62
Views
23
CrossRef citations to date
0
Altmetric
Review

Gut peptides in the treatment of diabetes mellitus

&
Pages 177-188 | Published online: 02 Mar 2005

Bibliography

  • ELRICK H, STIMMRLER L, HLAD CJ Jr, ARAI 11: Plasma insulin response to oral and intravenous glucose administration. j. Cilia. Enclocrinol. Metab. (1964) 24:1076–1082.
  • McINTYRE N, HOLDSWORTH CD, TURNER DS: New interpretation of oral glucose tolerance. Lancet (1964) 41:20–21.
  • NAUCK MA, HOMBERGER E, SIEGEL EG et al.: Incretin effects of increasing glucose loads in man calculated from venous insulin and C-peptide responses. j CM]. Endocfirrol. Metab. (1986) 63:492–498.
  • •This study demonstrates the impact of the incretin hormones on the tight regulation of oral glucose tolerance.
  • CREUTZFELDT W, NAUCK M: Gut hormones and diabetes mellitus. Diabetes Metab. Rev (1992) 8:149–177.
  • KOLLIGS F, FEHMANN HC, GOKE R, GOKE B: Reduction of the incretin effect in rats by the glucagon-like peptide 1 receptor antagonist exendin (9-39) amide. Diabetes (1995) 44:16–19.
  • WANG Z, WANG RM, OWJI AA et al: Glucagon-like peptide-1 is a physiological incretin in rat. j Chi]. Invest. (1995) 95:417–421.
  • D'ALESSIO DA, VOGEL R, PRIGEON Ret al.: Elimination of the action of glucagon-like peptide 1 causes an impairment of glucose tolerance after nutrient ingestion by healthy baboons. j CM]. Invest. (1996) 97:133–138.
  • EDWARDS CM, TODD JF, MAHMOUDI M et al.: Glucagon-like peptide 1 has a physiological role in the control of postprandial glucose in humans: studies with the antagonist exendin 9-39. Diabetes (1999) 48:86–93.
  • •This study provides evidence that impaired GLP-1 receptor signalling in humans results in postprandial hyperglycaemia.
  • SCHIRRA J, STURM K, LEICHT P et al: Exendin(9-39)amide is an antagonist of glucagon-like peptide-1 (7-36)amide in humans. j Chi]. Invest. (1998) 101:1421–1430.
  • SCROCCHI LA, MARSHALL BA, COOK SM, BRUBAKER PL, DRUCKER DJ: Identification of glucagon-like peptide 1 (GLP-1) actions essential for glucose homeostasis in mice with disruption of GLP-1 receptor signaling. Diabetes (1998) 47:632–639.
  • •This study demonstrates the importance of GLP-1 for normal glucose tolerance utilising genetic disruption of GLP-1 receptor signalling.
  • TSENG CC, KIEFFER TJ, JARBOE LA,USDIN TB, WOLFE MM: Postprandial stimulation of insulin release by glucose-dependent insulinotropic polypeptide (GIP). j CM]. Invest. (1996) 98:2440–2445.
  • TSENG CC, ZHANG XY, WOLFE MM: Effect of GIP and GLP-1 antagonists on insulin release in the rat. Am. I Physiol (1999) 276:E1049–E1054.
  • MIYAWAKI K, YAMADA Y, YANO H etal.: Glucose intolerance caused by a defect in the entero-insular axis: a study in gastric inhibitory polypeptide receptor knockout mice. Proc. Natl. Acad. Sd. USA (1999) 96:14843–14847.
  • LEWIS JT, DAYANANDAN B, HABENER JF, KIEFFER TJ: Glucose-dependent insulinotropic polypeptide confers early phase insulin release to oral glucose in rats: demonstration by a receptor antagonist. Endocrinology (2000) 141:3710–3716.
  • BAGGIO L, KIEFFER TJ, DRUCKER DJ: Glucagon-like peptide-1, but not glucose-dependent insulinotropic peptide, regulates fasting glycemia and nonenteral glucose clearance in mice. Endocrinology (2000) 141:3703–3709.
  • GAULT VA, O'HARTE FP, HARRIOTTP etal.: Effects of the novel (Pro3)GIP antagonist and exendin(9–39)amide on GIP- and GLP-1-induced cyclic AMP generation, insulin secretion and postprandial insulin release in obese diabetic (oh/ob) mice: evidence that GIP is the major physiological incretin. Diabetologia (2003) 46:222–230.
  • CAVAGHAN MK, EHRMANN DA, POLONSKY KS: Interactions between insulin resistance and insulin secretion in the development of glucose intolerance. Chi]. Invest. (2000) 106:329–333.
  • KULKARNI RN, BRUNING JC, WINNAY JN et al.: Tissue-specific knockout of the insulin receptor in pancreatic beta cells creates an insulin secretory defect similar to that in Type 2 diabetes. Celi (1999) 96:329–339.
  • NAUCK M, STOCKMANN F, EBERT R, CREUTZFELDT W: Reduced incretin effect in Type 2 (non-insulin-dependent) diabetes. Diabetologia (1986) 29:46–52.
  • VILSBOLL T, KRARUP T, DEACON CF, MADSBAD S, HOLST JJ: Reduced postprandial concentrations of intact biologically active glucagon-like peptide 1 in Type 2 diabetic patients. Diabetes (2001) 50:609–613.
  • VAAG AA, HOLST JJ, VOLUND A, BECK-NIELSEN H: Gut incretin hormones in identical twins discordant for non-insulin-dependent diabetes mellitus (NIDDM) - evidence for decreased glucagon-like peptide 1 secretion during oral glucose ingestion in NIDDM twins. Eur. Endocfirrol. (1996) 135:425–432.
  • TOFT-NIELSEN MB, DAMHOLT MB, MADSBAD S etal.: Determinants of the impaired secretion of glucagon-like peptide-1 in Type 2 diabetic patients. ?Chi]. Endocrinol Metab. (2001) 86:3717–3723.
  • RANGANATH LR, BEETY JM, MORGAN LM et al: Attenuated GLP-1 secretion in obesity: cause or consequence? Gut (1996) 38:916–919.
  • VILSBOLL T, AGERSO H, KRARUP T, HOLST JJ: Similar elimination rates of glucagon-like peptide-1 in obese Type 2 diabetic patients and healthy subjects.
  • ?Chi]. Endocrinol Metab. (2003) 88:220–224.
  • NAUCK MA, HEIMESAAT MM, ORSKOV C et al.: Preserved incretin activity of glucagon-like peptide 1 (7-36 amide) but not of synthetic human gastric inhibitory polypeptide in patients with Type 2 diabetes mellitus. I Clin. Invest. (1993) 91:301–307.
  • •This paper demonstrates the different activities of GLP-1 and GIP in Type 2 diabetics.
  • ELAHI D, McALOON-DYKE M, FUKAGAWA NK etal.: The insulinotropic actions of glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (7–37) in normal and diabetic subjects. Regul Pept. (1994) 51:63–74.
  • VILSBOLL T, KRARUP T, MADSBAD S, HOLST JJ: Defective amplification of the late phase insulin response to glucose by GIP in obese Type II diabetic patients. Diabetologia (2002) 45:1111–1119.
  • VILSBOLL T, KNOP FK, KRARUP T et al.: The pathophysiology of diabetes involves a defective amplification of the late-phase insulin response to glucose by glucose-dependent insulinotropic polypeptide-regardless of etiology and phenotype. I CBI]. Endocfirrol. Metab. (2003) 88:4897–4903.
  • LYNN FC, PAMIR N, NG EH et al: Defective glucose-dependent insulinotropic polypeptide receptor expression in diabetic fatty Zucker rats. Diabetes (2001) 50:1004–1011.
  • BELL GI, SANTERRE RF, MULLENBACH GT: Hamster preproglucagon contains the sequence of glucagon and two related peptides. Nature (1983) 302:716–718.
  • MOJSOV S, HEINRICH G, WILSON IB et al.: Preproglucagon gene expression in pancreas and intestine diversifies at the level of post-translational processing. _J. Biol. Chem. (1986) 261:11880–11889.
  • ORSKOV C, RABENHOJ L, WETTERGREN A, KOFOD H, HOLST JJ: Tissue and plasma concentrations of amidated and glycine-extended glucagon-like peptide in humans. Diabetes (1994) 43:535–539.
  • WEIR GC, MOJSOV S, HENDRICK GK, HABENER JF: Glucagonlike peptide I (7-37) actions on endocrine pancreas. Diabetes (1989) 38:338–342.
  • KREYMANN B, GHATEI MA, WILLIAMS G, BLOOM SR: Glucagon-like peptide-1 7-36: A physiological incretin in man. Lancet (1987) 2:1300–1303.
  • ELLIOTT RM, MORGAN LM, TREDGER JA et al.: Glucagon-like peptide-1(7-36) amide and glucose-dependent insulinotropic polypeptide secretion in response to nutrient ingestion in man: acute post-prandial and 24-h secretion patterns. j Endocrinol (1993) 138:159–166.
  • HERMANN C, GOKE R, RICHTER G et al.: Glucagon-like peptide-1 and glucose-dependent insulin-releasing polypeptide plasma levels in response to nutrients. Digestion (1995) 56:117–126.
  • EISSELE R, GOKE R, WILLEMER S et al.: Glucagon-like peptide-1 cells in the gastrointestinal tract and pancreas of rat, pig and man. Eur j Chi]. Invest. (1992) 22:283–291.
  • ROCCA AS, BRUBAKER PL: Role of thevagus nerve in mediating proximal nutrient-induced glucagon-like peptide-1 secretion. Endocrinology (1999) 140: 1687-1694.
  • MORTENSEN K, PETERSEN LL, ORSKOV C: Colocalization of GLP-1 and GIP in human and porcine intestine. Ann. NY Acad. ScL (2000) 921:469–472.
  • MENTLEIN R, GALLWITZ B, SCHMIDT WE: Dipeptidyl-peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon-like peptide-1(7-36)amide, peptide histidine methionine and is responsible for their degradation in human serum. Eur.j Biochem. (1993) 214:829–835.
  • KIEFFER TJ, McINTOSH CHS, PEDERSON RA: Degradation of glucose-dependent insulinotropic polypeptide and truncated glucagon-like peptide 1 in vitro and in vivo by dipeptidyl peptidase IV Endocrinology(1995) 136:3585–3596.
  • PAULY RE ROSCHE F, WERMANN M et al: Investigation of glucose-dependent insulinotropic polypeptide-(1-42) and glucagon-like peptide-1- (7-36) degradation in vitro by dipeptidyl peptidase IV using matrix-assisted laser desorption/ionization-time of flight mass spectrometry. A novel kinetic approach. j Biol. Chem. (1996) 271:23222–23229.
  • DEACON CE NAUCK MA, TOFT-NIELSEN M et al: Both subcutaneously and intravenously administered glucagon-like peptide 1 are rapidly degraded from the NH2-terminus in Type II diabetic patients and in healthy subjects. Diabetes (1995) 44:1126–1131.
  • •This study describes the rapid metabolism of intact GLP-1 in humans.
  • KNUDSEN LB, PRIDAL L: Glucagon-like peptide-1-(9-36) amide is a major metabolite of glucagon-like peptide-1-(7-36) amide after in vivo administration to dogs, and it acts as an antagonist on the pancreatic receptor. Eur. j Pharmacy]. (1996) 318:429–435.
  • VAHL T1 PATY BW, FULLER BD, PRIGEON RL, D'ALESSIO DA: Effects of GLP 1 (7 36)NH2, GLP 1 (7 37), and GLP-1- (9-36)NH2 on intravenous glucose tolerance and glucose-induced insulin secretion in healthy humans. Endocnnol. Metab. (2003) 88:1772–1779.
  • DEACON CE PLAMBOECK A, MOLLER S, HOLST JJ: GLP-1- (9-36) amide reduces blood glucose in anesthetized pigs by a mechanism that does not involve insulin secretion. Am. j Physiol Endocrinol Metab. (2002) 282:E873–E879.
  • BROWN JC: A gastric inhibitory polypeptide. I. The amino acid composition and the tryptic peptides. Can. I Biochem. (1971) 49:255–261.
  • BROWN JC, DRYBURGH JR: A gastric inhibitory polypeptide. II. The complete amino acid sequence. Can. I Biochem. (1971) 49:867–872.
  • BUCHAN AM, POLAK JM, CAPELLA C, SOLCIA E, PEARSE AG: Electronimmunocytochemical evidence for the K cell localization of gastric inhibitory polypeptide (GIP) in man. Histochemistry (1978) 56:37–44.
  • CATALAND S, CROCKETT SE, BROWN JC, MAZZAFERRI EL: Gastric inhibitory polypeptide (GIP) stimulation by oral glucose in man. I Clin. Endocrinol Metab. (1974) 39:223–228.
  • FALKO JM, CROCKETT SE, CATALAND S, MAZZAFERRI EL: Gastric inhibitory polypeptide (GIP) stimulated by fat ingestion in man. I Chi]. Endocnnol Metab. (1975) 41:260–265.
  • CROCKETT SE, CATALAND S, FALKO JM, MAZZAFERRI EL: The insulinotropic effect of endogenous gastric inhibitory polypeptide in normal subjects. Chi]. Endocrinol Metab. (1976) 42:1098–1103.
  • BUFFA R, POLAK JM, PEARSE AG et al: Identification of the intestinal cell storing gastric inhibitory peptide. Histochemistry (1975) 43:249–255.
  • THOMAS FB, SHOOK DF, O'DORISIO TM et al: Localization of gastric inhibitory polypeptide release by intestinal glucose perfusion in man. Gastroenterology (1977) 72:49–54.
  • INAGAKI N, SEINO Y, TAKEDA J et al: Gastric inhibitory polypeptide: structure and chromosomal localization of the human gene. Mal Endocrinol (1989) 3:1014–1021.
  • DEACON CF, NAUCK MA, MEIER J, HUCKING K, HOLST JJ: Degradation of endogenous and exogenous gastric inhibitory polypeptide in healthy and in Type 2 diabetic subjects as revealed using a new assay for the intact peptide. Endocnnol Metab. (2000) 85:3575–3581.
  • JORNVALL H, CARLQUIST M, KWAUK S et al.: Amino acid sequence and heterogeneity of gastric inhibitory polypeptide (GIP). FEBS Lett. (1981) 123:205–210.
  • SCHMIDT WE, SIEGEL EG, KUMMEL H, GALLWITZ B, CREUTZFELDT W: Commercially available preparations of porcine glucose-dependent insulinotropic polypeptide (GIP) contain a biologically inactive GIP-fragment and cholecystokinin-33/-39. Endocrinology (1987) 120:835–837.
  • DEACON CF, PLAMBOECK A, HOLST JJ: Effect of the N-terminally truncated metabolite, GIP (3–42) on the insulinotropic activity of GIP(1–42) in anaesthetized pigs. ADA Abstract Book (2002) (Abstract 579).
  • THORENS B: Expression cloning of thepancreatic beta cell receptor for the gluco-incretin hormone glucagon-like peptide 1. Proc. Natl. Acad. Sci. USA (1992) 89:8641–8645.
  • THORENS B, PORRET A, BUHLER L et al: Cloning and functional expression of the human islet GLP-1 receptor: Demonstration that exendin-4 is an agonist and exendin-(9-39) an antagonist of the receptor. Diabetes (1993) 42: 1678-1682.
  • DILLON JS, TANIZAWA Y, WHEELER MB et al.: Cloning and functional expression of the human glucagon-like peptide-1 (GLP-1) receptor. Endocrinology (1993) 133: 1907-1910.
  • BULLOCK BP, HELLER RS, HABENER JF: Tissue distribution of messenger ribonucleic acid encoding the rat glucagon-like peptide-1 receptor. Endocrinology (1996) 137:2968–2978.
  • GOKE R, LARSEN PJ, MIKKELSEN JD, SKEIKH SP: Distribution of GLP-1 binding sites in the rat brain: evidence that exendin is a ligand of brain GLP-1 sites. Eur. Neurosci. (1995) 7:2294–2300.
  • VAN EYLL B, LANKAT-BUTTGEREIT B, BODE HP, GOKE R, GOKE B: Signal transduction of the GLP-1-receptor cloned from a human insulinoma. FEBS Lett. (1994) 348:7–13.
  • DRUCKER D, PHILLIPPE J, MOJSOV S, CHICK W, HABENER J: Glucagon-like peptide 1 stimulates insulin gene expression and increases cyclic AMP levels in rat islet cell line. Proc. Nat. Acad. Sci. USA (1987) 84:3434–3438.
  • FEHMANN HC, STROWSKI M, GOKE B: Interaction of glucagon-like peptide-I (7-37) and somatostatin-14 on signal transduction and proinsulin gene expression in beta TC-1 cells. Metabolism (1994) 43:787–792.
  • GROMADA J, HOLST JJ, RORSMAN P: Cellular regulation of islet hormone secretion by the incretin hormone glucagon-like peptide 1. Pllugers Arch. (1998) 435:583–594.
  • WHEELER MB, LU M, DILLON JS et al: Functional expression of the rat glucagon-like peptide-1 receptor, evidence for coupling to both adenyl cyclase and phospholipase-C. Endocrinology (1993) 133:57–62.
  • LU M, WHEELER MB, LENG XH, BOYD AED: The role of the free cytosolic calcium level in I3-cell signal transduction by gastric inhibitory polypeptide and glucagon-like peptide 1(7-37). Endocrinology (1993) 132:94–100.
  • YADA T, ITOH K, NAKATA M: Glucagon-like peptide-1-(7-36)amide and a rise in cyclic adenosine 3',5'-monophosphate increase cytosolic free Ca2+ in rat pancreatic I3-cells by enhancing Ca2+ channel activity. Endocrinology (1993) 133: 1685-1692.
  • HOLZ GGT, KUHTREIBER WM, HABENER JF: Pancreatic I3-cells are rendered glucose-competent by the insulinotropic hormone glucagon-like peptide-1(7-37). Nature (1993) 361:362–365.
  • MOJSOV S, WEIR GC, HABENER J: Insulinotropin: glucagon-like peptide 1 (7-37) co-encoded in the glucagon gene is a potent stimulator of insulin release in the perfused rat pancreas. Chi]. Invest. (1987) 79:616–619.
  • FEHMANN H-C, HABENER J: Insulinotropic hormone glucagon-like peptide-1 (7-37) stimulation of proinsulin gene expression and proinsulin biosynthesis in insulinoma bTC-1 cells. Endocrinology (1992) 130:159–166.
  • SHIMA K, HIROTA M, OHBOSHI C: Effect of glucagon-like peptide-1 on insulin secretion. Regul Pept. (1988) 22:245–252.
  • WEIR GC, MOJSOV S, HENDRICK GK, HABENER JF: Glucagon like peptide 1 (7-37) actions on endocrine pancreas. Diabetes (1989) 38:338–342.
  • GOKE R, WAGNER B, FEHMANN HC, GOKE B: Glucose-dependency of the insulin stimulatory effect of glucagon-like peptide-1 (7-36) amide on the rat pancreas. Res. Exp. Med. (Berl) (1993) 193:97–103.
  • NAUCK MA, KLEINE N, ORSKOV C etal.: Normalization of fasting hyperglycemia by endogenous glucagon-like peptide 1 (7–36 amide) in Type 2 (non-insulin-dependent) diabetic patients. Diabetologia (1993) 36:741–744.
  • QUALMANN C, NAUCK MA, HOLST JJ, ORSKOV C, CREUTZFELDT W: Insulinotropic actions of intravenous glucagon-like peptide-1 (GLP-1) [7-36 amide] in the fasting state in healthy subjects. Acta Diabetol (1995) 32:13–16.
  • KNOP FK, VILSBOLL T, LARSEN S etal.: No hypoglycemia after subcutaneous administration of glucagon-like peptide-1 in lean Type 2 diabetic patients and in patients with diabetes secondary to chronic pancreatitis. Diabetes Care (2003) 26:2581–2587.
  • HVIDBERG A, NIELSEN MT, HILSTED J, ORSKOV C, HOLST JJ: Effect of glucagon-like peptide-l(proglucagon 78-107 amide) on hepatic glucose production in healthy man. Metabolism (1994) 43:104–108.
  • MATSUYAMA T, KOMATSU R, NAMBA M etal.: Glucagon-like peptide-1 (7–36 amide): a potent glucagonostatic and insulinotropic hormone. Diabetes Res. Chi]. Pict. (1988) 5:281–284.
  • HELLER RS, KIEFFER TJ, HABENER JF: Insulinotropic glucagon-like peptide I receptor expression in glucagon-producing a-cells of the rat endocrine pancreas. Diabetes (1997) 46:785–791.
  • FEHMANN H-C, GOKE R, GOKE B: Cell and molecular biology of the incretin hormones glucagon-like peptide-1 and glucose-dependent insulin releasing polypeptide. Endocr. Rev (1995) 16:390–410.
  • NAUCK MA, HEIMESAAT MM, BEHLE K et al: Effects of glucagon-like peptide 1 on counterregulatory hormone responses, cognitive functions, and insulin secretion during hyperinsulinemic, stepped hypoglycemic clamp experiments in healthy volunteers. j Chi]. Endocrinol Metab. (2002) 87:1239–1246.
  • CREUTZFELDT W, ORSKOV C, KLEINE N et al.: Glucagonostatic actions and reduction of fasting hyperglycemia by exogenous glucagon-like peptide I (7-36) amide in Type I diabetic patients. Diabetes Care (1996) 19:580–586.
  • WETTERGREN A, SCHJOLDAGER B, MORTENSEN PE et al: Truncated GLP-1 (proglucagon 78-107-amide) inhibits gastric and pancreatic functions in man. Dig. Dis. Li. (1993) 38:665–673.
  • WILLMS B, WERNER J, HOLST JJ et al: Gastric emptying, glucose responses, and insulin secretion after a liquid test meal: Effects of exogenous glucagon-like peptide-1 (GLP-1)-(7-36) amide in Type 2 (noninsulin-dependent) diabetic patients. Chi]. Endocrinol Metab. (1996) 81:327–332.
  • SCHIRRA J, KUWERT P, WANK U et al:Differential effects of subcutaneous GLP-1 on gastric emptying, antroduodenal motility, and pancreatic function in men. Proc. Assoc. Am. Physicians (1997) 109:84–97.
  • MEIER JJ, GALLWITZ B, SALMEN S et al.: Normalization of glucose concentrations and deceleration of gastric emptying after solid meals during intravenous glucagon-like peptide 1 in patients with Type 2 diabetes. I OM. Endocrine]. Metab. (2003) 88:2719–2725.
  • IMERYUZ N, YEGEN BC, BOZKURT A et al.: Glucagon-like peptide-1 inhibits gastric emptying via vagal afferent-mediated central mechanisms. Am. I Physial. (1997) 273:G920–G927.
  • DUPRE J, BEHME MT, HRAMIAK IM, McDONALD TJ: Subcutaneous glucagon-like peptide I combined with insulin normalizes postcibal glycemic excursions in IDDM. Diabetes Care (1997) 20:381–384.
  • XU G, STOFFERS DA, HABENER JF, BONNER-WEIR S: Exendin-4 stimulates both 13-cell replication and neogenesis, resulting in increased beta-cell mass and improved glucose tolerance in diabetic rats. Diabetes (1999) 48:2270–2276.
  • •This is the first in vivo report on the positive effect of GLP-1 on I3-cell proliferation.
  • STOFFERS DA, KIEFFER TJ, HUSSAIN MA et al: Insulinotropic glucagon-like peptide 1 agonists stimulate expression of homeodomain protein IDX-1 and increase islet size in mouse pancreas. Diabetes (2000) 49:741–748.
  • PERFETTI R, ZHOU J, DOYLE ME, EGAN JM: Glucagon-like peptide-1 induces cell proliferation and pancreatic-duodenum homeobox-1 expression and increases endocrine cell mass in the pancreas of old, glucose-intolerant rats. Endocrinology (2000) 141:4600–4605.
  • ZHOU J, WANG X, PINEYRO MA, EGAN JM: Glucagon-like peptide 1 and exendin-4 convert pancreatic AR42J cells into glucagon- and insulin-producing cells. Diabetes (1999) 48:2358–2366.
  • ZULEWSKI H, ABRAHAM EJ, GERLACH MJ et al.: Multipotential nestin-positive stem cells isolated from adult pancreatic islets differentiate ex vivo into pancreatic endocrine, exocrine, and hepatic phenotypes. Diabetes (2001) 50:521–533.
  • HARDIKAR AA, WANG XY, WILLIAMS LJ etal.: Functional maturation of fetal porcine 13-cells by glucagon-like peptide 1 and cholecystokinin. Endocrinology (2002) 143:3505–3514.
  • MOVASSAT J, BEATTIE GM, LOPEZ AD, HAYEK A: Exendin 4 up-regulates expression of PDX 1 and hastens differentiation and maturation of human fetal pancreatic cells. j CM]. Endocrine]. Metab. (2002) 87:4775–4781.
  • ABRAHAM EJ, LEECH CA, LIN JC, ZULEWSKI H, HABENER JF: Insulinotropic hormone glucagon-like peptide-1 differentiation of human pancreatic islet-derived progenitor cells into insulin-producing cells. Endocrinology (2002) 143:3152–3161.
  • LI Y, HANSOTIA T, YUSTA B etal.: Glucagon-like peptide-1 receptor signaling modulates beta cell apoptosis. j Biol. Chem. (2003) 278:471–478.
  • FARILLA L, HUT H, BERTOLOTTO C et al: Glucagon-like peptide-1 promotes islet cell growth and inhibits apoptosis in Zucker diabetic rats. Endocrinology (2002) 143:4397–4408.
  • WANG Q, BRUBAKER PL: Glucagon-like peptide-1 treatment delays the onset of diabetes in 8 week-old db/db mice. Diabetologia (2002) 45:1263–1273.
  • JIN SL, HAN VK, SIMMONS JG et al.: Distribution of glucagonlike peptide 1, glucagon, and glicentin in the rat brain: An immunocytochemical study. I Comp. Neural. (1988) 271:519–532.
  • MERCHENTHALER I, LANE M, SHUGHRUE P: Distribution of pre-pro-glucagon and glucagon-like peptide-1 receptor messenger RNAs in the rat central nervous system. I Comp. Neural (1999) 403:261–280.
  • TURTON MD, O'SHEA D, GUNN I et al.: A role for glucagon-like peptide-1 in the central regulation of feeding. Nature (1996) 379:69–72.
  • TANG-CHRISTENSEN M, LARSEN PJ, GOKE R et al.: Central administration of GLP-1-(7-36) amide inhibits food and water intake in rats. Am. I Physial (1996) 271:R848–R856.
  • DAVIS HR Jr, MULLINS DE, PINES JM et al.: Effect of chronic central administration of glucagon-like peptide-1 (7-36) amide on food consumption and body weight in normal and obese rats. Obes. Res. (1998) 6:147–156.
  • MEERAN K, O'SHEA D, ED WARDS CM et al.: Repeated intracerebroventricular administration of glucagon-like peptide-1-(7–36) amide or exendin- (9–39) alters body weight in the rat. Endocrinology (1999) 140:244–250.
  • LARSEN PJ, FLEDELIUS C, KNUDSEN LB, TANG-CHRISTENSEN M: Systemic administration of the long-acting GLP-1 derivative NN2211 induces lasting and reversible weight loss in both normal and obese rats. Diabetes (2001) 50:2530–2539.
  • DONAHEY JCK, VAN DIJK G, WOODS SC, SEELEY RJ: Intraventricular GLP-1 reduces short- but not long-term food intake or body weight in lean and obese rats. Brain Res. (1998) 779(1-2):75–83.
  • THIELE TE, VAN DIJK G, CAMPFIELD LA etal.: Central administration of GLP-1, but not leptin, produce conditioned taste aversions in the rat. Am. J. Physial (1997) 272:R726–R730.
  • KINZIG KP, D'ALESSIO DA, SEELEY RJ: The diverse roles of specific GLP-1 receptors in the control of food intake and the response to visceral illness. Neurosci. (2002) 22:10470–10476.
  • RINAMAN L: A functional role for central glucagon-like peptide-1 receptors in lithium chloride-induced anorexia. Am. I Physial (1999) 277:R1537–R1540.
  • SEELEY RJ, BLAKE K, RUSHING PA etal.: The role of CNS glucagon-like peptide-1 (7–36) amide receptors in mediating the visceral illness effects of lithium chloride. I Neurosci. (2000) 20:1616–1621.
  • FLINT A, RABEN A, ASTRUP A, HOLST JJ: Glucagon-like peptide 1 promotes satiety and suppresses energy intake in humans. I OM Invest. (1998) 101:515–520.
  • GUTZWILLER JP, GOKE B, DREWE J etal.: Glucagon-like peptide-1: a potent regulator of food intake in humans. Cut (1999) 44:81–86.
  • GUTZWILLER JP, DREWE J, GOKE B etal.: Glucagon-like peptide-1 promotes satiety and reduces food intake in patients with diabetes mellitus Type 2. Am. Physial (1999) 276:R1541–R1544.
  • NASLUND E, GUTNIAK M, SKOGAR S, ROSSNER S, HELLSTROM PM: Glucagon-like peptide 1 increases the period of postprandial satiety and slows gastric emptying in obese men. Am. J. Clin. Nutr. (1998) 68:525–530.
  • USDIN TB, MEZEY E, BUTTON DC, BROWNSTEIN MJ, BONNER TI: Gastric inhibitory polypeptide receptor, a member of the secretin-vasoactive intestinal peptide receptor family, is widely distributed in peripheral organs and the brain. Endocrinology (1993) 133:2861–2870.
  • AMIRANOFF B, VAUCLIN-JACQUES N, LABURTHE M: Functional GIP receptors in a hamster pancreatic I3-cell line, In 111: specific binding and biological effects. Biochem. Biophys. Res. Commun. (1984) 123:671–676.
  • AMIRANOFF B, VAUCLIN-JACQUES N, LABURTHE M: Interaction of gastric inhibitory polypeptide (GIP) with the insulin-secreting pancreatic beta cell line, In 111: characteristics of GIP binding sites. Life Sci. (1985) 36:807–813.
  • MALETTI M, PORTHA B, CARLQUIST M et al.: Evidence for and characterization of specific high affinity binding sites for the gastric inhibitory polypeptide in pancreatic I3-cells. Endocrinology (1984) 115:1324–1331.
  • ANDERSEN DK, ELAHI D, BROWN JC, TOBIN JD, ANDRES R: Oral glucose augmentation of insulin secretion. Interactions of gastric inhibitory polypeptide with ambient glucose and insulin levels. j OM. Invest. (1978) 62:152–161.
  • ELAHI D, ANDERSEN DK, BROWN JC et al: Pancreatic a- and I3-cell responses to GIP infusion in normal man. Am. j Physiol. (1979) 237:E185–191.
  • MEIER JJ, GALLWITZ B, SIEPMANN N et al: Gastric inhibitory polypeptide (GIP) dose-dependently stimulates glucagon secretion in healthy human subjects at euglycaemia. Diabetologia (2003) 46:798–801.
  • BROWN JC, PEDERSON RA, JORPES E, MUTT V: Preparation of highly active enterogastrone. Can. I Physic] Pharmacol. (1969) 47:113–114.
  • BROWN JC, PEDERSON RA: Cleavage of a gastric inhibitory polypeptide with cyanogen bromide and the physiological action of the C-terminal fragment. Physic] (1970) 210:52P–53P.
  • NAUCK MA, BARTELS E, ORSKOV C, EBERT R, CREUTZFELDT W: Lack of effect of synthetic human gastric inhibitory polypeptide and glucagon-like peptide 1 [7-36 amide] infused at near-physiological concentrations on pentagastrin-stimulated gastric acid secretion in normal human subjects. Digestion (1992) 52:214–221.
  • MEIER JJ, GOETZE 0, ANSTIPP J etal.: Gastric inhibitory polypeptide (GIP) Does not inhibit gastric emptying in man. Am. Physiol Eridocrinol Metab. (2003) (In Press).
  • TRUMPER A, TRUMPER K, HORSCH D: Mechanisms of mitogenic and anti-apoptotic signaling by glucose-dependent insulinotropic polypeptide in Eridocnnol. (2002) 174:233–246.
  • EHSES JA, CASILLA VR, DOTY T et al: Glucose-dependent insulinotropic polypeptide promotes I3-(INS-1) cell survival via cyclic adenosine monophosphate-mediated caspase-3 inhibition and regulation of p38 mitogen-activated protein kinase. Endocrinology (2003) 144:4433–4445.
  • ECKEL RH, FUJIMOTO WY, BRUNZELL JD: Gastric inhibitory polypeptide enhanced lipoprotein lipase activity in cultured preadipocytes. Diabetes (1979) 28:1141–1142.
  • OBEN J, MORGAN L, FLETCHER J, MARKS V: Effect of the entero-pancreatic hormones, gastric inhibitory polypeptide and glucagon-like polypeptide-1(7-36) amide, on fatty acid synthesis in explants of rat adipose tissue. j Eridocrinol. (1991) 130:267–272.
  • BECK B, MAX JP: Gastric inhibitory polypeptide enhancement of the insulin effect on fatty acid incorporation into adipose tissue in the rat. Rego]. Pent. (1983) 7:3–8.
  • YIP RG, WOLFE MM: GIP biology and fat metabolism. Life Sci. (2000) 66:91–103.
  • MIYAWAKI K, YAMADA Y, BAN N et al: Inhibition of gastric inhibitory polypeptide signaling prevents obesity. Nat. Med. (2002) 8:738–742.
  • GUTNIAK M, ORSKOV C, HOLST J, AHREN B, EFENDIC S: Antidiabetogenic effect of glucagon-like peptide-1 (7-36) amide in normal subjects and patients with diabetes mellitus. N Engl. I Med. (1992) 326:1316–1322.
  • •This is the first demonstration of the anti-diabetic effect of GLP-1 in humans.
  • NATHAN DM, SCHREIBER E, FOGEL H, MOJSOV S, HABENER JF: Insulinotropic action of glucagonlike peptide-1-(7-37) in diabetic and nondiabetic subjects. Diabetes Care (1992) 15:270–276.
  • RITZEL R, ORSKOV C, HOLST JJ, NAUCK MA: Pharmacokinetic, insulinotropic, and glucagonostatic properties of GLP-1 [7-36 amide] after subcutaneous injection in healthy volunteers. Dose-response-relationships. Diabetologia (1995) 38:720–725.
  • GUTNIAK MK, LINDE B, HOLST JJ, EFENDIC S: Subcutaneous injection of the incretin hormone glucagon-like peptide 1 abolishes postprandial glycemia in NIDDM. Diabetes Care (1994) 17:1039–1044.
  • GUTNIAK MK, JUNTTI-BERGGREN L, HELLSTROM PM et al: Glucagon-like peptide I enhances the insulinotropic effect of glibenclamide in NIDDM patients and in the perfused rat pancreas. Diabetes Care (1996) 19:857–863.
  • NAUCK MA, HOLST JJ, WILLMS B: Glucagon-like peptide 1 and its potential in the treatment of non-insulin-dependent diabetes mellitus. Harm. Metab. Res. (1997) 29:411–416.
  • NAUCK MA, SAUERWALD A, RITZEL R, HOLST JJ, SCHMIEGEL W: Influence of glucagon-like peptide 1 on fasting glycemia in Type 2 diabetic patients treated with insulin after sulfonylurea secondary failure. Diabetes Care (1998) 21: 1925-1931.
  • TOFT-NIELSEN MB, MADSBAD S, HOLST JJ: Determinants of the effectiveness of glucagon-like peptide-1 in Type 2 diabetes. I OM. Eridocrinol Metab. (2001) 86:3853–3860.
  • RACHMAN J, GRIBBLE FM, BARTOW BA et al: Normalization of insulin responses to glucose by overnight infusion of glucagon-like peptide 1 (7-36) amide in patients with NIDDM. Diabetes (1996) 45:1524–1530.
  • •This paper provides evidence that GLP-1 restores biphasic insulin secretion in Type 2 diabetes.
  • QUDDUSI S, VAHL TP, HANSON K, PRIGEON RL, D'ALESSIO DA: Differential effects of acute and extended infusions of glucagon-like peptide-1 on first- and second-phase insulin secretion in diabetic and nondiabetic humans. Diabetes Care (2003) 26:791–798.
  • RACHMAN J, BARROW BA, LEVY JC, TURNER RC: Near-normalisation of diurnal glucose concentrations by continuous administration of glucagon-like peptide-1 (GLP-1) in subjects with NIDDM. Diabetologia (1997) 40:205–211.
  • LARSEN J, HYLLEBERG B, NG K, DAMSBO P: Glucagon-like peptide-1 infusion must be maintained for 24 h/day to obtain acceptable glycemia in Type 2 diabetic patients who are poorly controlled on sulphonylurea treatment. Diabetes Care (2001) 24:1416–1421.
  • ZANDER M, MADSBAD S, MADSEN JL, HOLST JJ: Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and I3-cell function in Type 2 diabetes: a parallel-group study. Lancet (2002) 359:824–830.
  • MENEILLY GS, GREIG N, TILDESLEY H et al.: Effects of 3 months of continuous subcutaneous administration of glucagon-like peptide 1 in elderly patients with Type 2 diabetes. Diabetes Care (2003) 26:2835–2841.
  • •This paper demonstrates the feasibility of GLP-1 treatment in Type 2 diabetes over an extended time period with improvement of glycaemic control and without serious side effects.
  • LAMBEIR AM, DURINX C, PROOST P et al.: Kinetic study of the processing by dipeptidyl-peptidase IV/CD26 of neuropeptides involved in pancreatic insulin secretion. FEBS Lett. (2001) 507:327–330.
  • GOKE R, FEHMANN HC, LINN T et al.: Exendin-4 is a high potency agonist and truncated exendin-(9-39)-amide an antagonist at the glucagon-like peptide 1- (7-36)-amide receptor of insulin- secreting I3-cells. j Biol. Chem. (1993) 268:19650–19655.
  • GREIG NH, HOLLOWAY HW, DE ORE KA et al.: Once daily injection of exendin-4 to diabetic mice achieves long-term beneficial effects on blood glucose concentrations. Diabetologia (1999) 42:45–50.
  • YOUNG AA, GEDULIN BR, BHAVSAR S et al.: Glucose-lowering and insulin-sensitizing actions of exendin-4: studies in obese diabetic (ob/ob, db/db) mice, diabetic fatty Zucker rats, and diabetic rhesus monkeys (Macaca mulatta). Diabetes (1999) 48:1026–1034.
  • KOLTERMAN OG, BUSE JB, FINEMAN MS etal.: Synthetic exendin-4 (exenatide) significantly reduces postprandial and fasting plasma glucose in subjects with Type 2 diabetes. j. Endocrinol. Metab. (2003) 88:3082–3089.
  • FINEMAN MS, BICSAK TA, SHEN LZ et al.: Effect on glycemic control of exenatide (synthetic exendin-4) additive to existing metformin and/or sulfonylurea treatment in patients with Type 2 diabetes. Diabetes Care (2003) 26:2370–2377.
  • ROLIN B, LARSEN MO, GOTFREDSEN CF et al.: The long-acting GLP-1 derivative NN2211 ameliorates glycemia and increases I3-cell mass in diabetic mice. Am. j. PhysioL Endocrinol Metab (2002) 283:E745–E752.
  • RIBEL U, LARSEN MO, ROLIN B et al.: NN2211: a long-acting glucagon-like peptide-1 derivative with anti-diabetic effects in glucose-intolerant pigs. Eur. Pharmacol. (2002) 451:217–225.
  • JUHL CB, HOLLINGDAL M, STURIS J et al.: Bedtime administration of NN2211, a long-acting GLP-1 derivative, substantially reduces fasting and postprandial glycemia in Type 2 diabetes. Diabetes (2002) 51:424–429.
  • AGERSO H, JENSEN LB, ELBROND B, ROLAN P, ZDRAVKOVIC M: The pharmacokinetics, pharmacodynamics, safety and tolerability of NN2211, a new long-acting GLP-1 derivative, in healthy men. Diabetologia (2002) 45:195–202.
  • ELBROND B, JAKOBSEN G, LARSEN S et al.: Pharmacokinetics, pharmacodynamics, safety, and tolerability of a single-dose of NN2211, a long-acting glucagon-like peptide 1 derivative, in healthy male subjects. Diabetes Care (2002) 25:1398–1404.
  • CHANG AM, JAKOBSEN G, STURIS J et al.: The GLP-1 derivative NN2211 restores I3-cell sensitivity to glucose in Type 2 diabetic patients after a single dose. Diabetes (2003) 52: 1786-1791.
  • KIM JG, BAGGIO LL, BRIDON DP et al.: Development and characterization of a glucagon-like peptide 1-albumin conjugate: the ability to activate the glucagon-like peptide 1 receptor in vivo. Diabetes (2003) 52:751–759.
  • MARGUET D, BAGGIO L, KOBAYASHI T etal.: Enhanced insulin secretion and improved glucose tolerance in mice lacking CD26. Proc. Natl. Acad. Sci.USA (2000) 97:6874–6879.
  • NAGAKURA T, YASUDA N, YAMAZAKI K et al.: Improved glucose tolerance via enhanced glucose-dependent insulin secretion in dipeptidyl peptidase IV-deficient Fischer rats. Biochem. Biophys. Res. Commun. (2001) 284:501–506.
  • AHREN B, HOLST JJ, MARTENSSON H, BALKAN B: Improved glucose tolerance and insulin secretion by inhibition of dipeptidyl peptidase IV in mice. Eur. j PharmacoL (2000) 404:239–245.
  • SUDRE B, BROQUA P, WHITE RB et al.: Chronic inhibition of circulating dipeptidyl peptidase IV by FE 999011 delays the occurrence of diabetes in male zucker diabetic fatty rats. Diabetes (2002) 51:1461–1469.
  • POSPISILIK JA, STAFFORD SG, DEMUTH HU et al.: Long-term treatment with the dipeptidyl peptidase IV inhibitor P32/98 causes sustained improvements in glucose tolerance, insulin sensitivity, hyperinsulinemia, and I3-cell glucose responsiveness in VDF (fa/fa) Zucker rats. Diabetes (2002) 51:943–950.
  • CONARELLO SL, LI Z, RONANJ et al.: Mice lacking dipeptidyl peptidase IV are protected against obesity and insulin resistance. Proc. Natl. Acad. Li. USA (2003) 100:6825–6830.
  • POSPISILIK JA, STAFFORD SG, DEMUTH HU, McINTOSH CH, PEDERSON RA: Long-term treatment with dipeptidyl peptidase IV inhibitor improves hepatic and peripheral insulin sensitivity in the VDF Zucker rat: a euglycemic-hyperinsulinemic clamp study. Diabetes (2002) 51:2677–2683.
  • POSPISILIK JA, MARTIN J, DOTY T etal.: Dipeptidyl peptidase IV inhibitor treatment stimulates I3-cell survival and islet neogenesis in streptozotocin-induced diabetic rats. Diabetes (2003) 52:741–750.
  • AHREN B, SIMONSSON E, LARSSON H et al.: Inhibition of dipeptidyl peptidase IV improves metabolic control over a 4-week study period in Type 2 diabetes. Diabetes Care (2002) 25:869–875.
  • LAMBEIR AM, DURINX C, SCHARPE S, DE MEESTER I: Dipeptidyl-peptidase IV from bench to bedside: an update on structural properties, functions, and clinical aspects of the enzyme DPP IV. Grit. Rev Clin. Lab. Li. (2003) 40:209–294.
  • O'HARTE FP, ABDEL-WAHAB YH, CONLON JM, FLATT PR: Amino terminal glycation of gastric inhibitory polypeptide enhances its insulinotropic action on clonal pancreatic B-cells. Biochim. Biophys. Acta (1998) 1425:319–327.
  • O'HARTE FP, MOONEY MH, KELLY CM, FLATT PR: Improved glycaemic control in obese diabetic ob/ob mice using N-terminally modified gastric inhibitory polypeptide. j Bathe/Ina (2000) 165:639–648.
  • O'HARTE FP, GAULT VA, PARKER JC et al.: Improved stability, insulin-releasing activity and antidiabetic potential of two novel N-terminal analogues of gastric inhibitory polypeptide: Nacetyl-GIP and pG1u-GIP. Diabetalagia (2002) 45:1281–1291.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.