56
Views
14
CrossRef citations to date
0
Altmetric
Review

Platelets, atherosclerosis and the endothelium: new therapeutic targets?

&
Pages 1765-1776 | Published online: 02 Mar 2005

Bibliography

  • ROSS R: Atherosclerosis - an inflammatory disease. N Engl. I Med. (1999) 340:115–126.
  • MASSBERG S, BRAND K, GRUNER S et al.: A critical role of platelet adhesion in the initiation of atherosclerotic lesion formation. Exp. Med. (2002) 196:887–896.
  • ••Excellent basic science paper on theimportance of platelets in atherosclerosis.
  • COLEMAN RA, SMITH WL, NARUMIYA S: International Union of Pharmacology classification of prostanoid receptors: properties, distribution, and structure of the receptors and their subtypes. Pharinacol Rev (1994) 46:205–229.
  • FEELISCH M, TE POEL M, ZAMORA Ret al.: Understanding the controversy over the identity of EDRF. Nature (1994) 368:62–65.
  • BIRK AV, BROEKMAN MJ, GLADEK EM et al.: Role of extracellular ATP metabolism in regulation of platelet reactivity. J. Lab. Clin. Med. (2002) 140:166–175.
  • FITZPATRICK FA, SOBERMAN R: Regulated formation of eicosanoids. Clin. Invest. (2001) 107:1347–1351.
  • PATRIGNANI P, SCIULLI MG, MANARINI S et al: COX-2 is not involved in thromboxane biosynthesis by activated human platelets. J. Physiol PharinacoL (1999) 50:661–667.
  • SMITH WL: The eicosanoids and their biochemical mechanisms of action. Biochein. J. (1989) 259:315–324.
  • NAKAGAWA 0, TANAKA I, USUI T et al.: Molecular cloning of human prostacyclin receptor cDNA and its gene expression in the cardiovascular system. Circulation (1994) 90:1643–1647.
  • NERI SERNERI GG, MODESTI PA, FORTINI A et al.: Reduction in prostacyclin platelet receptors in active spontaneous angina. Lancet (1984) 2:838–841.
  • FEINSTEIN MB, EGAN JJ, SHA'AFI RI,WHITE J: The cytoplasmic concentration of free calcium in platelets is controlled by stimulators of cyclic AMP production (PGD2, PGE1, forskolin). Biochein. Biophys. Res. Commun. (1983) 113:598–604.
  • DUSTING GJ, MACDONALD PS: Prostacyclin and vascular function: implications for hypertension and atherosclerosis. Pharmacol Then (1990) 43:323–344.
  • TAKAHARA K, MURRAY R, FITZGERALD GA, FITZGERALD DJ: The response to thromboxane A2 analogues in human platelets. Discrimination of two binding sites linked to distinct effector systems. J. Biol. Chem. (1990) 265:6836–6844.
  • HALUSHKA PV, MAIS DE, SAUSSY DL Jr: Platelet and vascular smooth muscle thromboxane A2/ prostaglandin H2 receptors. Fed. Proc. (1987) 46:149–153.
  • SACHINIDIS M, FLESCH Y, KO K et al: Thromboxane A(2) and vascular smooth muscle cell proliferation. Hypertension (1995) 26:771–780.
  • FITZGERALD DJ, ROY L, CATELLA F, FITZGERALD GA: Platelet activation in unstable coronary disease. N EngL Med. (1986) 315:983–989.
  • DAVI G, GRESELE P, VIOLI F et al: Diabetes mellitus, hypercholesterolemia, and hypertension but not vascular disease per se are associated with persistent platelet activation in vivo. Evidence derived from the study of peripheral arterial disease. Circulation (1997) 96:69–75.
  • KAWASAKI T, OZEKI Y, IGAWA T, KAMBAYASHI J: Increased platelet sensitivity to collagen in individuals resistant to low-dose aspirin. Stroke (2000) 31:591–595.
  • EIKELBOOM JW, HANKEY GJ: Aspirinresistance: a new independent predictor of vascular events? Am. Coll CardioL (2003) 41:966–968.
  • ANTITHROMBOTIC TRIALISTS' COLLABORATION: Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. Br. Med. J. (2002) 324:71–86.
  • •The definitive guide to aspirin therapy.
  • GUM PA, KOTTKE-MARCHANT K, WELSH PA et al.: A prospective, blinded determination of the natural history of aspirin resistance among stable patients with cardiovascular disease. J. Am. Coll Cardiol (2003) 41:961–965.
  • EIKELBOOM JW, HIRSH J, WEITZ JI et al.: Aspirin-resistant thromboxane biosynthesis and the risk of myocardial infarction, stroke, or cardiovascular death in patients at high risk for cardiovascular events. Circulation (2002) 105:1650–1655.
  • KARIM S, HABIB A, LEVY- TOLEDANO S et al.: Cyclooxygenase-1 and -2 of endothelial cells utilize exogenous or endogenous arachidonic acid for transcellular production of thromboxane. J. Biol. Chem. (1996) 271:12042–12048.
  • MORROW JD, HILL KE, HILL KE et al.: A series of prostaglandin F2-like compounds are produced in vivo in humans by a non-cyclooxygenase, free radical-catalyzed mechanism. Proc. Natl. Acad. Sci. USA (1990) 87:9383–9387.
  • TAKAHASHI K, NAMM OUR TM, FUKUNAGA M et al.: Glomerular actions of a free radical-generated novel prostaglandin, 8-epi-prostaglandin F2 alpha, in the rat. Evidence for interaction with thromboxane A2 receptors. J. Clin. Invest. (1992) 90:136–141.
  • AUDOLY LP, ROCCA B, FABRE JE et al: Cardiovascular responses to the isoprostanes iPF(2a)-III and iPE(2)-III are mediated via the thromboxane A(2) receptor in vivo. Circulation (2000) 101:2833–2840.
  • GRESELE P, DECKMYN H, NENCI GG, VERIVIYLEN J: Thromboxane synthase inhibitors, thromboxane receptor antagonists and dual blockers in thrombotic disorders. Trends PharmacoL Sci. (1991) 12:158–163.
  • BALSANO F, VIOLI F: Effect of picotamide on the clinical progression of peripheral vascular disease. A double-blind placebo-controlled study. Circulation (1993) 87:1563–1569.
  • BUCCELLATI C, CICERI P, BALLERIO R et al.: Evaluation of the effects of anti-thromboxane agents in platelet-vessel wall interaction. Ear: J. Pharmacol (2002) 443:133–141.
  • RATTI S, OUARATO C, CASAGRANDE R et al.: Picotamide, an antithromboxane agent, inhibits the migration and proliferation of arterial myocytes. Eur. Phannacol (1998) 355:77–83.
  • COCCOZZA M, PICANO T, OLIVIERO U et al.: Effects of picotamide, an antithromboxane agent, on carotid atherosclerotic evolution. A two-year, double blind, placebo-controlled study in diabetic patients. Stroke (1995) 26:597–601.
  • ••Good paper on the atheromodulatoryeffect of a neglected class of drugs.
  • CAYATTE AJ, DU Y, OLIVER-KRASINSKI J et al.: The thromboxane receptor antagonist S18886 but not aspirin inhibits atherogenesis in apo E-deficient mice: evidence that eicosanoids other than thromboxane contribute to atherosclerosis. Arterioscler. Thromb. Vase. Biol. (2000) 20:1724–1728.
  • GACHET C, CATTANEO M, OHLMANN P et al.: Purinoceptors on blood platelets: further pharmacological and clinical evidence to suggest the presence of two ADP receptors. Br. J. Haematol (1995) 91:434–444.
  • JIN J, DANIEL JL, KUNAPULI SP: Molecular basis for ADP-induced platelet activation. J. Biol. Chem. (1998) 273:2030–2034.
  • OURY C, TOTH-ZSAMBOKI E, THYS C et al.: The ATP-gated P2X1 ion channel acts as a positive regulator of platelet responses to collagen. Thromb. Haemost. (2001) 86:1264–1271.
  • HOLLOPETER G, JANTZEN H, VINCENT D et al.: Identification of the platelet ADP receptor targeted by antithrombotic drugs. Nature (2001) 409:202–207.
  • SAVI P, PEREILLO JM, UZABIAGA MFet al.: Identification and biological activity of the active metabolite of clopidogrel. Thromb. Haemost. (2000) 84:891–896.
  • BHATT DL, HIRSCH AT, RINGLEB PA et al.: Reduction in the need for hospitalization for recurrent ischemic events and bleeding with clopidogrel instead of aspirin. CAPRIE investigators. Am. Heart J. (2000) 140:67–73.
  • BAURAND A, GACHET C: The P2Y(1) receptor as a target for new antithrombotic drugs: a review of the P2Y(1) antagonist MRS-2179. Cardiovasc. Drug Rev (2003) 21:67–76.
  • MARCUS AJ, BROEKMAN MJ, DROSOPOULOS JH et al: The endothelial cell ecto-ADPase responsible for inhibition of platelet function is CD39. Clin. Invest. (1997) 99:1351–1360.
  • ROBSON SC, KACZMAREK E, SIEGEL JB et al.: Loss of ATP diphosphohydrolase activity with endothelial cell activation. J. Exp. Med. (1997) 185:153–163.
  • GANGADHARAN SP, IMAI M, RHYNHART KK et al.: Targeting platelet aggregation: CD39 gene transfer augments nucleoside triphosphate diphosphohydrolase activity in injured rabbit arteries. Surgery(2001) 130:296–303.
  • MARCUS AJ, BROEKMAN MJ, DROSOPOULOS JH et al.: Inhibition of platelet recruitment by endothelial cell CD39/ecto-ADPase: significance for occlusive vascular diseases. Ital. Heart J. (2001) 2:824–830.
  • MARCUS AJ, SAFIER LB, HADAR KA et al.: Inhibition of platelet function by an aspirin-insensitive endothelial cell ADPase. Thromboregulation by endothelial cells. Clin. Invest. (1991) 88:1690–1696.
  • LEDENT C, VAUGEOIS JM, SCHIFFMANN SN et al.: Aggressiveness, hypoalgesia and high blood pressure in mice lacking the adenosine A2a receptor. Nature (1997) 388:674–678.
  • SALZMAN EW: Cyclic AMP and platelet function. N Engl. J. Med. (1978) 286:358–363.
  • MELLION BT, IGNARRO LJ, OHLSTEIN EH et al.: Evidence for the inhibitory role of guanosine 3',Y-monophosphate in ADP-induced human platelet aggregation in the presence of nitric oxide and related vasodilators. Blood(1981) 57:946–955.
  • MURAD F: Cyclic guanosine monophosphate as a mediator of vasoclilation.j Clin. Invest. (1986) 78:1–5.
  • STASCH JP, BECKER EM, ALONSO-ALIJA C et al.: NO-independent regulatory site on soluble guanylate cyclase. Nature (2001) 410:212–215.
  • WU CC: YC-1 inhibited human platelet aggregation through NO-independent activation of soluble guanylate cyclase. Br. J. Pharmacol (1995) 116:1973–1978.
  • HASLAM RJ, DICKINSON NT, JANG EK: Cyclic nucleotides and phosphodiesterases in platelets. Thromb. Haemost. (1999) 82:412–423.
  • FELKER GM, BENZA RL, CHANDLER AB et al.: Heart failure etiology and response to milrinone in decompensated heart failure: results from the OPTIME-CHF study. I Am. Coll Cardiol (2003) 41:997–1003.
  • DAWSON DL, CUTLER BS, MEISSNER MH, STRANDNESS DE Jr: Cilostazol has beneficial effects in treatment of intermittent claudication: results from a multicenter, randomized, prospective, double-blind trial. Circulation (1998) 98:678–686.
  • THE PROMISE STUDY RESEARCH GROUP: Effect of oral milrinone on mortality in severe chronic heart failure. The PROMISE Study Research Group. N. Engl. J. Med. (1991) 325:1468–1475.
  • THOMPSON PD, ZIMET R, FORBES WP, ZHANG P: Meta-analysis of results from eight randomized, placebo-controlled trials on the effect of cilostazol on patients with intermittent claudication. Am. Cardiol (2002) 90:1314–1319.
  • IKEDA Y, KIKUCHI M, MURAKAMI H et al.: Comparison of the inhibitory effects of cilostazol, acetylsalicylic acid and ticlopidine on platelet functions ex vivo. Randomized, double-blind cross-over study. Arzneimittelforschung (1987) 37:563–566.
  • SHINODA-TAGAWA T, YAMASAKI Y, YOSHIDA S et al.: A phosphodiesterase inhibitor, cilostazol, prevents the onset of silent brain infarction in Japanese subjects with Type II diabetes. Diabetologia (2002) 45:188–194.
  • TANAKA T, ISHIKAWA T, HAGIWARA M et al: Effect of cilostazol, a selective cAMP phosphodiesterase inhibitor on the contraction of vascular smooth muscle. Pharmacology(1998) 36:313–320.
  • IKEWAKI K, MOCHIZUKI K, NVASAKI M et al.: Cilostazol, a potent phosphodiesterase Type III inhibitor, selectively increases antiatherogenic high-density lipoprotein subclass LpA-I and improves postprandial lipemia in patients with Type 2 diabetes mellitus. Metabolism (2002) 51:1348–1354.
  • SANCHEZ LS, DE LA MONTE SM, FILIPPOV G et al.: Cyclic-GMP-binding, cyclic-GMP-specific phosphodiesterase (PDE5) gene expression is regulated during rat pulmonary development. Pedian: Res. (1998) 43:163–168.
  • MICHELAKIS E, TYMCHAK W, LIEN D et al.: Oral sildenafil is an effective and specific pulmonary vasodilator in patients with pulmonary arterial hypertension: comparison with inhaled nitric oxide. Circulation (2002) 105:2398–2403.
  • SASTRY BK, NARASIMHAN C, REDDY NK et al.: A study of clinical efficacy of sildenafil in patients with primary pulmonary hypertension. Indian Heart (2002) 54:410–414.
  • PALMER RIVI, ASHTON DS, MONCADA S: Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature (1998) 333:664–666.
  • HUANG PL, HUANG Z, MASHIMO H et al.: Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature (1995) 377:196–197.
  • STAMLER JS, LOH E, RODDY MA et al.: Nitric oxide regulates basal systemic and pulmonary vascular resistance in healthy humans. Circulation (1994) 89:2035–2040.
  • SIMON DI, STAMLER JS, LOH E et al.: Effect of nitric oxide synthase inhibition on bleeding time in humans. Cardiovasc. Pharmacol (1995) 26:339–342.
  • FREEDMAN JE, SAUTER R, BATTINELLI EM et al.: Deficient platelet-derived nitric oxide and enhanced hemostasis in mice lacking the NOSIII gene. Circ. Res. (1999) 84:1421.
  • KADER KN, AKELLA RN, ZIATS NP et al.: eN0S-overexpressing endothelial cells inhibit platelet aggregation and smooth muscle cell proliferation M vitro Tissue Eng. (2000) 6:241-251.
  • CARDILLO C, KILCOYNE CM, QUYYUMI AA et al.: Selective defect in nitric oxide synthesis may explain the impaired endothelium-dependent vasodilation in patients with essential hypertension. Circulation (1998) 97:851–856.
  • ZEIHER AM, DREXLER H, SAUBIER B,JUST H: Endothelium-mediated coronary blood flow modulation in humans. Effects of age, atherosclerosis, hypercholesterolemia, and hypertension. Clin. Invest. (1993) 92:652–662.
  • SAENZ DE TEJADA I, GOLDSTEIN I, AZADZOI K et al.: Impaired neurogenic and endothelium-mediated relaxation of penile smooth muscle from diabetic men with impotence. N Engl. I Med. (1989) 320:1025–1030.
  • MINOR RL Jr, MYERS PR, GUERRA R Jr et al.: Diet-induced atherosclerosis increases the release of nitrogen oxides from rabbit aorta. J. Clin. Invest. (1990) 86:2109–2116.
  • MEHTA JL, LOPEZ LM, CHEN L, COX OE: Alterations in nitric oxide synthase activity, superoxide anion generation, and platelet aggregation in systemic hypertension, and effects of celiprolol. Am. Cardiol (1994) 74:901–905.
  • OHARA Y, PETERSON TE, HARRISON DG: Hypercholesterolemia increases endothelial superoxide anion production. .1. Clin. Invest. (2003) 91:2546–2551.
  • LANGENSTROER P, PIEPER GM: Regulation of spontaneous EDRF release in diabetic rat aorta by oxygen free radicals. Am. .1 Physiol (1992) 263:H257–H265.
  • GOLDSTEIN S, CZAPSKI G: The role ofthe reactions of 'NO with superoxide and oxygen in biological systems: a kinetic approach. Free Radic. Biol. Med. (1995) 19:785–794.
  • TAKEUCHI K, YASUHIRO T, ASADA Y, SUGAWA Y: Role of nitric oxide in pathogenesis of aspirin-induced gastric mucosal damage in rats. Digestion (1998) 59:298–307.
  • LECHI C, ANDRIOLI G, GAINO S et al:The antiplatelet effects of a new nitroderivative of acetylsalicylic acid - an M vitro study of inhibition on the early phase of platelet activation and on TXA2 production. Thromb. Haemost. (1996) 76:791–798.
  • NAPOLI C, ACKAH E, DE NIGRIS F et al.: Chronic treatment with nitric oxide-releasing aspirin reduces plasma low-density lipoprotein oxidation and oxidative stress, arterial oxidation-specific epitopes, and atherogenesis in hypercholesterolemic mice. Proc. Natl. Acad. Sci. USA (2002) 99:12467–12470.
  • MOMI S, EMERSON M, PAUL W et al.: Prevention of pulmonary thromboembolism by NCX 4016, a nitricoxide-releasing aspirin. Ear: Pharmacol (2000) 397:177–185.
  • WALLACE JL, MCKNIGHT W, DEL SOLDATO P et al.: Anti-thrombotic effects of a nitric oxide-releasing, gastric- sparing aspirin derivative. j Clin. Invest. (1995) 96:2711–2718.
  • FIORUCCI S, SANTUCCI L, GRESELE P et al.: Gastrointestinal safety of NO-aspirin (NCX-4016) in healthy human volunteers: a proof of concept endoscopic study. Gastroenterology(2003) 124:600–607.
  • SAVAGE B, SIXMA JJ, RUGGERI ZM: Functional self-association of von Willebrand factor during platelet adhesion under flow. Proc. Nati Acad. Sci. USA (2002) 99:425–430.
  • SAVAGE B, ALMUS-JACOBS F, RUGGERI ZM: Specific synergy of multiple substrate-receptor interactions in platelet thrombus formation under flow. Cell (1998) 94:657–666.
  • FUJIMURA Y, TITANI K, HOLLAND LZ et al.: von Willebrand factor. A reduced and alkylated 52/48-kDa fragment beginning at amino acid residue 449 contains the domain interacting with platelet glycoprotein lb. J. Biol. Chem. (1986) 261:385.
  • INBAL A, GUREVITZ 0, TAMARIN I et al.: Unique antiplatelet effects of a novel S-nitrosoderivative of a recombinant fragment of von Willebrand factor, AR545C: M vitro and ex vivo inhibition of platelet function. Blood (1999) 94:1693–1700.
  • HYNES RO: Integrins: versatility, modulation, and signaling in cell adhesion. Cell (1992) 69:11–25.
  • WAGNER CL, MASCELLI MA, NEBLOCK DS et al.: Analysis of GPIIb/ IIIa receptor number by quantification of 7E3 binding to human platelets. Blood (1996) 88:907–914.
  • CRAMER EM, SAVIDGE GE VAICHENKER W et al.: Alpha-granule pool of glycoprotein IIb-IIIa in normal and pathologic platelets and megakaryocytes. Blood (1990) 75:1220–1227.
  • PEERSCHKE El: Regulation of platelet aggregation by post-fibrinogen binding events. Insights provided by dithiothreitol-treated platelets. Thromb. Haemost. (1995) 73:862–867.
  • FOX JE, REYNOLDS CC, AUSTIN CD:The role of calpain in stimulus-response coupling: evidence that calpain mediates agonist-induced expression of procoagulant activity in platelets. Blood (1990) 76:2510–2519.
  • SIMS PJ, WIEDMER T, ESMON CT et al.: Assembly of the platelet prothrombinase complex is linked to vesiculation of the platelet plasma membrane. Studies in Scott syndrome: an isolated defect in platelet procoagulant activity. Biol. Chem. (1989) 264:17049–17057.
  • CAIRNS JA, THEROUX P, LEWIS HD Jr et al.: Antithrombotic agents in coronary artery disease. Chest (2001) 119:228S–252S.
  • FRENETTE PS, JOHNSON RC, HYNES RO, WAGNER DD: Platelets roll on stimulated endothelium in vivo: an interaction mediated by endothelial P-selectin. Proc. Natl. Acad. Sci. USA (1995) 92:7250–7254.
  • MASSBERG S, ENDERS G, LEIDERER R et al.: Platelet-endothelial cell interactions during ischemia/ reperfusion: the role of P-selectin. Blood (1998) 92:507–515.
  • BERMAN CL, YEO EL, WENCEL-DRAKE JD et al.: A platelet alpha granule membrane protein that is associated with the plasma membrane after activation. Characterization and subcellular localization of platelet activation-dependent granule-external membrane protein. J. Clic]. Invest. (1986) 78:130–137.
  • LARSEN E, CELI A, GILBERT GE et al.: PADGEM protein: a receptor that mediates the interaction of activated platelets with neutrophils and monocytes. Cell (1989) 59:305–312.
  • MCEVER RP, CUMMINGS RD: Role ofPSGL-1 binding to selectins in leukocyte recruitment. Clin. Invest. (1997) 100:485–492.
  • TAN KT, LIP GYH, BLANN AD: Post-stroke Inflammatory Response: Effects of Stroke Evolution and Outcome. Can: Atherosclec Rep. (2003) 5:245–251.
  • HUO Y, SCHOBER A, FORLOW SB et al.: Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E. Nat. Med. (2003) 9:61–67.
  • ••Excellent paper demonstrating a directpathophysiological role of platelets on atheromatous growth.
  • PINSKY DJ, NAKA Y, LIAO H et al.: Hypcoda-induced exocytosis of endothelial cell weibel-palade bodies. A mechanism for rapid neutrophil recruitment after cardiac preservation .j. Gin. Invest. (1996) 97:493–500.
  • FURMAN MI, BARNARD MR, KRUEGER LA: Circulating monocyte- platelet aggregates are an early marker of acute myocardial infarction. Am. Coll. Cardiol. (1998) 31:352–358.
  • AULT KA, CANNON CP, MITCHELL J et al.: Platelet activation in patients after an acute coronary syndrome: results from the TIMI-12 trial. Thrombolysis in Myocardial Infarction.' Am. Coll. Cardiol. (1999) 33:634–639.
  • KAMATH S, BLANN AD, CAINE GJ et al.: Platelet P-selectin levels in relation to plasma soluble P-selectin and beta-thromboglobulin levels in atrial fibrillation. Stroke (2002) 33:1237–1242.
  • DAVI G, ROMANO M, MEZZETTI A et al.: Increased levels of soluble P-selectin in hypercholesterolemic patients. Circulation (1998) 97:953–957.
  • KOYAMA H, MAENO T, FUKUMOTO S et al.: Platelet P-selectin expression is associated with atherosclerotic wall thickness in carotid artery in humans. Circulation (2003) 108:524–529.
  • CARON A, THEORET JF, MOUSA SA, MERHI Y: Anti-platelet effects of GPIIb/ Ma and P-selectin antagonism, platelet activation, and binding to neutrophils. Cardiovasc. Pharmacol. (2002) 40:296–306.
  • NEMOTO T, BURNE MJ, DANIELS F et al.: Small molecule selectin ligand inhibition improves outcome in ischemic acute renal failure. Kidney Int. (2001) 60:2205–2214.
  • MOLENAAR TJ, APPELDOORN CC, DE HAAS SA et al.: Specific inhibition of P-selectin-mediated cell adhesion by phage display-derived peptide antagonists. Blood (2002) 100:3570–3577.
  • ZOLDHELYI P, BECK PJ, BJERCKE RJ et al.: Inhibition of coronary thrombosis and local inflammation by a noncarbohydrate selectin inhibitor. Am. Physiol. Heart Circ. Physiol. (2000) 279:H3065–H3075.
  • BLAKE GJ, RIDKER PM: C-reactive protein and other inflammatory risk markers in acute coronary syndromes. J. Am. Coll. Cardiol. (2003) 41S:537–542.
  • PRADHAN AD, RIFAI N, RIDKER PM: Soluble intercellular adhesion molecule-1, soluble vascular adhesion molecule-1, and the development of symptomatic peripheral arterial disease in men. Circulation (2002) 106:820–825.
  • BROWN DA, BREIT SN, BURING J et al.: Concentration in plasma of macrophage inhibitory cytokine-1 and risk of cardiovascular events in women: a nested case-control study. Lancet (2002) 359:2159–2163.
  • PHIPPS RP: Atherosclerosis: the emerging role of inflammation and the CD4O-CD40 ligand system. Proc. Nati Acad. Sci. USA (2000) 97:6930–6932.
  • •Good introduction to CD4OL.
  • BLAKE GJ, RIDKER PM: Inflammatory bio-markers and cardiovascular risk prediction. Intern. Med. (2002) 252:283–294.
  • KAMEYOSHI Y, DORSCHNER A, MALLET Al et al.: Cytokine RANTES released by thrombin-stimulated platelets is a potent attractant for human eosinophils. Exp. Med. (1992) 176:587–592.
  • VON HUNDELSHAUSEN P, WEBER KS, HUO Y et al.: RANTES deposition by platelets triggers monocyte arrest on inflamed and atherosclerotic endothelium. Circulation (2001) 103:1772–1777.
  • PROUDFOOT AE, POWER CA, HOOGEWERF AJ et al.: Extension of recombinant human RANTES by the retention of the initiating methionine produces a potent antagonist. J. Biol. Chem. (1996) 271:2599–2603.
  • MACK M, PFIRSTINGERJ, WEBER C et al.: Chondroitin sulfate A released from platelets blocks RANTES presentation on cell surfaces and RANTES-dependent firm adhesion of leukocytes. Ear: j Immunol. (2002) 32:1012–1020.
  • HAWRYLOWICZ CM, HOWELLS GL, FELDMANN M: Platelet-derived interleukin 1 induces human endothelial adhesion molecule expression and cytokine production. I Exp. Med. (1991) 174:785–790.
  • LOPPNOW H, BIL R, HIRT S et al.: Platelet-derived interleukin-1 induces cytokine production, but not proliferation of human vascular smooth muscle cells. Blood (1998) 91:134–141.
  • MACH F, SCHONBECK U, SUKHOVA GK et al.: Functional CD40 ligand is expressed on human vascular endothelial cells, smooth muscle cells, and macrophages: implications for CD40-CD40 ligand signaling in atherosclerosis. Proc. Natl. Acad. Sci. USA (1997) 94:1931–1936.
  • MACH F, SCHONBECK U, SUKHOVA GK et al.: Reduction of atherosclerosis in mice by inhibition of CD40 signalling. Nature (1998) 394:200–203.
  • LUTGENS E, GORELIK L, DAEMEN MJ et al.: Requirement for CD154 in the progression of atherosclerosis. Nat. Med. (1999) 5:1313–1316.
  • BLAKE GJ, OSTFELD RJ, YUCEL EK et al.: Soluble CD40 ligand levels indicate lipid accumulation in carotid atheroma: an in vivo study with high-resolution MRI. Arterioscier. Thromb. Vase. Biol. (2003) 23:ell-e14.
  • SCHONBECK U, MACH F, SUKHOVA GK et al.: Regulation of matrix metalloproteinase expression in human vascular smooth muscle cells by T lymphocytes: a role for CD40 signaling in plaque rupture? Circ. Res. (1997) 81:448–454.
  • HEIJNEN HF, SCHIEL AE, FIJNHEER R et al.: Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood (1999) 94:3791–3799.
  • DACHARY-PRIGENT J, FREYSSINET JM, PASQUET JM et al.: Annexin V as a probe of aminophospholipid exposure and platelet membrane vesiculation: a flow cytometry study showing a role for free sulfhydryl groups. Blood (1993) 81:2554–2565.
  • CHOW TW, HELLUMS JD, THIAGARAJAN P: Thrombin receptor activating peptide (SFLLRN) potentiates shear-induced platelet microvesiculation. Lab. Clin. Med. (2000) 135:66–72.
  • WIEDMER T, SHATTIL SJ, CUNNINGHAM M, SIMS PJ: Role of calcium and calpain in complement-induced vesiculation of the platelet plasma membrane and in the exposure of the platelet Factor Va receptor. Biochemistry (1990) 29:623–632.
  • GILBERT GE, SIMS PJ, WIEDMER T et al.: Platelet-derived microparticles express high affinity receptors for Factor VIII. J. Biol. Chem. (1991) 266:17261–17268.
  • HOFFMAN M, MONROE DM, ROBERTS HR: Coagulation Factor IXa binding to activated platelets and platelet-derived microparticles: a flow cytometric study. Thromb. Haemost. (1992) 68:74–78.
  • NIEUWLAND R, BERCKMANS RJ, ROTTEVEEL-EIJKMAN et al: Cell- derived microparticles generated in patients during cardiopulmonary bypass are highly procoagulant. Circulation (1997) 96:3534–3541.
  • PRESTON RA, JY W, JIMENEZ JJ et al.: Effects of severe hypertension on endothelial and platelet microparticles. Hypertension (2003) 41:211–217.
  • JOOP K, BERCKMANS RJ, NIEUWLAND R et al.: Microparticles from patients with multiple organ dysfunction syndrome and sepsis support coagulation through multiple mechanisms. Thromb. Haemost. (2001) 85:820.
  • SABATIER F, DARMON P, HUGEL B et al.: Type 1 and Type 2 diabetic patients display different patterns of cellular microparticles. Diabetes (2002) 51:2840–2845.
  • SINGH N, GEMMELL CH, DALY PA, YEO EL: Elevated platelet-derived microparticle levels during unstable angina. Can.j Cardiol. (1995) 11:1015–1021.
  • BARRY OP, PRATICO D, LAWSON JA, FITZGERALD GA: Transcellular activation of platelets and endothelial cells by bioactive lipids in platelet microparticles. Clin. Invest. (1997) 99:2118–2127.
  • BARRY OP, PRATICO D, SAVANI RC, FITZGERALD GA: Modulation of monocyte-endothelial cell interactions by platelet microparticles. Clin. Invest. (1998) 102:136–144.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.