111
Views
31
CrossRef citations to date
0
Altmetric
Review

Novel chemotherapeutic agents for the treatment of glioblastoma multiforme

, &
Pages 1899-1924 | Published online: 02 Mar 2005

Bibliography

  • LEGLERJM, PIES LA, SMITH MA et at Cancer surveillance series [corrected]: brain and other central nervous system cancers: recent trends in incidence and mortality. J. Natl. Cancer Inst. (1999) 91:1382–1390.
  • •A review on patient data.
  • WALKER MD, ALEXANDER E Jr, HUNT WE et al.: Evaluation of BCNU and/or radiotherapy in the treatment of anaplastic gliomas. A cooperative clinical trial. J. Neurosurg. (1978) 49:333–343.
  • SHRIEVE DC, ALEXANDER E 3rd, WEN PY et al.: Comparison of stereotactic radiosurgery and brachytherapy in the treatment of recurrent glioblastoma multiforme. Neurosurgery (1995)36:275-282; discussion 282–274.
  • SEEGENSCHMIEDT MH, KARLSSON UL, BLACK P, BRADY LW: Thermoradiotherapy for brain tumors. Three cases of recurrent malignant astrocytoma and review of clinical experience. Am. Clin. Oncol. (1995) 18:510–518.
  • MEDICAL RESEARCH COUNCIL BRAIN TUMOR WORKING PARTY: Randomized trial of procarbazine, lomustine, and vincristine in the adjuvant treatment of high-grade astrocytoma: a Medical Research Council trial. j Clin. Oncol. (2001) 19:509–518.
  • WALKER MD, GREEN SB, BYAR DP et al.: Randomized comparisons of radiotherapy and nitrosoureas for the treatment of malignant glioma after surgery. N Engl. J. Med. (1980) 303:1323–1329.
  • •A human study showing beneficial effects of radiation therapy for the treatment of malignant glioma.
  • FINE HA, DEAR KB, LOEFFLER JS, BLACK PM, CANELLOS GP: Meta- analysis of radiation therapy with and without adjuvant chemotherapy for malignant gliomas in adults. Cancer (1993) 71:2585–2597.
  • HOLLAND EC: Gliomagenesis: genetic alterations and mouse models. Nat. Rev Genet. (2001) 2:120–129.
  • •A thorough review.
  • MAHER EA, FURNARI FB, BACHOO RM et al.: Malignant glioma: genetics and biology of a grave matter. Genes Dev. (2001) 15:1311-1333. A thorough review.
  • BRAT DJ, MAPSTONE TB: Malignant glioma physiology: cellular response to hypoxia and its role in tumor progression. Ann. Intern. Med. (2003) 138:659–668.
  • •A thorough review.
  • WELLER M, RIEGER J, GRIMMEL C et al.: Predicting chemoresistance in human malignant glioma cells: the role of molecular genetic analyses. Int. J. Cancer (1998) 79:640–644.
  • DAVIS FG, FREELS S, GRUTSCH J, BARLAS S, BREM S: Survival rates in patients with primary malignant brain tumors stratified by patient age and tumor histological type: an analysis based on Surveillance, Epidemiology, and End Results (SEER) data, 1973-1991. Neurosurg. (1998) 88:1–10.
  • •A review on patient data.
  • SHAPIRO WR, GREEN SB, BURGER PC et al.: Randomized trial of three chemotherapy regimens and two radiotherapy regimens and two radiotherapy regimens in postoperative treatment of malignant glioma. Brain Tumor Cooperative Group Trial 8001. j Neurosurg. (1989) 71:1–9.
  • STEWART LA: Chemotherapy in adult high-grade glioma: a systematic review and meta-analysis of individual patient data from 12 randomised trials. Lancet (2002) 359:1011–1018.
  • ••A systematic review of randomised trials inhigh-grade glioma revealing beneficial effects of adjuvant chemotherapy.
  • NEWLANDS ES, BLACKLEDGE GR, SLACK JA et al.: Phase I trial of temozolomide (CCRG 81045: M&B 39831: NSC 362856). Br. J. Cancer (1992) 65:287–291.
  • BROCK CS, NEWLANDS ES, WEDGE SR et al.: Phase I trial of temozolomide using an extended continuous oral schedule. Cancer Res. (1998) 58:4363–4367.
  • MARZOLINI C, DECOSTERD LA, SHEN F et al.: Pharmacokinetics of temozolomide in association with fotemustine in malignant melanoma and malignant glioma patients: comparison of oral, intravenous, and hepatic intra-arterial administration. Cancer Chemother. Pharmacol (1998) 42:433–440.
  • REID JM, STEVENS DC, RUBIN J, AMES MM: Pharmacokinetics of 3-methyl-(triazen-1-yflimidazole-4-carboximide following administration of temozolomide to patients with advanced cancer. Clin. Cancer Res. (1997) 3:2393–2398.
  • PATEL M, McCULLY C, GODWIN K, BALIS FM: Plasma and cerebrospinal fluid pharmacokinetics of intravenous temozolomide in non-human primates. Neurooncol (2003) 61:203–207.
  • STUPP R, GANDER M, LEYVRAZ S, NEWLANDS E: Current and future developments in the use of temozolomide for the treatment of brain tumours. Lancet Oncol (2001) 2:552–560.
  • PAULSEN F, HOFFMANN W, BECKER G et al.: Chemotherapy in the treatment of recurrent glioblastoma multiforme: ifosfamide versus temozolomide. J. Cancer Res. Clin. OncoL (1999) 125:411–418.
  • BRADA M, HOANG-XUAN K, RAMPLING R et al: Multicenter Phase II trial of temozolomide in patients with glioblastoma multiforme at first relapse. Ann. Oncol (2001) 12:259–266.
  • FRIEDMAN HS, KERBY T, CALVERT H: Temozolomide and treatment of malignant glioma. Clin. Cancer Res. (2000) 6:2585–2597.
  • •A thorough review.
  • NEWTON HB: Novel chemotherapeutic agents for the treatment of brain cancer. Expert Opin. Investig. Drugs (2000) 9:2815–2829.
  • ••A thorough review.
  • HIROSE Y, BERGER MS, PIEPER RO:Abrogation of the Chkl-mediated G(2) checkpoint pathway potentiates temozolomide-induced toxicity in a p53-independent manner in human glioblastoma cells. Cancer Res. (2001) 61:5843–5849.
  • TENTORI L, PORTARENA I, TORINO F et al.: Poly(ADP-ribose) polymerase inhibitor increases growth inhibition and reduces G(2)/M cell accumulation induced by temozolomide in malignant glioma cells. Clia (2002) 40:44–54.
  • D'ATRI S, TENTORI L, LACAL PM et al.: Involvement of the mismatch repair system in temozolomide-induced apoptosis. Mol. Pharmacol. (1998) 54:334–341.
  • MINEURA K, WATANABE K, YANAGISAWA T, KOWADA M: Quantification of 06-methylguanine-DNA methyltransferase mRNA in human brain tumors. Biochim. Biophys. Acta (1996) 1289:105–109.
  • MINEURA K, YANAGISAWA T, WATANABE K, KOWADA M, YASUI N: Human brain tumor 06-methylguanine-DNA methyltransferase mRNA and its significance as an indicator of selective chloroethylnitrosourea chemotherapy. Int. .1. Cancer (1996) 69:420–425.
  • JAECKLE KA, EYRE HJ, TOWNSEND JJet al.: Correlation of tumor 06 methylguanine-DNA methyltransferase levels with survival of malignant astrocytoma patients treated with bis-chloroethylnitrosourea: a Southwest Oncology Group study. j Clin. Oncol (1998) 16:3310–3315.
  • LIU L, MARKOWITZ S, GERSON SL: Mismatch repair mutations override alkyltransferase in conferring resistance to temozolomide but not to 1,3-bis(2-chloroethyl) nitrosourea. Cancer Res. (1996) 56:5375–5379.
  • FRIEDMAN HS, JOHNSON SP, DONG Q et al.: Methylator resistance mediated by mismatch repair deficiency in a glioblastoma multiforme xenograft. Cancer Res. (1997) 57:2933–2936.
  • MIDDLEMAS DS, STEWART CE KIRSTEIN MN et al.: Biochemical correlates of temozolomide sensitivity in pediatric solid tumor xenograft models. Gin. Cancer Res. (2000) 6:998–1007.
  • FRIEDMAN HS, McLENDON RE, KERBY T et al.: DNA mismatch repair and 06-alkylguanine-DNA alkyltransferase analysis and response to Temodal in newly diagnosed malignant glioma. Clin. OricoL (1998) 16:3851–3857.
  • DOLAN ME, MITCHELL RB, MUMMERT C, MOSCHEL RC, PEGG AE: Effect of 06-benzylguanine analogues on sensitivity of human tumor cells to the cytotoxic effects of alkylating agents. Cancer Res. (1991) 51:3367–3372.
  • FRIEDMAN HS, DOLAN ME, PEGG AEet al.: Activity of temozolomide in the treatment of central nervous system tumor xenografts. Cancer Res. (1995) 55:2853–2857.
  • FRIEDMAN HS, PLUDA J, QUINN JA et al.: Phase I trial of carmustine plus 06-benzylguanine for patients with recurrent or progressive malignant glioma. Clin. Oncol. (2000) 18:3522–3528.
  • WEDGE SR, PORTEUS JK, MAY BL, NEWLANDS ES: Potentiation of temozolomide and BCNU cytotoxicity by 0(6)-benzylguanine: a comparative study in vitro. Br. J. Cancer (1996) 73:482–490.
  • WEDGE SR, PORTEOUS JK, GLASER MG, MARCUS K, NEWLANDS ES: In vitro evaluation of temozolomide combined with X-irradiation. Anticancer Drugs (1997) 8:92–97.
  • WEDGE SR, PORTEOUS JK, NEWLANDS ES: 3-aminobenzamide and/ or 06-benzylguanine evaluated as an adjuvant to temozolomide or BCNU treatment in cell lines of variable mismatch repair status and 06-alkylguanine-DNA alkyltransferase activity. Br J. Cancer (1996) 74:1030–1036.
  • TENTORI L, LEONETTI C, SCARSELLA M et al.: Combined treatment with temozolomide and poly(ADP-ribose) polymerase inhibitor enhances survival of mice bearing hematologic malignancy at the central nervous system site. Blood (2002) 99:2241–2244.
  • OSOBA D, BRADA M, YUNG WK, PRADOS M: Health-related quality of life in patients treated with temozolomide versus procarbazine for recurrent glioblastoma multiforme.Oncol (2000) 18:1481–1491.
  • TRENT S, KONG A, SHORT SC et al.: Temozolomide as second-line chemotherapy for relapsed gliomas. Neurooncol (2002) 57:247–251.
  • YUNG WK, ALBRIGHT RE, OLSON J et al.: A Phase II study of temozolomide versus procarbazine in patients with glioblastoma multiforme at first relapse. Br J. Cancer (2000) 83:588–593.
  • WONG ET, HESS KR, GLEASON MJ et al.: Outcomes and prognostic factors in recurrent glioma patients enrolled onto Phase II clinical trials. Clin. Oncol (1999) 17:2572.
  • NIEDER C, GROSU AL, MOLLS M: A comparison of treatment results for recurrent malignant gliomas. Cancer Treat. Rev (2000) 26:397–409.
  • JAECKLE KA, HESS KR, YUNG WK et al.: Phase II evaluation of temozolomide and 13-cis-retinoic acid for the treatment of recurrent and progressive malignant glioma: a North American Brain Tumor Consortium study. .1. Clin. Oncol (2003) 21:2305–2311.
  • GROVES MD, PUDUVALLI VK, HESS KR et al.: Phase II trial of temozolomide plus the matrix metalloproteinase inhibitor, marimastat, in recurrent and progressive glioblastoma multiforme. I. Clin. Oncol (2002) 20:1383–1388.
  • •A human study revealing promising results of a combination of TIVIZ and MRM.
  • STUPP R, DIETRICH PY, OSTERMANN KRALJEVIC S et al.: Promising survival for patients with newly diagnosed glioblastoma multiforme treated with concomitant radiation plus temozolomide followed by adjuvant temozolomide. Clin. Oncol (2002) 20:1375–1382.
  • •A human study revealing promising results of TMZ for the treatment of newly diagnosed glioblastoma patients.
  • VAN RIJN J, HEIMANS JJ, VAN DEN BERG J, VAN DER VALK P, SLOTMAN BJ: Survival of human glioma cells treated with various combination of temozolomide and X-rays. Int. Radiat. Oncol Biol. Phys. (2000) 47:779–784.
  • GARCIA-CARBONERO R, SUPKO JG: Current perspectives on the clinical experience, pharmacology, and continued development of the camptothecins. Gin. Cancer Res. (2002) 8:641–661.
  • ••A thorough review.
  • SLICHENMYER WJ, ROWINSKY EK, DONEHOWER RC, KAUFMANN SH: The current status of camptothecin analogues as antitumor agents. J. Natl. Cancer Inst. (1993) 85:271–291.
  • TSAO YP, RUSSO A, NYAMUSWA G, SILBER R, LIU LF: Interaction between replication forks and topoisomerase I-DNA cleavable complexes: studies in a cell-free 5V40 DNA replication system. Cancer Res. (1993) 53:5908–5914.
  • POURQUIER P, WALTMAN JL, URASAKI Y et al.: Topoisomerase I-mediated cytotoxicity of N-methyl-V-nitro-N-nitrosoguanidine: trapping of topoisomerase I by the 06-methylguanine. Cancer Res. (2001) 61:53–58.
  • PATEL VJ, ELION GB, HOUGHTON PJ et al.: Schedule-dependent activity of temozolomide plus CPT-11 against a human central nervous system tumor-derived xenograft. Clin. Cancer Res. (2000) 6:4154–4157.
  • HOUGHTON PJ, STEWART CE CHESHIRE PJ et al.: Antitumor activity of temozolomide combined with irinotecan is partly independent of 06-methylguanine-DNA methyltransferase and mismatch repair phenotypes in xenograft models. Gin. Cancer Res. (2000) 6:4110–4118.
  • KUHN JG: Pharmacology of irinotecan. Oncology (Nuntingt) (1998) 12:39–42.
  • MORRIS EJ, GELLER HM: Induction of neuronal apoptosis by camptothecin, an inhibitor of DNA topoisomerase-I: evidence for cell cycle-independent toxicity. J. Cell Biol. (1996) 134:757–770.
  • HAAZ MC, RIVORY L, RICHE C, VERNILLET L, ROBERT J: Metabolism of irinotecan (CPT-11) by human hepatic microsomes: participation of cytochrome P450 3A and drug interactions. Cancer Res. (1998) 58:468–472.
  • KEHRER DF, MATHIJSSEN RH, VERWEIJ J, DE BRUIJN P, SPARREBOOM A: Modulation of irinotecan metabolism by ketoconazole. Clin. Oncol (2002) 20:3122–3129.
  • KUHN JG: Influence of anticonvulsants on the metabolism and elimination of irinotecan. A North American Brain Tumor Consortium preliminary report. Oncology (Nuntingt) (2002) 16:33–40.
  • CHARASSON V, HAAZ MC, ROBERT J: Determination of drug interactions occurring with the metabolic pathways of irinotecan. Drug Metal,. Dispos. (2002) 30:731–733.
  • SANTOS A, ZANETTA S, CRESTEIL T et al.: Metabolism of irinotecan (CPT-11) by CYP3A4 and CYP3A5 in humans. Clin. Cancer Res. (2000) 6:2012–2020.
  • HARE CB, ELION GB, HOUGHTON PJ et al.: Therapeutic efficacy of the topoisomerase I inhibitor 7-ethy1-10- (4- [1-piperidino]-1-piperidino)-carbonyloxy-camptothecin against pediatric and adult central nervous system tumor xenografts. Cancer Chemother. Pharmacol (1997) 39:187–191.
  • NAKATSU S, KONDO S, KONDO Y et al.: Induction of apoptosis in multi-drug resistant (MDR) human glioblastoma cells by SN-38, a metabolite of the camptothecin derivative CPT-11. Cancer Chemother. Pharmacol (1997) 39:417–423.
  • FRIEDMAN HS, PETROS WP, FRIEDMAN AH et al.: Irinotecan therapy in adults with recurrent or progressive malignant glioma. Clin. Oncol (1999) 17:1516–1525.
  • BUCKNER JC, REID JM, WRIGHT Ket al.: Irinotecan in the treatment of glioma patients: current and future studies of the North Central Cancer Treatment Group. Cancer (2003) 97:2352–2358.
  • •A thorough review regarding preclinical and clinical data of irinotecan in the treatment of glioma.
  • CLOUGHESY TF, FILKA E, KUHN J et al.: Two studies evaluating irinotecan treatment for recurrent malignant glioma using an every-3-week regimen. Cancer (2003) 97:2381–2386.
  • RAYMOND E, FABBRO M, BOIGE V et al.: Multicentre Phase II study and pharmacokinetic analysis of irinotecan in chemotherapy-naive patients with glioblastoma. Ann. Oncol. (2003) 14:603–614.
  • CHAMBERLAIN MC: Salvage chemotherapy with CPT-11 for recurrent glioblastoma multiforme. Neurooncol. (2002) 56:183–188.
  • SASAI K, GUO GZ, SHIBUYA K et al.: Effects of SN-38 (an active metabolite of CPT-11) on responses of human and rodent cells to irradiation. hat. Radiat. Oncol. Biol. Phys. (1998) 42:785–788.
  • COGGINS CA, ELION GB, HOUGHTON PJ et al.: Enhancement of irinotecan (CPT-11) activity against central nervous system tumor xenografts by alkylating agents. Cancer Chemother. Pharmacol. (1998) 41:485–490.
  • FRIEDMAN HS, KEIR ST, HOUGHTON PJ: The emerging role of irinotecan (CPT-11) in the treatment of malignant glioma in brain tumors. Cancer (2003) 97:2359–2362.
  • •A thorough review.
  • CHINTALA SK, TONN JC, RAO JS: Matrix metalloproteinases and their biological function in human gliomas. hat. Dev. Neurosci. (1999) 17:495–502.
  • GIESE A, BJERKVIG R, BERENS ME, WESTPHAL M: Cost of migration: invasion of malignant gliomas and implications for treatment. Clin. Oncol. (2003) 21:1624–1636.
  • ••A thorough review.
  • NELSON AR, FINGLETON B, ROTHENBERG ML, MATRISIAN LM: Matrix metalloproteinases: biologic activity and clinical implications. j. Clin. Oncol. (2000) 18:1135–1149.
  • ••A thorough review.
  • YOON SO, PARK SJ, YUN CH, CHUNG AS: Roles of matrix metalloproteinases in tumor metastasis and angiogenesis. Biochem. Mol. Biol. (2003) 36:128–137.
  • ••A thorough review.
  • EGEBLAD M, WERB Z: New functions for the matrix metalloproteinases in cancer progression. Nat. Rev Cancer(2002) 2:161–174.
  • ••A thorough review.
  • LYNCH CC, MATRISIAN LM: Matrix metalloproteinases in tumor-host cell communication. Differentiation (2002) 70:561–573.
  • FORSYTH PA, WONG H, LAING TD et al.: Gelatinase-A (MMP-2), gelatinase-B (MMP-9) and membrane type matrix metalloproteinase-1 (MT1-MMP) are involved in different aspects of the pathophysiology of malignant gliomas. Br: J. Cancer (1999) 79:1828–1835.
  • FILLMORE HL, VANMETER TE, BROADDUS WC: Membrane-type matrix metalloproteinases (MT-MMPs): expression and function during glioma invasion. Neurooncol. (2001) 53:187–202.
  • JAALINOJA J, HERVA R, KORPELA M, HOYHTYA M, TURPEENNIEMI-HUJANEN T: Matrix metalloproteinase 2 (MMP-2) immunoreactive protein is associated with poor grade and survival in brain neoplasms. Neurooncol. (2000) 46:81–90.
  • LAMPERT K, MacHEIN U, MacHEIN MR et al: Expression of matrix metalloproteinases and their tissue inhibitors in human brain tumors. Am. J. Pathol. (1998) 153:429–437.
  • CHOE G, PARK JK, JOUBEN-STEELE L et al.: Active matrix metalloproteinase 9 expression is associated with primary glioblastoma subtype. Clin. Cancer Res. (2002) 8:2894–2901.
  • TAKAHASHI M, FUKAMI S, IWATA N et al.: Ira vivo glioma growth requires host-derived matrix metalloproteinase 2 for maintenance of angioarchitecture. Pharmacol. Res. (2002) 46:155–163.
  • WAGNER S, FUELLER T, HUMMEL V, RIECKMANN P, TONN JC: Influence of VEGF-R2 inhibition on MMP secretion and motility of microvascular human cerebral endothelial cells (HCEC). Neurooncol. (2003) 62:221–231.
  • HU B, GUO P, FANG Q et aL: Angiopoietin-2 induces human glioma invasion through the activation of matrix metalloprotease-2. Proc. Natl. Acad. Sci.USA (2003)
  • LAKKA SS, RAJAN M, GONDI C et al.: Adenovirus-mediated expression of antisense MMP-9 in glioma cells inhibits tumor growth and invasion. Oncogene (2002) 21:8011–8019.
  • LAKKA SS, GONDI CS, YANAMANDRA N et al.: Synergistic down-regulation of urokinase plasminogen activator receptor and matrix metalloproteinase-9 in SNB19 glioblastoma cells efficiently inhibits glioma cell invasion, angiogenesis, and tumor growth. Cancer Res. (2003) 63:2454–2461.
  • KONDRAGANTI S, MOHANAM S, CHINTALA SK et al.: Selective suppression of matrix metalloproteinase-9 in human glioblastoma cells by antisense gene transfer impairs glioblastoma cell invasion. Cancer Res. (2000) 60:6851–6855.
  • GROFT LL, MUZIK H, REWCASTLE NB et al.: Differential expression and localization of TIMP-1 and TIMP-4 in human gliomas. Br. I Cancer (2001) 85:55–63.
  • BROWN PD: Ongoing trials with matrix metalloproteinase inhibitors. Expert Opin. Investig. Drugs (2000) 9:2167–2177.
  • TONN JC, KERKAU S, HANKE A et al: Effect of synthetic matrix-metalloproteinase inhibitors on invasive capacity and proliferation of human malignant gliomas in vitro. Int. J. Cancer (1999) 80:764–772.
  • MILLAR AW, BROWN PD, MOORE J et al.: Results of single and repeat dose studies of the oral matrix metalloproteinase inhibitor marimastat in healthy male volunteers. Br: J. Clin. Pharmacol. (1998) 45:21–26.
  • STEWARD WP: Marimastat (BB2516): current status of development. Cancer Chemother. Pharmacol. (1999) 43 (Suppl.):S56–60.
  • [NO AUTHORS LISTED]: Marimastat:BB 2516, TA 2516. Drugs R D. (2003) 4:198–203.
  • LARSON DA, PRADOS M, LAMBORN KR et al.: Phase II study of high central dose Gamma Knife radiosurgery and marimastat in patients with recurrent malignant glioma. Int. Radiat. Oncol. Biol. Phys. (2002) 54:1397–1404.
  • YARDEN Y, SLIWKOWSKI MX: Untangling the ErbB signalling network. Nat. Rev Mol. Cell. Biol. (2001) 2:127–137.
  • ••A thorough review.
  • MENDELSOHN J, BASELGA J: Status ofepidermal growth factor receptor antagonists in the biology and treatment of cancer. J. Clin. Oncol (2003) 21:2787-2799. A thorough review.
  • OKADA Y, HURWITZ EE, ESPOSITO JM et al.: Selection pressures of TP53 mutation and microenvironmental location influence epidermal growth factor receptor gene amplification in human glioblastomas. Cancer Res. (2003) 63:413–416.
  • DANCEY J, SAUSVILLE EA: Issues and progress with protein kinase inhibitors for cancer treatment. Nat. Rev Drug Discov. (2003) 2:296–313.
  • KRISHNAN S, RAO RD, JAMES CD, SARKARIA JN: Combination of epidermal growth factor receptor targeted therapy with radiation therapy for malignant gliomas. Front Biosci. (2003) 8:E1–E13.
  • PENG D, FAN Z, LU Yet al.: Anti-epidermal growth factor receptor monoclonal antibody 225 up-regulates p27KIP 1 and induces G1 arrest in prostatic cancer cell line DU145. Cancer Res. (1996) 56:3666–3669.
  • PERROTTE P, MATSUMOTO T, INOUE K et al.: Anti-epidermal growth factor receptor antibody C225 inhibits angiogenesis in human transitional cell carcinoma growing orthotopically in nude mice. Clin. Cancer Res. (1999) 5:257–265.
  • ELLER JL, LONGO SL, HICKLIN DJ, CANUTE GW: Activity of anti-epidermal growth factor receptor monoclonal antibody C225 against glioblastoma multiforme. Neurosurgery (2002) 51:1005-1013; discussion 1013–1004.
  • ALBANELL J, ROJO F, AVERBUCH S et al.: Pharmacodynamic studies of the epidermal growth factor receptor inhibitor ZD1839 in skin from cancer patients: histopathologic and molecular consequences of receptor inhibition./ Clin. Oncol (2002) 20:110–124.
  • GILMORE AP, VALENTIJN AJ, WANG P et al.: Activation of BAD by therapeutic inhibition of epidermal growth factor receptor and transactivation by insulin-like growth factor receptor. / Biol. Chem. (2002) 277:27643–27650.
  • SIROTNAK FM: Studies with ZD1839 in preclinical models. Semin. Oncol (2003) 30:12–20.
  • HUANG SM, LI J, ARMSTRONG EA, HARARI PM: Modulation of radiation response and tumor-induced angiogenesis after epidermal growth factor receptor inhibition by ZD1839 (Iressa). Cancer Res. (2002) 62:4300–4306.
  • GEE JM, NICHOLSON RI: Expanding the therapeutic repertoire of epidermal growth factor receptor blockade: radiosensitization. Breast Cancer Res. (2003) 5:126–129.
  • SIROTNAK FM, ZAKOWSKI ME MILLER VA, SCHER HI, KRIS MG: Efficacy of cytotoxic agents against human tumor xenografts is markedly enhanced by coadministration of ZD1839 (Iressa), an inhibitor of EGFR tyrosine kinase. Clin. Cancer Res. (2000) 6:4885–4892.
  • WILLIAMS KJ, TELFER BA, STRATFORD IJ, WEDGE SR: ZD1839 ('Iressa'), a specific oral epidermal growth factor receptor-tyrosine kinase inhibitor, potentiates radiotherapy in a human colorectal cancer xenograft model. Br. J. Cancer (2002) 86:1157–1161.
  • TREMONT-LUKATS IW, GILBERT MR: Advances in molecular therapies in patients with brain tumors. Cancer Control (2003) 10:125–137.
  • •A thorough review.
  • RANSON M, HAMMOND LA, FERRY D et al.: ZD1839, a selective oral epidermal growth factor receptor-tyrosine kinase inhibitor, is well tolerated and active in patients with solid, malignant tumors: results of a Phase I trial. J. Clin. Oncol (2002) 20:2240–2250.
  • CHAKRAVARTI A, SEIFERHELD W, ROBBINS I et al.: Phase I results from RTOG BR-0211, a Phase I/II study of an oral epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), ZD 1839 (Iressa), with radiation therapy in glioblastoma multiforme (GBM). hat. J. Radiat. Oncol Biol. Phys. (2003) 57:S329.
  • MOYER JD, BARBACCI EG, IWATA KK et al.: Induction of apoptosis and cell cycle arrest by CP-358,774, an inhibitor of epidermal growth factor receptor tyrosine kinase. Cancer Res. (1997) 57:4838–4848.
  • POLLACK VA, SAVAGE DM, BAKER DA et al.: Inhibition of epidermal growth factor receptor-associated tyrosine phosphorylation in human carcinomas with CP-358,774: dynamics of receptor inhibition in situ and antitumor effects in athymic mice. J. Pharmacol Exp. Ther. (1999) 291:739–748.
  • GRUNWALD V, HIDALGO M: Development of the epidermal growth factor receptor inhibitor Tarceva (OSI-774). Adv. Exp. Med. Biol. (2003) 532:235–246.
  • LAL A, GLAZER CA, MARTINSON HM et al.: Mutant epidermal growth factor receptor up-regulates molecular effectors of tumor invasion. Cancer Res. (2002) 62:3335–3339.
  • HIDALGO M, SIU LL, NEMUNAITIS J et al.: Phase I and pharmacologic study of OSI-774, an epidermal growth factor receptor tyrosine kinase inhibitor, in patients with advanced solid malignancies. J. Gin. Oncol (2001) 19:3267–3279.
  • HUGHES TP, KAEDA J, BRANFORD S et al.: Frequency of major molecular responses to imatinib or interferon alfa plus cytarabine in newly diagnosed chronic myeloid leukemia. N Engl. J Med. (2003) 349:1423–1432.
  • DEININGER MW, DRUKER BJ: Specific Targeted therapy of chronic myelogenous leukemia with imatinib. Pharmacol Rev. (2003) 55(3):401–423
  • DEMETRI GD, VON MEHREN M, BLANKE CD et al.: Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl. J Med. (2002) 347:472–480.
  • YAMAMOTO S, KUBO S, SHUTO T et al: Treatment with 5TI571, a tyrosine kinase inhibitor, for gastrointestinal stromal tumor with peritoneal dissemination and multiple liver metastases. J Castroenterol (2003) 38:896–899.
  • GEORGE D: Targeting PDGF receptors in cancer-rationales and proof of concept clinical trials. Adv. Exp. Med. Biol. (2003) 532:141–151.
  • NISTER M, CLAESSON-WELSH L, ERIKSSON A, HELDIN CH, WESTERMARK B: Differential expression of platelet-derived growth factor receptors in human malignant glioma cell lines. J. Bia Chem. (1991) 266:16755–16763.
  • HERMANSON M, FUNA K, HARTMAN M et al.: Platelet-derived growth factor and its receptors in human glioma tissue: expression of messenger RNA and protein suggests the presence of autocrine and paracrine loops. Cancer Res. (1992) 52:3213–3219.
  • VASSBOTN FS, ANDERSSON M, WESTERMARK B, HELDIN CH, OSTMAN A: Reversion of autocrine transformation by a dominant negative platelet-derived growth factor mutant. MM. Cell. Biol. (1993) 13:4066–4076.
  • STRAWN LM, MANN E, ELLIGER SS et al.: Inhibition of glioma cell growth by a truncated platelet-derived growth factor-beta receptor. J. Biol. Chem. (1994) 269:21215–21222.
  • UHRBOM L, HESSELAGER G, OSTMAN A, NISTER M, WESTERMARK B: Dependence of autocrine growth factor stimulation in platelet-derived growth factor-B-induced mouse brain tumor cells. Int. J. Cancer (2000) 85:398–406.
  • KILIC T, ALBERTA JA, ZDUNEK PR et al.: Intracranial inhibition of platelet-derived growth factor-mediated glioblastoma cell growth by an orally active kinase inhibitor of the 2-phenylaminopyrimidine class. Cancer Res. (2000) 60:5143–5150.
  • SCHMELZLE T, HALL MN: TOR, a central controller of cell growth. Cell (2000) 103:253–262.
  • BROWN EJ, ALBERS MW, SHIN TB et al.: A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature (1994) 369:756–758.
  • GEOERGER B, KERR K, TANG CB et al.: Antitumor activity of the rapamycin analog CCI-779 in human primitive neuroectodermal tumor/medulloblastoma models as single agent and in combination chemotherapy. Cancer Res. (2001) 61:1527–1532.
  • NESHAT MS, MELLINGHOFF IK, TRAN C et al.: Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Proc. Nati Acad. Sci.USA (2001) 98:10314–10319.
  • ESHLEMAN JS, CARLSON BL, MLADEK AC et al.: Inhibition of the mammalian target of rapamycin sensitizes U87 xenografts to fractionated radiation therapy. Cancer Res. (2002) 62:7291–7297.
  • BREDEL M, POLLACK IF, FREUND JM, HAMILTON AD, SEBTI SM: Inhibition of Ras and related G-proteins as a therapeutic strategy for blocking malignant glioma growth. Neurosurgery(1998) 43:124-131; discussion 131–122.
  • POLLACK IF, BREDEL M, ERFF M, HAMILTON AD, SEBTI SM: Inhibition of Ras and related guanosine triphosphate-dependent proteins as a therapeutic strategy for blocking malignant glioma growth: II-preclinical studies in a nude mouse model. Neurosurgery (1999) 45:1208-1214; discussion 1214–1205.
  • BERNHARD EJ, McKENNA WG, HAMILTON AD et al.: Inhibiting Ras prenylation increases the radiosensitivity of human tumor cell lines with activating mutations of ras oncogenes. Cancer Res. (1998) 58:1754–1761.
  • COHEN-JONATHAN E, MUSCHEL RJ, GILLIES MCKENNA W et al.: Farnesyltransferase inhibitors potentiate the antitumor effect of radiation on a human tumor xenograft expressing activated HRAS. Radiat. Res. (2000) 154:125–132.
  • DELMAS C, HELIEZ C, COHEN-JONATHAN E et al.: Farnesyltransferase inhibitor, R115777, reverses the resistance of human glioma cell lines to ionizing radiation. hat. J. Cancer (2002) 100:43–48.
  • ZUJEWSKI J, HORAK ID, BOL CJ et aL: Phase I and pharmacokinetic study of farnesyl protein transferase inhibitor R115777 in advanced cancer.' Clio. Oncol (2000) 18:927–941.
  • CRUL M, DE KLERK GJ, SWART M et al.: Phase I clinical and pharmacologic study of chronic oral administration of the farnesyl protein transferase inhibitor R115777 in advanced cancer.' Clio. Oncol (2002) 20:2726–2735.
  • PLATE KH: Mechanisms of angiogenesis in the brain. I Neuropathol Exp. Neurol. (1999) 58:313–320.
  • ••A thorough review.
  • PLATE KH, BREIER G, WEICH HA, MENNEL HD, RISAU W: Vascular endothelial growth factor and glioma angiogenesis: coordinate induction of VEGF receptors, distribution of VEGF protein and possible in vivo regulatory mechanisms. Int. J. Cancer (1994) 59:520–529.
  • STRATMANN A, MacHEIN MR, PLATE KH: Anti-angiogenic gene therapy of malignant glioma. Acta Neurochic Sapp]. (Wien) (1997) 68:105–110.
  • WESSELING P, RUITER DJ, BURGER PC: Angiogenesis in brain tumors; pathobiological and clinical aspects. Neurooncol (1997) 32:253–265.
  • ••A thorough review.
  • ACKER T, PLATE KH: A role for hypoxia and hypoxia-inducible transcription factors in tumor physiology. J. MM. Med. (2002) 80:562–575.
  • MAZURE NM, CHEN EY, LADEROUTE KR, GIACCIA AJ: Induction of vascular endothelial growth factor by hypoxia is modulated by a phosphatidylinositol 3-kinase/Akt signaling pathway in Ha-ras-transformed cells through a hypoxia inducible factor-1 transcriptional element. Blood (1997) 90:3322–3331.
  • PORE N, LIU S, HAAS-KOGAN DA, O'ROURKE DM, MAITY A: PTEN mutation and epidermal growth factor receptor activation regulate vascular endothelial growth factor (VEGF) mRNA expression in human glioblastoma cells by transactivating the proximal VEGF promoter. Cancer Res. (2003) 63:236–241.
  • MAITY A, PORE N, LEE J, SOLOMON D, O'ROURKE DM: Epidermal growth factor receptor transcriptionally up-regulates vascular endothelial growth factor expression in human glioblastoma cells via a pathway involving phosphatidylinositol T-kinase and distinct from that induced by hypoxia. Cancer Res. (2000) 60:5879–5886.
  • MILLAUER B, SHAWVER LK, PLATE KH, RISAU W, ULLRICH A: Glioblastoma growth inhibited in vivo by a dominant-negative Flk-1 mutant. Nature (1994) 367:576–579.
  • SALEH M, STACKER SA, WILKS AF: Inhibition of growth of C6 glioma cells in vivo by expression of antisense vascular endothelial growth factor sequence. Cancer Res. (1996) 56:393–401.
  • BRAT DJ, CASTELLANO-SANCHEZ A, KAUR B, VAN MEIR EG: Genetic and biologic progression in astrocytomas and their relation to angiogenic dysregulation. Adv. Anat. Pathol (2002) 9:24–36.
  • ABE T, TERADA K, WAKIMOTO H et al: PTEN decreases in vivo vascularization of experimental gliomas in spite of proangiogenic stimuli. Cancer Res. (2003) 63:2300–2305.
  • DREVS J, LAUS C, MENDINGER M, SCHMIDT-GERSBACH C, UNGER C: Antiangiogenesis: current clinical data and future perspectives. Onkologie (2002) 25:520–527.
  • D'AMATO RJ, LOUGHNAN MS, FLYNN E, FOLKMAN J: Thalidomide is an inhibitor of angiogenesis. Proc. Natl. Acad. Sci.USA (1994) 91:4082–4085.
  • FANELLI M, SARMIENTO R, GATTUSO D et al.: Thalidomide: a new anticancer drug? Expert Opin. Investig. Drugs (2003) 12:1211–1225.
  • •A thorough review.
  • FUJITA J, MESTRE JR, ZELDIS JB, SUBBARAMAIAH K, DANNENBERG AJ: Thalidomide and its analogues inhibit lipopolysaccharide-mediated Iinduction of cyclooxygenase-2. Clin. Cancer Res. (2001) 7:3349–3355.
  • FINE HA, FIGG WD, JAECKLE K et al.: Phase II trial of the antiangiogenic agent thalidomide in patients with recurrent high-grade gliomas. Clin. Oncol (2000) 18:708–715.
  • MARX GM, PAVLAKIS N, McCOWATT S et al.: Phase II study of thalidomide in the treatment of recurrent glioblastoma multiforme. Neurooncol (2001) 54:31–38.
  • SHORT SC, TRAISH D, DOWE A et al.: Thalidomide as an anti-angiogenic agent in relapsed gliomas. Neurooncol (2001) 51:41–45.
  • GASPARINI G, MORABITO A, MAGNANI E et al.: Thalidomide: an old sedative-hypnotic with anticancer activity? CLIFF. Opin. Investig. Drugs (2001) 2:1302–1308.
  • ARRIETA 0, GUEVARA P, TAMARIZ J et al.: Antiproliferative effect of thalidomide alone and combined with carmustine against C6 rat glioma. Int. J. Exp. Pathol (2002) 83:99–104.
  • FINE HA, WEN PY, MAHER EA et al.: Phase II trial of thalidomide and carmustine for patients with recurrent high-grade gliomas. ./. Clin. Oncol (2003) 21:2299–2304.
  • MENDEL DB, SCHRECK RE, WEST DC et al.: The angiogenesis inhibitor SU5416 has long-lasting effects on vascular endothelial growth factor receptor phosphorylation and function. Clin. Cancer Res. (2000) 6:4848–4858.
  • MENDEL DB, LAIRD AD, SMOLICH BD et al.: Development of 5U5416, a selective small molecule inhibitor of VEGF receptor tyrosine kinase activity, as an anti-angiogenesis agent. Anticancer Drug Des. (2000) 15:29–41.
  • FONG TA, SHAWVER LK, SUN L et al: 5U5416 is a potent and selective inhibitor of the vascular endothelial growth factor receptor (Flk-1/KDR) that inhibits tyrosine kinase catalysis, tumor vascularization, and growth of multiple tumor types. Cancer Res. (1999) 59:99–106.
  • BERNSEN HJ, VAN DER KOGEL AJ: Antiangiogenic therapy in brain tumor models. Neurooncol. (1999) 45:247–255.
  • KIRSCH M, STRASSER J, ALLENDE R et al.: Angiostatin suppresses malignant glioma growth M vivo. Cancer Res. (1998) 58:4654–4659.
  • MA HI, GUO P, LI J et al: Suppression of intracranial human glioma growth after intramuscular administration of an adeno-associated viral vector expressing angiostatin. Cancer Res. (2002) 62:756–763.
  • BROOKS PC, CLARK RA, CHERESH DA: Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science (1994) 264:569–571.
  • ELICEIRI BP, CHERESH DA: The role of alphav integrins during angiogenesis: insights into potential mechanisms of action and clinical development. j. Clin. Invest. (1999) 103:1227–1230.
  • •A thorough review.
  • DECHANTSREITER MA, PLANKER E, MATHA B et al: N-Methylated cyclic RGD peptides as highly active and selective alphaMbeta(3) integrin antagonists. J. Med. Chem. (1999) 42:3033–3040.
  • MACDONALD TJ, TAGA T, SHIMADA H et al.: Preferential susceptibility of brain tumors to the antiangiogenic effects of an alpha(v) integrin antagonist. Neurosurgery (2001) 48:151–157.
  • TAGA T, SUZUKI A, GONZALEZ-GOMEZ I et al.: Alpha v-Integrin antagonist EMD 121974 induces apoptosis in brain tumor cells growing on vitronectin and tenascin. Int. J. Cancer (2002) 98:690–697.
  • BURKE PA, DENARDO SJ, MIERS LA et al.: Cilengitide targeting of alpha(v)beta(3) integrin receptor synergizes with radioimmunotherapy to increase efficacy and apoptosis in breast cancer xenografts. Cancer Res. (2002) 62:4263–4272.
  • ESKENS FA, DUMEZ H, HOEKSTRA R et al.: Phase I and pharmacokinetic study of continuous twice weekly intravenous administration of Cilengitide (EMD 121974), a novel inhibitor of the integrins alphavbeta3 and alphavbeta5 in patients with advanced solid tumours. Eur. J. Cancer (2003) 39:917–926.
  • MOORE KS, WEHRLI S, RODER H et al.: Squalamine: an aminosterol antibiotic from the shark. Proc. Natl. Acad. Sci. USA (1993) 90:1354–1358.
  • AKHTER S, NATH SK, TSE CM et al.: Squalamine, a novel cationic steroid, specifically inhibits the brush-border Na+/ H+ exchanger isoform NHE3. Am. J. Physiol. (1999) 276:C136–C144.
  • BHARGAVA P, MARSHALL JL, DAHUT W et al.: A Phase I and pharmacokinetic study of squalamine, a novel antiangiogenic agent, in patients with advanced cancers. Clin. Cancer Res. (2001) 7:3912–3919.
  • SILLS AK Jr, WILLIAMS JI, TYLER BM et al.: Squalamine inhibits angiogenesis and solid tumor growth in vivo and perturbs embryonic vasculature. Cancer Res. (1998) 58:2784–2792.
  • HAO D, HAMMOND LA, ECKHARDT SG et al.: A Phase I and pharmacokinetic study of squalamine, an aminosterol angiogenesis inhibitor. Clin. Cancer Res. (2003) 9:2465–2471.
  • LOWE SW, LIN AW: Apoptosis in cancer. Carcinogenesis (2000) 21:485–495.
  • BOGLER 0, WELLER M: Apoptosis in gliomas and its role in their current and future treatment. Front. Biosci. (2002) 7:e339–e353.
  • NICHOLSON DW: From bench to clinic with apoptosis-based therapeutic agents. Nature (2000) 407:810–816.
  • SALVESEN GS, DIXIT VM: Caspases: intracellular signaling by proteolysis. Cell (1997) 91:443–446.
  • ••A thorough review.
  • FISCHER U, JANICKE RU, SCHULZE-OSTHOFF K: Many cuts to ruin: a comprehensive update of caspase substrates. Cell Death Differ. (2003) 10:76–100.
  • BELKA C, RUDNERJ, WESSELBORG S et al: Differential role of caspase-8 and BID activation during radiation- and CD95-induced apoptosis. Oncogene (2000) 19:1181–1190.
  • BELKA C, GRUBER C, JENDROSSEK V, WESSELBORG S, BUDACH W: The tyrosine kinase Lck is involved in regulation of mitochondrial apoptosis pathways. Oncogene (2003) 22:176–185.
  • ENGELS IH, STEPCZYNSKA A, STROH C et al.: Caspase-8/FLICE functions as an executioner caspase in anticancer drug-induced apoptosis. Oncogene (2000) 19:4563–4573.
  • WIEDER T, ESSMANN F, PROKOP A et al.: Activation of caspase-8 in drug-induced apoptosis of B-lymphoid cells is independent of CD95/Fas receptor-ligand interaction and occurs downstream of caspase-3. Bkod(2001) 97:1378–1387.
  • MUZIO M, CHINNAIYAN AM, KISCHKEL FC et al.: FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/ APO-1) death-inducing signaling complex. CO (1996) 85:817–827.
  • SOENGAS MS, ALARCON RM, YOSHIDA H et al: Apaf-1 and caspase-9 in p53-dependent apoptosis and tumor inhibition. Science (1999) 284:156–159.
  • MIYASHITA T, REED JC: Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell (1995) 80:293–299.
  • NAKANO K, VOUSDEN KH: PUMA, a Novel Proapoptotic Gene, Is Induced by p53. Ma Cell. (2001) 7:683–694.
  • ODA E, OHKI R, MURASAWA H et al.: Noxa, a BH3-only member of the Bc1-2 family and candidate mediator of p53-induced apoptosis. Science (2000) 288:1053–1058.
  • RENZ A, BERDEL WE, KREUTER M et al.: Rapid extracellular release of cytochrome c is specific for apoptosis and marks cell death in vivo. Blood (2001) 98:1542–1548.
  • ZOU H, HENZEL WJ, LIU X, LUTSCHG A, WANG X: Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell (1997) 90:405–413.
  • LI P, NIJHAWAN D, BUDIHARDJO I et al.: Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell (1997) 91:479–489.
  • LI H, ZHU H, XU CJ, YUAN J: Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell (1998) 94:491–501.
  • FULDA S, MEYER E, DEBATIN KM: Inhibition of TRAIL-induced apoptosis by Bc1-2 overexpression. Oncogene (2002) 21:2283–2294.
  • BELKA C, BUDACH W: Anti-apoptotic Bc1-2 proteins: structure, function and relevance for radiation biology. hat. J. Radial Biol. (2002) 78:643–658.
  • STRIK H, DEININGER M, STREFFERJ et al.: BCL-2 family protein expression in initial and recurrent glioblastomas: modulation by radiochemotherapy. Neuro/. Neurosurg. Psychiatry (1999) 67:763–768.
  • STREFFER JR, RIMNER A, RIEGER J et al.: BCL-2 family proteins modulate radiosensitivity in human malignant glioma cells. J. Neurooncol (2002) 56:43–49.
  • MARTIN S, TOQUET C, OLIVER L et al.: Expression of bc1-2, bax and bcl-xl in human gliomas: a re-appraisal. Neurooncol (2001) 52:129–139.
  • GUENSBERG P, WACHECK V, LUCAS T et al.: Bc1-xL antisense oligonucleotides chemosensitize human glioblastoma cells. Chemotherapy (2002) 48:189–195.
  • JIANG Z, ZHENG X, RICH KM: Down- regulation of Bc1-2 and Bc1-xL expression with bispecific antisense treatment in glioblastoma cell lines induce cell death. Neurochem. (2003) 84:273–281.
  • WAGENKNECHT B, GLASER T, NAUMANN U et al: Expression and biological activity of X-linked inhibitor of apoptosis (XIAP) in human malignant glioma. Cell Death Differ. (1999) 6:370–376.
  • DEVERAUX QL, REED JC: IAP family proteins-suppressors of apoptosis. Genes Dev. (1999) 13:239–252.
  • •A thorough review.
  • ASHKENAZI A, PAI RC, FONG S et al: Safety and antitumor activity of recombinant soluble Apo2 ligand. Clin. Invest. (1999) 104:155–162.
  • BELKA C, SCHMID B, MARINI P et al: Sensitization of resistant lymphoma cells to irradiation-induced apoptosis by the death ligand TRAIL. Oncogene (2001) 20:2190–2196.
  • RIEGER J, OHGAKI H, KLEIHUES P, WELLER M: Human astrocytic brain tumors express APO2L/TRAIL. Acta Neuropathol (Berl) (1999) 97:1–4.
  • WU M, DAS A, TAN Y et al: Induction of apoptosis in glioma cell lines by TRAIL/ Apo-21. .1 Neurosci. Res. (2000) 61:464–470.
  • CHOI C, KUTSCH 0, PARK Jet al.: Tumor necrosis factor-related apoptosis-inducing ligand induces caspase-dependent interleukin-8 expression and apoptosis in human astroglioma cells. MM. Cell. Biol. (2002) 22:724–736.
  • ROTH W, ISENMANN S, NAUMANN U et al.: Locoregional Apo2L/ TRAIL eradicates intracranial human malignant glioma xenografts in athymic mice in the absence of neurotoxicity. Biochem. Biophys. Res. Commun. (1999) 265:479–483.
  • EHTESHAM M, KABOS P, GUTIERREZ MA et al: Induction of glioblastoma apoptosis using neural stem cell-mediated delivery of tumor necrosis factor-related apoptosis-inducing ligand. Cancer Res. (2002) 62:7170–7174.
  • LEE J, HAMPL M, ALBERT P, FINE HA: Antitumor activity and prolonged expression from a TRAIL-expressing adenoviral vector. Neoplasia (2002) 4:312–323.
  • NAUMANN U, WALTEREIT R, SCHULZ JB, WELLER M: Adenoviral (full-length) Apo2L/TRAIL gene transfer is an ineffective treatment strategy for malignant glioma. Neurooncol (2003) 61:7–15.
  • KNIGHT MJ, RIFFKIN CD, MUSCAT AM, ASHLEY DM, HAWKINS CJ: Analysis of FasL and TRAIL induced apoptosis pathways in glioma cells. Oncogene (2001) 20:5789–5798.
  • NAGANE M, PAN G, WEDDLE JJ et al.: Increased death receptor 5 expression by chemotherapeutic agents in human gliomas causes synergistic cytotoxicity with tumor necrosis factor-related apoptosis-inducing ligand in vitro and in vivo. Cancer Res. (2000) 60:847–853.
  • ROHN TA, WAGENKNECHT B, ROTH W et al.: CCNU-dependent potentiation of TRAIL/Apo2L-induced apoptosis in human glioma cells is p53-independent but may involve enhanced cytochrome c release. Oncogene (2001) 20:4128–4137.
  • MARINI P, JENDROSSEK V, DURAND E et al.: Molecular requirements for the combined effects of TRAIL and ionising radiation. Radiother. Oncol (2003) 68:189–198.
  • DEVERAUX QL, ROY N, STENNICKE HR et al.: IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. EMBO J. (1998) 17:2215–2223.
  • DU C, FANG M, LI Y, LI L, WANG X: Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell (2000) 102:33–42.
  • VERHAGEN AM, EKERT PG, PAKUSCH M et al.: Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell (2000) 102:43–53.
  • SRINIVASULA SM, HEGDE R, SALEH A et al.: A conserved XIAP-interaction motif in caspase-9 and Smac/ DIABLO regulates caspase activity and apoptosis. Nature (2001) 410:112–116.
  • FULDA S, WICK W, WELLER M, DEBATIN KM: Smac agonists sensitize for Apo2L/TRAIL- or anticancer drug-induced apoptosis and induce regression of malignant glioma in vivo. Nat. Med. (2002) 8:808–815.
  • •Xenograft data showing antiglioma activity of TRAIL in combination with SMAC peptides.
  • BERDEL WE, GREINER E, FINK U et al.: Cytotoxic effects of alkyl-lysophospholipids in human brain tumor cells. Oncology (1984) 41:140–145.
  • BERGER MR, BETSCH B, GEBELEIN M et al.: Hexadecylphosphocholine differs from conventional cytostatic agents. .1 Cancer Res. Clin. Oncol (1993) 119:541–548.
  • MOLLINEDO F, FERNANDEZ-LUNA JL, GAJATE C et al.: Selective induction of apoptosis in cancer cells by the ether lipid ET-18-0CH3 (Edelfosine): molecular structure requirements, cellular uptake, and protection by Bc1-2 and Bc1-X(L). Cancer Res. (1997) 57:1320–1328.
  • RUITER GA, VERHEIJ M, ZERP SF, VAN BLITTERSWIJK WJ: Alkyl-lysophospholipids as anticancer agents and enhancers of radiation-induced apoptosis. Int. J. Radiat. Oncol Biol. Phys. (2001) 49:415–419.
  • •A thorough review.
  • JENDROSSEK V, HANDRICK R: Membrane Targeted Anticancer Drugs: Potent Inducers of Apoptosis and putative Radiosensitisers. Curl: Med. Chem. Anti-Canc. Agents (2003) 3:343–353.
  • •A thorough review.
  • JENDROSSEK V, MOLLER I, EIBEL H, BELKA C: Intracellular mediators of erucylphosphocholine-induced apoptosis. Oncogene (2003) 22:2621–2631.
  • JENDROSSEK V, KUGLER W, ERDLENBRUCH B et al: Erucylphosphocholine-induced apoptosis in chemoresistant glioblastoma cell lines: involvement of caspase activation and mitochondrial alterations. Anticancer Res. (2001) 21:3389–3396.
  • ERDLENBRUCH B, JENDROSSEK V, GERRIETS A et al.: Erucylphosphocholine: pharmacokinetics, biodistribution and CNS-accumulation in the rat after intravenous administration. Cancer Chemother. Pharmacol (1999) 44:484–490.
  • LINSKEY ME, GILBERT MR: Glial differentiation: a review with implications for new directions in neuro-oncology. Neurosurgery (1995) 36:1-21; discussion 21–22.
  • ENGELHARD HH, DUNCAN HA, KIM S, CRIS WELL PS, VAN ELDIK L: Therapeutic effects of sodium butyrate on glioma cells M vitro and in the rat C6 glioma model. Neurosurgery (2001) 48:616-624; discussion 624–615.
  • STOCKHAMMER G, MANLEY GT, JOHNSON R et al.: Inhibition of proliferation and induction of differentiation in medulloblastoma- and astrocytoma-derived cell lines with phenylacetate. Neurosurg. (1995) 83:672–681.
  • PRASANNA P, THIBAULT A, LIU L, SAMID D: Lipid metabolism as a target for brain cancer therapy: synergistic activity of lovastatin and sodium phenylacetate against human glioma cells. J. Neurochem. (1996) 66:710–716.
  • SCHMIDT F, GROSCURTH P, KERMER M, DICHGANS J, WELLER M: Lovastatin and phenylacetate induce apoptosis, but not differentiation, in human malignant glioma cells. Acta Neuropathol (Berl) (2001) 101:217–224.
  • SCHMIDT F, GROSCURTH P, DICHGANS J, WELLER M: Human malignant glioma cell lines are refractory to retinoic acid-mediated differentiation and sensitization to apoptosis. Cell Physiol Biochem (2000) 10:159–168.
  • CHANG SM, KUHN JG, ROBINS HI et al.: Phase II study of phenylacetate in patients with recurrent malignant glioma: a North American Brain Tumor Consortium report. J. Clin. Oncol (1999) 17:984–990.
  • BURGERING BM, COFFER PJ: Protein kinase B (c-Akt) in phosphatidylinositol-3-0H kinase signal transduction. Nature (1995) 376:599–602.
  • KLIPPEL A, KAVANAUGH WM, POT D, WILLIAMS LT: A specific product of phosphatidylinositol 3-kinase directly activates the protein kinase Akt through its pleckstrin homology domain. Ma Cell. Biol. (1997) 17:338–344.
  • ANDJELKOVIC M, ALESSI DR, MEIER R et al: Role of translocation in the activation and function of protein kinase B. Biol. Chem. (1997) 272:31515–31524.
  • DATTA SR, BRUNET A, GREENBERG ME: Cellular survival: a play in three Akts. Genes Dev. (1999) 13:2905–2927.
  • ALESSI DR, COHEN P: Mechanism of activation and function of protein kinase B. Carr: Opin. Genet. Dev. (1998) 8:55–62.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.