1990) 170(3):1049–1055.
  • SCHULZ JB, HENSHAW DR, MATTHEWS RT, BEAL MF: Coenzyme Q10 and nicotinamide and a free radical spin trap protect against MPTP neurotoxicity. Exp. Neurol. (1995) 132(2):279–283.
  • FALON J, MATTHEWS RT, HYMAN BT, BEAL MF: MPP+ produces progressive neuronal degeneration which is mediated by oxidative stress. Exp. Neurol (1997) 144(1):193–198.
  • FEIGIN A, KIEBURTZ K, COMO P et al.: Assessment of coenzyme Q10 tolerability in Huntington's disease. Mov. Disord. (1996) 11(3):321–323.
  • RANEN NG, PEYSER CE, COYLE JT et al.: A controlled trial of idebenone in Huntington's disease. Mov. Disord (1996) 11(5):549–554.
  • HUNTINGTON STUDY GROUP: A randomized, placebo-controlled trial of coenzyme Q10 and remacemide in Huntington's disease. Neurology(2001) 57(3):397–404.
  • •An RCT showing trends towards improvement with coenzyme Q10 but not remacemide on subscales of the UHDRS.
  • EBADI M, GOVITRAPONG P, SHARMA S et al: Ubiquinone (coenzyme Q10) and mitochondria in oxidative stress of Parkinson's disease. Biol. Signals Recept. (2001) 10(3-4):224–253.
  • JENNER P: Oxidative stress in Parkinson's disease. Ann. Neurol (2003) 53 (Suppl. 3):S26–S36.
  • •A thorough review of the role of reactive oxygen and nitrogen species in PD.
  • HIRSCH EC, BRANDEL JP, GALLE P, JAVOY-AGID F, AGID Y: Iron and aluminum increase in the substantia nigra of patients with Parkinson's disease: an X-ray microanalysis. Neurochem. (1991) 56(2):446–451.
  • GOOD PF, OLANOW CW, PERL DP: Neuromelanin-containing neurons of the substantia nigra accumulate iron and aluminum in Parkinson's disease: a LAMMA study. Brain Res. (1992) 593(2):343–346.
  • SIAN J, DEXTER DT, LEES AJ et al.: Alterations in glutathione levels in Parkinson's disease and other neurodegenerative disorders affecting basal ganglia. Ann. Neurol (1994) 36(3):348–355.
  • ALBANO CB, MURALIKRISHNAN D, EBADI M: Distribution of coenzyme Q homologues in brain. Neurochem. Res. (2002) 27(5):359–368.
  • MCGUIRE SO, LING ZD, LIPTON JW, SORTWELL CE, COLLIER TJ, CARVEY PM: Tumor necrosis factor alpha is toxic to embryonic mesencephalic dopamine neurons. Exp. Neurol (2001) 169(2):219–230.
  • SCHAPIRA AH, COOPER JM, DEXTER D, CLARK JB, JENNER P, MARSDEN CD: Mitochondrial complex I deficiency in Parkinson's disease. Neurochem. (1990) 54(3):823–827.
  • SCHAPIRA AH, MANN VM, COOPER JM et al.: Anatomic and disease specificity of NADH CoQ1 reductase (complex I) deficiency in Parkinson's disease. Neurochem. (1990) 55(6):2142–2145.
  • SHULTS CW, HAAS RH, PASSOV D, BEAL MF: Coenzyme Q10 levels correlate with the activities of complexes I and II/III in mitochondria from parkinsonian and nonparkinsonian subjects. Ann. Neurol (1997) 42(2):261–264.
  • SHULTS CW, OAKES D, KIEBURTZ K et al.: Effects of coenzyme Q10 in early Parkinson's disease: evidence of slowing of the functional decline. Arch. Neurol (2002) 59(10):1541–1550.
  • ••A well-designed RCT demonstrating salutary effects of CoQ10 in early PD.
  • MULLER T, BUTTNER T, GHOLIPOUR A-F, KUHN W: Coenzyme Q10 supplementation provides mild symptomatic benefit in patients with Parkinson's disease. Neurosci. Lett. (2003) 341:201–201.
  • OGASAHARA S, ENGEL AG, FRENS D, MACK D: Muscle coenzyme Q deficiency in familial mitochondrial encephalomyopathy. Proc. Natl. Acad. Sci. USA (1989) 86(7):2379–2382.
  • ROTIG A, APPELKVIST EL, GEROMEL V et al.: Quinone-responsive multiple respiratory-chain dysfunction due to widespread coenzyme Q10 deficiency. Lancet (2000) 356(9227):391–395.
  • MUSUMECI 0, NAINI A, SLONIM AE et al.: Familial cerebellar ataxia with muscle coenzyme Q10 deficiency. Neurology (2001) 56(7):849–855.
  • VAN MALDERGEM L, TRIJBELS F, DIMAURO S et al.: Coenzyme Q-responsive Leigh's encephalopathy in two sisters. Ann. Neurol (2002) 52(6):750–754.
  • SERVIDEI S, SPINAZZOLA A, CROCIANIP et al.: Replacement therapy is is effective in familial mitochondrial encephalomyopathy with muscle CoQ10 deficiency. Neurology (1996) 46:A420.
  • LAMPERTI C, NAINI A, HIRANO M et al.: Cerebellar ataxia and coenzyme Q10 deficiency. Neurology (2003) 60(7):1206–1208.
  • RAHMAN S, HARGREAVES I, CLAYTON P, HEALES S: Neonatal presentation of coenzyme Q10 deficiency. Pediam. (2001) 139(3):456–458.
  • OGASAHARA S, YORIFUGI S, NISHIKAWA Y et al.: Improvement of abnormal pyruvate metabolism and cardiac conduction defect with coenzyme Q10 in Kearns-Sayre syndrome. Neurology (1985) 35(3):372–377.
  • MATSUOKA T, MAEDA H, GOTO Y, NONAKA I: Muscle coenzyme Q10 in mitochondrial encephalomyopathies. Neuromuscul Disord (1991) 1(6):443–447.
  • CHAN TS, TENG S, WILSON JX, GALATI G, KHAN S, O'BRIEN PJ: Coenzyme Q cytoprotective mechanisms for mitochondrial complex I cytopathies involves NAD(P)H: quinone wddoreductase 1(NQ01). Free Radic. Res. (2002) 36(4):421–427.
  • OGASAHARA S, NISHIKAWA Y, YORIFUGI S et al.: Treatment of Kearns-Sayre syndrome with coenzyme Q10. Neurology (1986) 36(1)45–53.
  • CHARIOT P, BRUGIERES P, ELIEZER-VANEROT MC, GENY C, BINAGHI M, CESARO P: Choreic movements and MRI abnormalities in the subthalamic nuclei reversible after administration of coenzyme Q10 and multiple vitamins in a patient with bilateral optic neuropathy. Mov. Disord. (1999) 14(5):855–859.
  • NISHIKAWA Y, TAKAHASHI M, YORIFUJI Y et al.: Long-term coenzyme Q10 therapy for a mitochondrial encephalomyopathy with cytochrome c oxidase deficiency: a 31P NMR study. Neurology (1989) 39(3):399–403.
  • SUZUKI S, HINOKIO Y, OHTOMO M et al.: The effects of coenzyme Q 10 treatment on maternally inherited diabetes mellitus and deafness, and mitochondrial DNA 3243 (A to G) mutation. Diabetologia (1998) 41(5):584–588.
  • BENDAHAN D, DESNUELLE C, VANUXEM D et al.: 3IP NMR spectroscopy and ergometer exercise test as evidence for muscle oxidative performance improvement with coenzyme Q in mitochondrial myopathies. Neurology (1992) 42(6):1203–1208.
  • IKEJIRI Y, MORI E, ISHII K, NISHIMOTO K, YASUDA M, SASAKI M: Idebenone improves cerebral mitochondrial oxidative metabolism in a patient with MELAS. Neurology (1996) 47(2):583–585.
  • LIOU CW, HUANG CC, UN TK, TSAI JL, WEI YH: Correction of pancreatic beta-cell dysfunction with coenzyme Q(10) in a patient with mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes syndrome and diabetes mellitus. Eur. Neurol (2000) 43(1):54–55.
  • HUANG CC, KUO HC, CHU CC, KAO LY: Rapid visual recovery after coenzyme Q10 treatment of leber hereditary optic neuropathy. I Neuroophthalmol. (2002) 22(1):66.
  • MASHIMA Y, KIGASAWA K, WAKAKURA M, OGUCHI Y: Do idebenone and vitamin therapy shorten the time to achieve visual recovery in Leber hereditary optic neuropathy? Neuroophthalmol (2000) 20(3):166–170.
  • BRES OLIN N, DORIGUZZI C, PONZETTO C et al.: Ubidecarenone in the treatment of mitochondrial myopathies: a multi-center double-blind trial. .1 Neurol Sci (1990) 100(1–2):70–78.
  • CHEN RS, HUANG CC, CHU NS: Coenzyme Q10 treatment in mitochondrial encephalomyopathies. Short-term double-blind, crossover study. Eur: Neurol (1997) 37(4):212–218.
  • HAUSSE AO, AGGOUN Y, BONNET D et al.: Idebenone and reduced cardiac hypertrophy in Friedreich's ataxia. Heart (2002) 87(4):346–349.
  • RUSTIN P, ROTIG A, MUNNICH A, SIDI D: Heart hypertrophy and function are improved by idebenone in Friedreich's ataxia. Free Radic. Res (2002) 36(4):467–469.
  • BUYSE G, MERTENS L, DI SALVO G et al.: Idebenone treatment in Friedreich's ataxia: neurological, cardiac, and biochemical monitoring. Neurology (2003) 60(10):1679–1681.
  • MARIOTTI C, SOLARI A, TORTA D, MARANO L, FIORENTINI C, DI DONATO S: Idebenone treatment in Friedreich patients: one-year-long randomized placebo-controlled trial. Neurology (2003) 60(10):1676–1679.
  • SORESCU D, GRIENDLING KK: Reactive oxygen species, mitochondria, and NAD(P)H oxidases in the development and progression of heart failure. Congest. Heart Fail. (2002) 8(3):132–140.
  • LODI R, HART PE, RAJAGOPALAN B et al.: Antioxidant treatment improves in vivo cardiac and skeletal muscle bioenergetics in patients with Friedreich's ataxia. Ann. Neurol (2001) 49(5):590–596.
  • SCHOLS L, VOGERD M, SCHILLINGS M, SKIPKA G, ZANGE J: Idebenone in patients with Friedreich ataxia. Neurosci. Lett (2001) 306(3):169–172.
  • MARANGON K, DEVARAJ S, TIROSH 0 et al.: Comparison of the effect of alpha-lipoic acid and alpha-tocopherol supplementation on measures of oxidative stress. Free Radic. Biol. Med (1999) 27:1114–1121.
  • WHITEMAN M, TRITSCHLER H, HALLIWELL B: Protection against peroxynitrite-dependent tyrosine nitration and arantiproteinase inactivation by oxidized and reduced lipoic acid. FEBS Lett (1996) 379:74–76.
  • WOLZ P, KRIEGLSTEIN J: Neuroprotective effects of alpha-lipoic acid and its enantiomers demonstrated in rodent models of focal cerebral ischemia. Neuropharmacology (1996) 35:369–375.
  • HAGEN TM, INGERSOLL RT, LYKKESFELDT J et al.: (A-alpha-lipoic acid-supplemented old rats have improved mitochondrial function, decreased oxidative damage, and increased metabolic rate. FASEB J. (1999) 13:411–418.
  • BURKE D, CHILIBECK P, PARISE G, TARNOPOLSKY M, CANDOW D: The effect of a-lipoic acid combined with creatine monohydrate on human skeletal muscle creatine and phosphagen concentration. Sport Num. Exerc. Met. (2003) (In press).
  • MIDAOUI AE, ELIMADI A, WU L, HADDAD PS, DE CHAMPLAIN J: Lipoic acid prevents hypertension, hyperglycemia, and the increase in heart mitochondrial superoxide production. Am. Hypertens. (2003) 16(3):173–179.
  • BARBIROLI B, MEDORI R, TRITSCHLER HJ et al.: Lipoic (thioctic) acid increases brain energy availability and skeletal muscle performance as shown by in vivo 31P-MRS in a patient with mitochondrial cytopathy.f. Neurol (1995) 242:472–477.
  • HAAK E, USADEL KH, KUSTERER K et al.: Effects of alpha-lipoic acid on microcirculation in patients with peripheral diabetic neuropathy. Exp. Clio. Endocrinol Diabetes (2000) 108:168–174.
  • ANDRONE L, GAVAN NA, VERESIU IA, ORASAN R: In vivo effect of lipoic acid on lipid perwddation in patients with diabetic neuropathy. In vivo (2000) 14:327–330.
  • ZIEGLER D, HANEFELD M, RUHNAU KJ et al.: Treatment of symptomatic diabetic peripheral neuropathy with the anti-oxidant alpha-lipoic acid. A 3-week multicentre randomized controlled trial (ALADIN Study). Diabetologia (1995) 38(12):1425–1433.
  • RELJANOVIC M, REICHEL G, RETT K et al.: Treatment of diabetic polyneuropathy with the antioxidant thioctic acid (alpha-lipoic acid): a two year multicenter randomized double-blind placebo-controlled trial (ALADIN II). Alpha Lipoic Acid in Diabetic Neuropathy. Free Radic. Res. (1999) 31(3):171–179.
  • ZIEGLER D, HANEFELD M, RUHNAU KJ et al.: Treatment of symptomatic diabetic polyneuropathy with the antioxidant alpha-lipoic acid: a 7-month multicenter randomized controlled trial (ALADIN III Study). ALADIN III Study Group. Alpha-Lipoic Acid in Diabetic Neuropathy. Diabetes Care (1999) 22(8):1296–1301.
  • AMETOV AS, BARINOV A, DYCK PJ et al.: The sensory symptoms of diabetic polyneuropathy are improved with alpha-lipoic acid: the SYDNEY trial. Diabetes Care (2003) 26(3):770–776.
  • RUHNAU KJ, MEISSNER HP, FINN JR et al.: Effects of 3-week oral treatment with the antioxidant thioctic acid (alpha-lipoic acid) in symptomatic diabetic polyneuropathy. Diabet. Merl (1999) 16(12):1040–1043.
  • ZIEGLER D, RELJANOVIC M, MEHNERT H, GRIES FA: Alpha-lipoic acid in the treatment of diabetic polyneuropathy in Germany: current evidence from clinical trials. Exp. Clin. Endocrinol Diabetes (1999) 107(7):421–430.
  • GALLAGHER PM, CARRITHERS JA, GODARD MP, SCHULZE KE, TRAPPE SW: Beta-hydroxy-beta-methylbutyrate ingestion, Part I: effects on strength and fat free mass. Med. Sci. Sports Exerc. (2000) 32(12):2109–2115.
  • GALLAGHER PM, CARRITHERS JA, GODARD MP, SCHULZE KE, TRAPPE SW: Beta-hydroxy-beta-methylbutyrate ingestion, part II: effects on hematology, hepatic and renal function. Med. Sci. Sports Everc. (2000) 32(12):2116–2119.
  • MAY PE, BARBER A, D'OLIMPIO JT, HOURIHANE A, ABUMRAD NN: Reversal of cancer-related wasting using oral supplementation with a combination of beta-hydroxy-beta-methylbutyrate, arginine, and glutamine. Am. j Surg. (2002) 183(4):471–479.
  • CLARK RH, FELEKE D, DIN M et al.: Nutritional treatment for acquired immunodeficiency virus-associated wasting using beta-hydroxy beta-methylbutyrate, glutamine, and arginine: a randomized, double-blind, placebo-controlled study. JPENJ Parenter. Enteral Nutr. (2000) 24(3):133–139.
  • VUKOVICH MD, STUBBS NB, BOHLKEN RM: Body composition in 70-year-old adults responds to dietary beta-hydroxy-beta-methylbutyrate similarly to that of young adults.' Nutr. (2001) 131(7):2049–2052.
  • PANTON LB, RATHMACHER JA, BAIER S, NISSEN S: Nutritional supplementation of the leucine metabolite beta-hydroxy-beta-methylbutyrate (hmb) during resistance training. Nutrition (2000) 16(9):734–739.
  • KNITTER AE, PANTON L, RATHMACHER JA, PETERSEN A, SHARP R: Effects of beta-hydroxy-beta-methylbutyrate on muscle damage after a prolonged run. Appl. Physiol (2000) 89(4):1340–1344.
  • NISSEN S, SHARP RL, PANTON L, VUKOVICH M, TRAPPE S, FULLER JC Jr: 13-Hydroxy-I3-methylbutyrate (HMB) supplementation in humans is safe and may decrease cardiovascular risk factors.' Nutr. (2000) 130(8):1937–1945.
  • ELIASSON MJL, SAMPEI K, MANDIR AS et al.: Poly(ADP-ribose) polymerase gene disruption renders mice resistent to cerebral ischemia. Nat. Med. (1997) 3:1089–1095.
  • AYOUB IA, LEE EJ, OGILVY CS et al: Nicotinamide reduces infarction up to two hours after the onset of permanent focal cerebral ischemia in Wistar rats. Neurosci. Lett. (1999) 259:21–24.
  • MANDIR AS, PRZEDBORSKI S, JACKSON-LEWIS V et al.: Poly(ADP-ribose) polymerase activation mediates 1-methyl-4-phenyl-1, 2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism. Proc. Natl. Acad. Sci. USA (1999) 96:5774–5779.
  • COSI C, MARIEN M: Decreases in mouse brain NAD+ and ATP induced by 1-methy1-4-pheny1-1,2,3,6-tetrahydropyridine (MPTP): prevention by the poly(ADP-ribose) polymerase inhibitor, benzamide. Brain Res (1998) 809:58–67.
  • SADANAGA-AKIYOSHI F, YAO H, TANUMA S et al.: Nicotinamide attenuates focal ischemic brain injury in rats: with special reference to changes in nicotinamide and NAD± levels in ischemic core and penumbra. Neurochem. Res. (2003) 28(8):1227–1234.
  • MAJAMAA K, RUSANEN H, REMES AM et al.: Increase of blood NAD± and attenuation of lactacidemia during nicotinamide treatment of a patient with the MELAS syndrome. Life Sci. (1996) 58:691–699.
  • PENN AMW, LEE JWK, THUILLIER P et al.: MELAS syndrome with mitochondrial tRNALeu(UUR) mutation: Correlation of clinical state, nerve conduction, and muscle 31P magnetic resonance spectroscopy during treatment with nicotinamide and riboflavin. Neurology (1992) 42:2147–2152.
  • BERNSEN PLJA, GABREELS FJM, RUITENBEEK W, HAMBURGER HL: Treatment of complex I defiency with riboflavin.' Neurol Sci. (1993) 118:181–187.
  • OGLE RF, CHRISTODOULOU J, FAGAN E et al.: Mitochondrial myopathy with tRNA(Leu(UUR)) mutation and complex I deficiency responsive to riboflavin. Pediatc (1997) 130:138–145.
  • SCHOLTE HR, BUSCH HF, BAKKER HD et al.: Riboflavin-responsive complex I deficiency. Biochlin. Biophys. Acta (1995) 1271:75–83.
  • ANTOZZI C, GARAVAGLIA B, MORA M et al: Late-onset riboflavin-responsive myopathy with combined multiple acyl coenzyme A dehydrogenase and respiratory chain deficiency. Neurology (1994) 44:2153–2158.
  • PELUCHETTI D, ANTOZZI C, ROI S et al.: Riboflavin responsive multiple acyl-CoA dehydrogenase deficiency: functional evaluation of recovery after high dose vitamin supplementation. I Neurol Sci (1991) 105:93–98.
  • VERGANI L, BARTLE M, ANGELINI C et al.: Riboflavin therapy. Biochemical heterogeneity in two adult lipid storage myopathies. Brain (1999) 122:2401–2411.
  • PARKINSON STUDY GROUP: Effect of tocopherol and deprenyl on the progression of disability in early Parkinson's disease. New Engl. Med. (1989) 321:1364–1371.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.