239
Views
118
CrossRef citations to date
0
Altmetric
Review

The role of growth factors in the pathogenesis of diabetic retinopathy

, , , , &
Pages 1275-1293 | Published online: 24 Feb 2005

Bibliography

  • FRANK RN: Diabetic retinopathy. N Engl. Med. (2004) 350(1):48–58.
  • ••Presents a comprehensive review of thepathophysiology of DR with a clinical focus.
  • KOWLURU RA, JIROUSEK MR, STRAMM L et al.: Abnormalities of retinal metabolism in diabetes or experimental galactosemia: V. Relationship between protein kinase C and ATPases. Diabetes (1998) 47(3):464–469.
  • BARBER AJ, LIETH E, KHIN SA et al.: Neural apoptosis in the retina during experimental and human diabetes. Early onset and effect of insulin. Clin. Invest. (1998) 102(4):783–791.
  • ••This paper presents important supportingevidence for the role of early neuronal loss in the pathogenesis of DR.
  • MOHR S, XI X, TANG J, KERN TS: Caspase activation in retinas of diabetic and galactosemic mice and diabetic patients. Diabetes (2002) 51(4):1172–1179.
  • JOUSSEN AM, POULAKI V, QIN W et al.: Retinal vascular endothelial growth factor induces intercellular adhesion molecule-1 and endothelial nitric oxide synthase expression and initiates early diabetic retinal leukocyte adhesion in vivo. Am. J. Pathol (2002) 160(2):501–509.
  • ••Supports the role of leukeocyte adhesion inthe pathogenesis of DR.
  • CUNHA-VAZ J, DE ABREU F Jr, CAMPOS AJ, FIGO GM: Early breakdown of the blood-retinal barrier in diabetes. Br. Oplithalmol (1975) 59:649–656.
  • JUEN S, KIESELBACH GF: Electrophysiological changes in juvenile diabetics without retinopathy. Arch. Ophthalmol (1990) 108(3):372–375.
  • FROST-LARSEN K, LARSEN HW, SIMONSEN SE: Oscillatory potential and nyctometry in insulin-dependent diabetics. Acta Ophthalmol (1980) 58(6):879–888.
  • LI Q, ZEMEL E, MILLER B, PERLMAN I: Early retinal damage in experimental diabetes: electroretinographical and morphological observations. Exp. Eye Res. (2002) 74(5):615–625.
  • SEGAWA M, HIRATA Y, FUJIMORI S, OKADA K: The development of electroretinogram abnormalities and the possible role of polyol pathway activity in diabetic hyperglycemia and galactosemia. Metabolism (1988) 37(5):454–460.
  • LOWITT S, MALONE JI, SALEM A, KOZAK WM, ORFALIAN Z: Acetyl-L-carnitine corrects electroretinographic deficits in experimental diabetes. Diabetes (1993) 42(8):1115–1118.
  • HOTTA N, KOH N, SAKAKIBARA F et al.: Effects of propionyl-L-carnitine and insulin on the electroretinogram, nerve conduction and nerve blood flow in rats with streptozotocin-induced diabetes. Flingers Arch. (1996) 431(4):564–570.
  • RUNGGER-BRANDLE E, DOSSO AA, LEUENBERGER PM: Glial reactivity, an early feature of diabetic retinopathy. Invert. Ophthalmol Vis. Sci. (2000) 41(7):1971–1980.
  • GARDNER CR, LASKIN JD, DAMBACH DM et al.: Reduced hepatotoxicity of acetaminophen in mice lacking inducible nitric oxide synthase: potential role of tumor necrosis factor-a and interleukin-10. Toxicol Appl.Phannacol (2002) 184(1):27–36.
  • ISHIDA S, USUI T, YAMASHIRO K et al.: VEGF164-mediated inflammation is required for pathological, but not physiological, ischemia-induced retinal neovascularization. Exp. Med. (2003) 198(3):483–489.
  • JOUSSEN AM, POULAKI V, MITSIADES N et al.: Nonsteroidal anti-inflammatory drugs prevent early diabetic retinopathy via TNF-a suppression. Inset (2002) 16(3):438–440.
  • GIRAUDO E, PRIMO L, AUDERO E et al.: Tumor necrosis factor-a regulates expression of vascular endothelial growth factor receptor-2 and of its co-receptor neuropilin-1 in human vascular endothelial cells. J. Biol. Chem. (1998) 273(34):22128–22135.
  • KUROSE I, WOLF R, GRISHAM MB, GRANGER DN: Modulation of ischemia/ reperfusion-induced microvascular dysfunction by nitric oxide. Circ. Res. (1994) 74(3):376–382.
  • AMBATI J, CHALAM KV, CHAWLA DK et al.: Elevated y-aminobutyric acid, glutamate, and vascular endothelial growth factor levels in the vitreous of patients with proliferative diabetic retinopathy. Arch. Ophthalmol (1997) 115(9):1161–1166.
  • LIETH E, BARBER AJ, XU B et al: Glial reactivity and impaired glutamate metabolism in short-term experimental diabetic retinopathy. Penn State Retina Research Group. Diabetes (1998) 47(5):815–820.
  • SMITH SB: Diabetic retinopathy and the NMDA Receptor. Drug News Perspect (2002) 15(4):226–232.
  • KOWLURU RA, KOPPOLU P: Diabetes-induced activation of caspase-3 in retina: effect of antioxidant therapy. Free Radic. Res. (2002) 36(9):993–999.
  • WILLIAMSON J, CHANG K, FRANGOS M et al.: Hyperglycemic pseudohypoxia and diabetic complications. Diabetes (1993) 42:801–813.
  • NO AUTHORS LISTED: A randomized trial of sorbinil, an aldose reductase inhibitor, in diabetic retinopathy. Sorbinil Retinopathy Trial Research Group. Arch. OphthaImol (1990) 108(9):1234–1244.
  • BOWNLEE M: Biochemistry and molecular cell biology of diabetic complications. Nature (2001) 414:813–820.
  • GRANT MB, MAY WS, CABALLERO S et al.: Adult hematopoietic stem cells provide functional hemangioblast activity during retinal neovascularization. Nat. Med. (2002) 8(6):607–612.
  • ••Supports the role of circulating stem cellsin the pathogenesis of DR.
  • BUNN RC, FOWLKES JL: Insulin-like growth factor binding protein proteolysis. Trends Endocrinol Metab. (2003) 14(4):176–181.
  • COLLETT-SOLBERG PF, COHEN P: The role of the insulin-like growth factor binding proteins and the IGFBP proteases in modulating IGF action. Endocrinol Metab. Clin. North Am. (1996) 25(3):591–614.
  • MOHSENI-ZADEH S, BINOUX M: Insulin-like growth factor (IGF) binding protein-3 interacts with the Type 1 IGF receptor, reducing the affinity of the receptor for its ligand: an alternative mechanism in the regulation of IGF action. Endocrinology (1997) 138(12):5645–5648.
  • HOUSSAY BA, BIASOTTI A: Houssay's depancreatised and hypophysectomised dog. Revista de la Sociedad Argentina de Biologia (1930) 6:251–296.
  • POULSEN JE: Recovery from retinopathy in a case of diabetes with Simmonds' disease. Diabetes (1953) 2(1):7–12.
  • MERIMEE TJ, ZAPF J, FROESCH ER: Insulin-like growth factors: studies in diabetics with and without retinopathy. N Engl. J. Med. (1983) 309(9):527–530.
  • GRANT MB, RUSSELL B, FITZGERALD C, MERIMEE TJ: Insulin-like growth factors in vitreous: studies in control and diabetic subjects with neovascularization. Diabetes (1986) 35(4):416–420.
  • DILLS DG, MOSS SE, KLEIN R, KLEIN BE: Association of elevated IGF-I levels with increased retinopathy in late-onset diabetes. Diabetes (1991) 40(12):1725–1730.
  • HYER SL, SHARP PS, BROOKS RA, BURRIN JM, KOHNER EM: A two-year follow-up study of serum insulinlike growth factor-I in diabetics with retinopathy. Metabolism (1989) 38(6):586–589.
  • CHANTELAU E, EGGERT H, SEPPEL T, SCHONAU E, ALTHAUS C: Elevation of serum IGF-1 precedes proliferative diabetic retinopathy in Mauriac's syndrome. Br. I. Ophthalmol (1997) 81(2):169–170.
  • LAUSZUS FE KLEBE JG, BEK T, FLY VBJERG A: Increased serum IGF-I during pregnancy is associated with progression of diabetic retinopathy. Diabetes (2003) 52(3):852–856.
  • CHANTELAU E, MEYER-SCHWICKERATH R: Reversion of 'early worsening' of diabetic retinopathy by deliberate restoration of poor metabolic control. Ophthahnologica (2003) 217(5):373–377.
  • WANG HS, LEE JD, SOONG YK: Serum levels of insulin-like growth factor I and insulin-like growth factor-binding protein-1 and -3 in women with regular menstrual cycles. Fertil. Steril (1995) 63(6):1204–1209.
  • JANSSEN JA, LAMBERTS SW: Circulating IGF-I and its protective role in the pathogenesis of diabetic angiopathy. Clin. Endocrinol (Ox!) (2000) 52(1):1–9.
  • KRSEK M, SKRHA J, SUCHARDA P, JUSTOVA V, LACINOVA Z: [Changes in IGF-I levels and its binding proteins in diabetes mellitus and obesity]. Cas. Lek. Cesk. (2003) 142(4):216–219.
  • FRYSTYK J, NYHOLM B, SKJAERBAEK C et al: The circulating IGF system and its relationship with 24-h glucose regulation and insulin sensitivity in healthy subjects. Clin. Endocrinol (2003) 58(6):777–784.
  • HENRICSSON M, BERNTORP K, BERNTORP E, FERNLUND P, SUNDKVIST G: Progression of retinopathy after improved metabolic control in Type 2 diabetic patients. Relation to IGF-1 and hemostatic variables. Diabetes Care (1999) 22(12):1944–1949.
  • LORENZI M, GERHARDINGER C: Early cellular and molecular changes induced by diabetes in the retina. Diabetologia (2001) 44(7):791–804.
  • MEYER-SC HWICKERATHR, PFEIFFER A, BLUM WF et al.: Vitreous levels of the insulin-like growth factors land II, and the insulin-like growth factor binding proteins 2 and 3, increase in neovascular eye disease. Studies in nondiabetic and diabetic subjects. J. Clin. Invest. (1993) 92(6):2620–2625.
  • SPRANGER J, BUHNEN J, JANSEN V et al.: Systemic levels contribute significantly to increased intraocular IGF- I, IGF-II and IGF-BP3 [correction of IFG-BP3] in proliferative diabetic retinopathy. Dorm. Metab. Res. (2000) 32(5):196–200.
  • BEREKET A, LANG CH, WILSON TA: Alterations in the growth hormone-insulin-like growth factor axis in insulin dependent diabetes mellitus. Dorm. Metab. Res. (1999) 31(2-3):172–181.
  • WALDBILLIG RJ, JONES BE, SCHOEN TJ et al.: Vitreal insulin-like growth factor binding proteins (IGFBPs) are increased in human and animal diabetics. Curr. Eye Res. (1994) 13(7):539–546.
  • KUBLER B, COWELL S, ZAPF J, BRAULKE T: Proteolysis of insulin-like growth factor binding proteins by a novel 50-kilodalton metalloproteinase in human pregnancy serum. Endocrinology (1998) 139(4):1556–1563.
  • BIRO K, PALHALMI J, TOTH AJ, KUKORELLI T, JUHASZ G: Bimoclomol improves early electrophysiological signs of retinopathy in diabetic rats. Neuroreport (1998) 9(9):2029–2033.
  • GIUDICE LC, FARRELL EM, PHAM H, LAMSON G, ROSENFELD RG: Insulin-like growth factor binding proteins in maternal serum throughout gestation and in the puerperium: effects of a pregnancy-associated serum protease activity. Clin. Endocrinol Metab (1990) 71(4):806–816.
  • BURGOS R, MATEO C, CANTON A et al.: Vitreous levels of IGF-I, IGF binding protein 1, and IGF binding protein 3 in proliferative diabetic retinopathy: a case-control study. Diabetes Care (2000) 23(1):80–83.
  • SIMO R, HERNANDEZ C, SEGURA RIVI et al.: Free insulin-like growth factor 1 in the vitreous fluid of diabetic patients with proliferative diabetic retinopathy: a case-control study. Ctin. Sci. (2003) 104(3):223–230.
  • ARNOLD DR, MOSHAYEDI P, SCHOEN TJ et al.: Distribution of IGF-I and -II, IGF binding proteins (IGEBPs) and 1289 Expert Op/n. lnvestig. Drugs (2004) 13(10) IGFBP mRNA in ocular fluids and tissues: potential sites of synthesis of IGFBPs in aqueous and vitreous. Exp. Eye Res. (1993) 56(5):555–565.
  • DANIS RP, BINGAMAN DP: Insulin-like growth factor-1 retinal microangiopathy in the pig eye. Ophthalmology (1997) 104(10):1661–1669.
  • GRANT MB, MAMES RN, FITZGERALD C et al.: Insulin-like growth Factor I acts as an angiogenic agent in rabbit cornea and retina: comparative studies with basic fibroblast growth factor. Diabetologia (1993) 36(4):282–291.
  • RUBERTE J, AYUSO E, NAVARRO M et al.: Increased ocular levels of IGF-1 in transgenic mice lead to diabetes-like eye disease. Clio. Invest. (2004) 113(8):1149–1157.
  • BRAUSEWETTER F, JEHLE PM, JUNG MF et al.: Microvascular permeability is increased in both types of diabetes and correlates differentially with serum levels of insulin-like growth factor I (IGF-I) and vascular endothelial growth factor (VEGF). Horm. Metab. Res. (2001) 33(12):713–720.
  • FERRARA N: Vascular endothelial growth factor as a target for anticancer therapy. Oncologist (2004) 9(1):2–10.
  • FERRARA N, HILLAN KJ, GERBER HP, NOVOTNY W: Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat. Rev Drug Discov. (2004) 3(5):391–400.
  • VERHEUL HM, PINEDO HM: Vascular endothelial growth factor and its inhibitors. Drugs Today (Barc) (2003) 39(Suppl. C):81–93.
  • VINORES SA:Technology evaluation: pegaptanib, Eyetech/Pfizer. Curt: Opin. Ther. (2003) 5(6):673–679.
  • SALGALLER ML: Technology evaluation: bevacizumab, Genentech/Roche. Curi: Opin. MM. The]: (2003) 5(6):657–667.
  • PHILLIPS HS, HAINS J, LEUNG DW, FERRARA N: Vascular endothelial growth factor is expressed in rat corpus luteum. Endocrinology (1990) 127(2):965–967.
  • HATCH HM, ZHENG D, JORGENSEN ML, PETERSEN BE: SDF-lalpha/CXCR4: a mechanism for hepatic oval cell activation and bone marrow stem cell recruitment to the injured liver of rats. Cloning Stem Cells (2002) 4(4):339–351.
  • LAZARINI F, THAM TN, CASANOVA P, ARENZANA-SEISDEDOS F, DUBOIS-DALCQ M: Role of the a-chemokine stromal cell-derived factor (SDF-1) in the developing and mature central nervous system. Clia (2003) 42(2):139–148.
  • AIELLO LP, AVERY RL, ARRIGG PG et al.: Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N. Engl. Med. (1994) 331(22):1480–1487.
  • MILLER J, ADAMIS A, AIELLO L: Vascular endothelial growth factor in ocular neovascularization and proliferative diabetic retinopathy. Diabetes Metab. Rev (1997) 13:37–50.
  • BOULTON M, FOREMAN D, WILLIAMS G, McLEOD D: VEGF localisation in diabetic retinopathy. Br. .1. Ophthalmol (1998) 82 (5) :561–568.
  • VAN KEMPEN LC, COUSSENS LM: MMP9 potentiates pulmonary metastasis formation. Cancer Cell (2002) 2(4):251–252.
  • LECOUTER J, MORITZ DR, LI B et al: Angiogenesis-independent endothelial protection of liver: role of VEGFR-1. Science (2003) 299(5608):890–893.
  • FRITZ JJ, LEWIN A, HAUSWIRTH W, AGARWAL A, GRANT M, SHAW L: Development of hammerhead ribozymes to modulae endogenous gene expression for functional studies. Methods (2002) 28:276–285.
  • SHAW LC, AFZAL A, LEWIN AS et al.: Decreased expression of the insulin-like growth factor 1 receptor by ribozyme cleavage. Invest. Ophthalmol. Vis. ScL (2003) 44(9):4105–4113.
  • AFZAL A, SHAW LC, CABALLERO S et al.: Reduction in preretinal neovascularization by ribozymes that cleave the A2B adenosine receptor mRNA. Circ. Res. (2003) 93(6):500–506.
  • SPOERRI PE, AFZAL A, SHAW LC, PAN H, GRANT GB: Effects of VEGFR-1, VEGFR-2 and IGF-1R hammerhead ribozymes on glucose-induced tight junction modulations in cultured human retinal endothelial cells. Molecular Vision. (2004) (In press).
  • GRANT MB, JERDAN J, MERIMEE TJ: Insulin-like growth factor-I modulates endothelial cell chemotaxis. Clio. Endocrinol. Metab. (1987) 65(2):370–371.
  • GRANT MB, CABALLERO S, BUSH DM, SPOERRI PE: Fibronectin fragments modulate human retinal capillary cell proliferation and migration. Diabetes (1998) 47(8):1335–1340.
  • SMITH LE, WESOLOWSKI E, MCLELLAN A et al.: Oxygen-induced retinopathy in the mouse. Invest. Ophthalmol Vis. ScL (1994) 35(1):101–111.
  • KIJOWSKI J, BAJ-KRZYWORZEKA M, MAJKA M et al.: The SDF-1-CXCR4 axis stimulates VEGF secretion and activates integrins but does not affect proliferation and survival in lymphohematopoietic cells. Stem Cells (2001) 19(5):453–466.
  • NEUHAUS T, STIER S, TOTZKE G et al.: Stromal cell-derived factor la (SDF-1a) induces gene-expression of early growth response-1 (Egr-1) and VEGF in human arterial endothelial cells and enhances VEGF induced cell proliferation. Cell Prolif (2003) 36(2):75–86.
  • BROOKS HL, CABALLEROS, NEWELL CK et al: Assessment of triamcinolone treatment for neovascular glaucoma. Annal Meeting of the Association for Research M Vision and Ophthalmology (ARM, Florida, USA (2004)
  • GRANT MB, CABALLERO S, MAY WS et al.: Adult hematopoietic stem cells provide functional hemangioblast activity during retinal neovascularization. Nat. Med. (2002) 8(6):607–612.
  • GRANT MB, SEAGAL MS, AFZAL A et al.: Stromal derived factor-1 affects multiple steps in stem cell recruitment to areas of ocular neovascularization. Annual Meeting of The Association for Research in Vision and Ophthalmology (ARVO), Florida, USA (2004)
  • KOSTYK SK, D'AMORE PA, HERMAN IM, WAGNER JA: Optic nerve injury alters basic fibroblast growth factor localization in the retina and optic tract. Neurosci. (1994) 14(3 Pt 2):1441–1449.
  • GAO H, HOLLYFIELD JG: Basic fibroblast growth factor (bEGF) immunolocalization in the rodent outer retina demonstrated with an anti-rodent bFGF antibody. Brain Res. (1992) 585(1-2):355–360.
  • NYBERG F, HAHNENBERGER R, JAKOBSON AM, TERENIUS L: Enhancement of FGF-like polypeptides in the retinae of newborn mice exposed to hyperoxia. FEBS Lett. (1990) 267(1)75–77.
  • SIVALINGAM A, KENNEY J, BROWN GC, BENSON WE, DONOSO L: Basic fibroblast growth factor levels in the vitreous of patients with proliferative diabetic retinopathy. Arch. Ophthalmol (1990) 108(6):869–872.
  • FRANK J, CARROLL CM, AARANSON K et al.: Ischemia increases the angiogenic potency of basic fibroblast growth factor (FGF-2). Microsurgery (1996) 17(8):452–456.
  • HANNEKEN A, DE JUAN E Jr, LUTTY GA et al.: Altered distribution of basic fibroblast growth factor in diabetic retinopathy. Arch. Ophthalmol (1991) 109(7):1005–1011.
  • YAMADA H, YAMADA E, ANDO A et al.: Fibroblast growth factor-2 decreases hyperoxia-induced photoreceptor cell death in mice. Am. Pathol (2001) 159(3):1113–1120.
  • SATO TN, QIN Y, KOZAK CA, AUDUS KL: Tie-1 and tie-2 define another class of putative receptor tyrosine kinase genes expressed in early embryonic vascular system. Proc. Natl. Acad. Sci. USA (1993) 90(20):9355–9358.
  • DAVIS S, ALDRICH TH, JONES PF et al.: Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell (1996) 87(7):1161–1169.
  • SURI C, JONES PF, PATAN S et al: Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell (1996) 87(7):1171–1180.
  • MAISONPIERRE PC, SURI C, JONES PF et al.: Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science (1997) 277(5322):55–60.
  • DAS A, FANSLOW W, CERRETTI D et al.: Angiopoietin/Tek interactions regulate mmp-9 expression and retinal neovascularization. Lab. Invest. (2003) 83(11):1637–1645.
  • HACKETT NR, EL SAWY T, LEE LY et al.: Use of quantitative TaqMan real-time PCR to track the time-dependent distribution of gene transfer vectors in vivo. MM. Ther. (2000) 2(6):649–656.
  • ROBBINS SG, MIXON RN, WILSON DJ et al.: Platelet-derived growth factor ligands and receptors immunolocalized in proliferative retinal diseases. Invest. Ophthalmol Vis. ScL (1994) 35(10):3649–3663.
  • FREYBERGER H, BROCKER M, YAKUT H et al: Increased levels of platelet-derived growth factor in vitreous fluid of patients with proliferative diabetic retinopathy. Exp. Clin. Endocrinol Diabetes (2000) 108(2):106–109.
  • MORI K, GEHLBACH P, ANDO A et al:Retina-specific expression of PDGF-B versus PDGF-A: vascular versus nonvascular proliferative retinopathy. Invest. Ophthalmol Vis. Sci. (2002) 43(6):2001–2006.
  • VINORES SA, SEO MS, DEREVJANIK NL, CAMPOCHIARO PA: Photoreceptor-specific overexpression of platelet-derived growth factor induces proliferation of endothelial cells, pericytes, and glial cells and aberrant vascular development: an ultrastructural and immunocytochemical study. Brain Res. Dev. Brain Res. (2003) 140(2):169–183.
  • KOUREMBANAS S, HANNAN RL, FALLER DV: Oxygen tension regulates the expression of the platelet-derived growth factor-B chain gene in human endothelial cells." Clin. Invest. (1990) 86(2):670–674.
  • KOCH AE, POLVERINI PJ, KUNKEL SL et al: Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science (1992) 258(5089):1798–1801.
  • YOSHIDA A, YOSHIDA S, KHALIL AK, ISHIBASHI T, INOMATA H: Role of NF-icB-mediated interleukin-8 expression in intraocular neovascularization. Invest. Ophthalmol Vis. Sci. (1998) 39(7):1097–1106.
  • LIMB GA, CHIGNELL AH, GREEN W, LEROY F, DUMONDE DC: Distribution of TNF a and its reactive vascular adhesion molecules in fibrovascular membranes of proliferative diabetic retinopathy. Br. Ophthalmol (1996) 80(2):168–173.
  • ARMSTRONG D, AUGUSTIN AJ, SPENGLER R et al.: Detection of vascular endothelial growth factor and tumor necrosis factor alpha in epiretinal membranes of proliferative diabetic retinopathy, proliferative vitreoretinopathy and macular pucker. Ophthalmologica (1998) 212(6):410–414.
  • MAJKA S, McGUIRE PG, DAS A: Regulation of matrix metalloproteinase expression by tumor necrosis factor in a murine model of retinal neovascularization. Invest. Ophthalmol Vis. Sci. (2002) 43(1):260–266.
  • GRANT MB, GUAY C: Plasminogen activator production by human retinal endothelial cells of nondiabetic and diabetic origin. Invest. Ophthalmol Vis. Sci. (1991) 32(1):53–64.
  • PENN JS, RAJARATNAM VS: Inhibition of retinal neovascularization by intravitreal injection of human rPAI-1 in a rat model of retinopathy of prematurity. Invest. Ophthalmol Vis. Sci. (2003) 44(12):5423–5429. los. FRISCH SM, RUOSLAHTI E: Integrins and anoikis. Curi: Opin. Cell Biol. (1997) 9(5):701–706.
  • FRIEDLANDER M, BROOKS PC, SHAFFER RW et al.: Definition of two angiogenic pathways by distinct av integrins. Science (1995) 270(5241):1500–1502.
  • BROOKS PC, MONTGOMERY AM, ROSENFELD M et al.: Integrin av 133 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell (1994) 79(7):1157–1164.
  • BROOKS P, STROMBLAD S, KLEMKE R et al.: Antfintegrin av 133 blocks human breast cancer growth and angiogenesis in human skin." Clin. Invest. (1995) 96(4):1815–1822.
  • LUNA J, TOBE T, MOUSA SA, REILLY TM, CAMPOCHIARO PA: Antagonists of integrin cc P3 inhibit retinal neovascularization in a murine model. Lab. Invest. (1996) 75(4):563–573.
  • FRIEDLANDER M, THEESFELD CL, SUGITA M et al.: Involvement of integrins cc 133 and cc 135 in ocular neovascular diseases. Proc. Natl. Acad. Sci. USA (1996) 93(18):9764–9769.
  • REYNOLDS LE, WYDER L, LIVELY JC et al.: Enhanced pathological angiogenesis in mice lacking 133 integrin or P3 and P5 integrins. Nat. Med. (2002) 8(1):27–34.
  • CHEN AF, T OB, TSUTSUI M et al.: Expression and function of recombinant endothelial nitric oxide synthase gene in canine basilar artery. Circ. Res. (1997) 80(3):327–335.
  • SCHALLER MD: Biochemical signals and biological responses elicited by the focal adhesion kinase. Biochim. Biophys. Acta (2001) 1540(1):1–21.
  • KIM I, KIM HG, MOON SO et al: Angiopoietin-1 induces endothelial cell sprouting through the activation of focal adhesion kinase and plasmin secretion. Circ. Res. (2000) 86(9):952–959.
  • ROUSSEAU S, HOULE F, KOTANIDES H et al.: Vascular endothelial growth factor (VEGF)-driven actin-based motility is mediated by VEGFR2 and requires concerted activation of stress-activated protein kinase 2 (SAPK2/p38) and geldanamycin-sensitive phosphorylation of focal adhesion kinase. Biol. Chem. (2000) 275(14):10661–10672.
  • MARU Y, HANKS SK, SHIBUYA M: The tubulogenic activity associated with an activated form of Flt-1 kinase is dependent on focal adhesion kinase. Biochim. Biophys. Acta (2001) 1540(2):147–153.
  • ELICEIRI BP, PUENTE XS, HOOD JD et al.: Src-mediated coupling of focal adhesion kinase to integrin cc 135 in vascular endothelial growth factor signaling.' Cell Biol. (2002) 157(1):149–160.
  • WILSON SH, DAVIS MI, CABALLERO S, GRANT MB: Modulation of retinal endothelial cell behavior by somatostatin analogues: implications for diabetic retinopathy. Growth Hormone and IGF Research. Monte Carlo, Monaco (2001).
  • SMITH LE, SHEN W, PERRUZZI C et al.: Regulation of vascular endothelial growth factor-dependent retinal neovascularization by insulin-like growth factor-1 receptor. Nat. Med. (1999) 5(12):1390–1395.
  • ••Presents initial data to support the criticalinteration of IGF-1 and VEGF in ocular anigogeneis.
  • KIM B, FELDMAN EL: Differential regulation of focal adhesion kinase and mitogen-activated protein kinase tyrosine phosphorylation during insulin-like growth factor-I-mediated cytoskeletal reorganization.' Neurochem. (1998) 71(3):1333–1336.
  • CASAMASSIMA A, ROZENGURT E: Insulin-like growth Factor I stimulates tyrosine phosphorylation of p130 (Cas), focal adhesion kinase, and paxillin. Role of phosphatidylinositol 3'-kinase and formation of a p130(Cas).Crk complex. Biol. Chem. (1998) 273(40):26149–26156.
  • MANES S, MIRA E, GOMEZ-MOUTON C et al.: Concerted activity of tyrosine phosphatase SHP-2 and focal adhesion kinase in regulation of cell motility. MM. Cell. Biol. (1999) 19(4):3125–3135.
  • STEELE FR, CHADER GJ, JOHNSON LV, TOMBRAN-TINK J: Pigment epithelium-derived factor: neurotrophic activity and identification as a member of the serine protease inhibitor gene family. Proc. Natl. Acad. Sci. USA (1993) 90(4):1526–1530.
  • OGATA N, WADA M, OTSUJI T et al.: Expression of pigment epithelium-derived factor in normal adult rat eye and experimental choroidal neovascularization. Invest. Ophthalmol Vis. Sci. (2002) 43(4):1168–1175.
  • OGATA N, NISHIKAWA M, NISHIMURA T, MITSUMA Y, MATSUMURA M: Unbalanced vitreous levels of pigment epithelium-derived factor and vascular endothelial growth factor in diabetic retinopathy. Am. I Ophthalmol (2002) 134(3):348–353.
  • ORTEGO J, ESCRIBANO J, BECERRA SP, COCA-PRADOS M: Gene expression of the neurotrophic pigment epithelium-derived factor in the human ciliary epithelium. Synthesis and secretion into the aqueous humor. Invest. Ophthalmol Vis. Sci. (1996) 37(13):2759–2767.
  • LIU H, REN JG, COOPER WL et al.: Identification of the antivasopermeability effect of pigment epithelium-derived factor and its active site. Proc. Natl. Acad. Sci. USA (2004) 101(17):6605–6610.
  • MERIMEE TJ, ZAPF J, FROESCH ER: Insulin-like growth factors in the fed and fasted states. J. Clio. Endocrinol Metab. (1982) 55(5):999–1002.
  • ALZAID AA, DINNEEN SF, MELTON LR, RIZZA RA: The role of growth hormone in the development of diabetic retinopathy. Diabetes Care (1994) 17(6):531–534.
  • HYER SL: Growth hormone suppression in diabetic retinopathy. Diabetologia (1987) 30(7):534A.
  • KOHNER EM, OAKLEY NW: Diabetic retinopathy. Metabolism (1975) 24(9):1085–1102.
  • POULSEN J: The Houssay phenomenon iin man: recovery from retinopathy in a case of diabetes with Simmonds' disease. Diabetes (1953) 2:7–12.
  • MERIMEE TJ: Metabolic and clinical studies in growth hormone deficient dwarfs: a ten year follow-up. N Engl. I Med. (1978) 298:1217–1222.
  • STEWART PM: Pegvisomant: an advance in clinical efficacy in acromegaly. Eur: Endocrinol. (2003) 148 (Suppl. 2):527–532.
  • CHANTELAU E: Evidence that upregulation of serum IGF-1 concentration can trigger acceleration of diabetic retinopathy. Br. I Ophthalmol. (1998) 82(7):725–730.
  • DANEMAN D, LOBES LA, BECKER DJ, DRASH AL: Diabetic retinopathy in Mauriac's syndrome. Paradoxical deterioration with improved metabolic control. Retina (1981) 1(2):84–87.
  • DAVIS MD, FISHER MR, GANGNON RE et al.: Risk factors for high-risk proliferative diabetic retinopathy and severe visual loss: EarlyTreatment Diabetic Retinopathy Study Report 18. Invest. Ophthalmol Vis. Sci. (1998) 39(2):233–252.
  • SIMO R, LECUBE A, SARAROLS L et al.: Deficit of somatostatin-like immunoreactivity in the vitreous fluid of diabetic patients: possible role in the development of proliferative diabetic retinopathy. Diabetes Care (2002) 25(12):2282–2286.
  • DELL S, POULAKI V, MITSIADES N, KOCIOK N, JOUSSEN AM: Intensive insulin therapy-induced vascular leakage and leukostasis in diabetes are decreased by anti-IGE The Association for Research in Vision and Ophthalmology (ARVO), Annual Meeting. Florida,USA (2004).
  • NAVASCURES I, GIL J, PASCAU C et al: Effect of a long-acting somatostatin derivative SMS 201-995 (Sandostatin) on glucose homeostasis in Type I diabetes mellitus. Holm. Res. (1988) 29:92–94.
  • GRANT MB, CABALLERO S, MILLARD WJ: Inhibition of IGF-I and b-FGF stimulated growth of human retinal endothelial cells by the somatostatin analogue, octreotide: a potential treatment for ocular neovascularization. Regal. Pept. (1993) 48(1-2):267–278.
  • DAVIS CA, NICK HS, AGARWAL A: Manganese superoxide dismutase attenuates Cisplatin-induced renal injury: importance of superoxide. Am. Soc. Nephrol (2001) 12(12):2683–2690.
  • PATEL YC: Somatostatin and its receptor family. Front. Neuroendocrinol (1999) 20(3):157–198.
  • YANG L, BERK SC, ROHRER SP et al.: Synthesis and biological activities of potent peptidomimetics selective for somatostatin receptor subtype 2. Proc. Nati Acad. Sci. USA (1998) 95(18):10836–10841.
  • SMITH LE, KOPCHICK JJ, CHEN W et al.: Essential role of growth hormone in ischemia-induced retinal neovascularization. Science (1997) 276(5319):1706–1709.
  • HYER SL, SHARP PS, BROOKS RA, BURRIN JM, KOHNER EM: Continuous subcutaneous octreotide infusion markedly suppresses IGF-I levels whilst only partially suppressing GH secretion and diabetics with retinopathy. Acta Endoccinol (1989) 120(2):187–194.
  • KIRKEGAARD C, NORGAARD K, SNORGAARD 0 et al.: Effect of one year continuous subcutaneous infusion of a somatostatin analogue, octreotide, on early retinopathy, metabolic control and thyroid function in Type I (insulin-dependent) diabetes mellitus. Acta Endocrinol (1990) 122(6):766–772.
  • MALLET B, VIALETTES B, HAROCHE S et al: Stabilization of severe proliferative diabetic retinopathy by long-term treatment with SMS 201-995. Diabetes Metab. (1992) 18(6):438–444.
  • CLEMENS A, KLEVESATH MS, HOFMANN M et al.: Octreotide (somatostatin analog) treatment reduces endothelial cell dysfunction in patients with diabetes mellitus. Metabolism (1999) 48(10):1236–1240.
  • GRANT MB, MAMES RN, FITZGERALD C et al.: The efficacy of octreotide in the therapy of severe nonproliferative and early proliferative diabetic retinopathy: a randomized controlled study. Diabetes Care (2000) 23(4):504–509.
  • BOEHM BO, LANG GK, JEHLE PM, FELDMAN B, LANG GE: Octreotide reduces vitreous hemorrhage and loss of visual acuity risk in patients with high-risk proliferative diabetic retinopathy. Harm. Metab. Res. (2001) 33(5):300–306. Affiliation

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.