79
Views
31
CrossRef citations to date
0
Altmetric
Review

Potential new strategies to prevent the development of diabetic retinopathy

Pages 189-198 | Published online: 02 Mar 2005

Bibliography

  • AMOS AF, McCARTY DJ, ZIMMET P: The rising global burden of diabetes and its complications: estimates and projections to the year 2010. Diabet. Med. (1997) 14\(Suppl. 5):S1–S85.
  • DIABETES CONTROL AND COMPLICATIONS TRIAL RESEARCHGROUP: The effect of intensive treatment of diabetes on the development of long-term complications in insulin-dependent diabetes mellitus. N Engl. J. Med. (1993) 329:977–986.
  • THE DIABETES CONTROL AND COMPLICATIONS TRIAL RESEARCH GROUP: Hypoglycemia in the Diabetes Control and Complications Trial. Diabetes (1997) 46:271–286.
  • UNITED KINGDOM PROSPECTIVE DIABETES STUDY: Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes. Lancet (1998) 352:837–853.
  • BRESNICK G, ENGERMAN R, DAVIS MD, DE VENECIA G, MYERS FL: Patterns of ischemia in diabetic retinopathy. Trans. Am. Acad. Ophthalmol. Otolarytigol. (1976) 81:694–709.
  • ENGERMAN RL: Animal models of diabetic retinopathy. Tins. Am. Acad. Ophthalmol. Otolarytigol. (1976) 81:710–715.
  • KERN TS, ENGERMAN RL: Comparisonof retinal lesions in alloxan-diabetic rats and galactose-fed rats. Curr. Eye Res. (1994) 13:863–867.
  • KERN TS, KOWLURU R, ENGERMAN RL: Dog and rat models of diabetic retinopathy. In: Lessons from Animal Diabetes. E Shafrir (Ed.), Smith-Gordon, London (1996):395–408.
  • WATKINS PJ: Retinopathy. Br. Med. (2003) 326:924–926.
  • NISHIKAWA T, EDELSTEIN D, DU XL et al.: Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature (2000) 404:787–790.
  • KOYA D, KING GL: Protein kinase C activation and the development of diabetic complications. Diabetes (1998) 47:859–866.
  • BROWNLEE M: Advanced protein glycosylation in diabetes and aging. Annu. Rev Med. (1995) 46:223–234.
  • STITT AW, M LY, GARDINER TA etal.: Advanced glycation end products (AGEs) co-localize with AGE receptors in the retinal vasculature of diabetic and of AGE-infused rats. Am. j Pathol. (1997) 150:523–531.
  • LEE AY, CHUNG SK, CHUNG SS: Demonstration that polyol accumulation is responsible for diabetic cataract by the use of transgenic mice expressing the aldose reductase gene in the lens. Proc. Nati Acad. Sci. USA (1995) 92:2780–2784.
  • ISHII H, KOYA D, KING GL: Protein kinase C activation and its role in the development of vascular complications in diabetes mellitus. j Mol. Med. (1998) 76:21–31.
  • STITT AW, JENKINS AJ, COOPER ME:Advanced glycation end products and diabetic complications. Expert Opin. Investig. Drugs (2002) 11:1205–1223.
  • KADOR PF, AKAGI Y, TAKAHASHI Y et al.: Prevention of retinal vessel changes associated with diabetic retinopathy in galactose-fed dogs by aldose reductase inhibitors. Arch. Ophthalmol. (1990) 108:1301–1309.
  • CARMO A, CUNHA-VAZ JG, CARVALHO AP, LOPES MC: L-Arginine transport in retinas from streptozotocin diabetic rats: correlation with the level of IL-1I3 and NO synthase activity. Vision Res. (1999) 39:3817–3823.
  • LEFER DJ, McLEOD DS, MERGES C, LUTTY GA: Immunolocalization of ICAM-1 (CD54) in the posterior eye of sickle cell and diabetic patients. Invest. Ophthalmol. Vis. Sci. (1993) 34:1206.
  • TILTON RG, CHANG K, HASAN KS et al.: Prevention of diabetic vascular dysfunction by guanidines. Inhibition of nitric oxide synthase versus advanced glycation end-product formation. Diabetes (1993) 42:221–232.
  • MIYAMOTO K, KHOSROF S, BURSELL SE etal.: Prevention of leukostasis and vascular leakage in streptozotocin-induced diabetic retinopathy via intercellular adhesion molecule-1 inhibition. Proc. Nati Acad. Sri. USA (1999) 96:1 0836–1 084 1.
  • DU Y, SMITH MA, MILLER CM, KERN TS: Diabetes-induced nitrative stress in the retina, and correction by aminoguanidine. j Neurochem. (2002) 80:771–779.
  • MOHR S, XI X, TANG J, KERN TS: Caspase activation in retinas of diabetic and galactosemic mice and diabetic patients. Diabetes (2002) 51:1172–1179.
  • TANG J, MOHR S, DU YD, KERN TS: Non-uniform distribution of lesions and biochemical abnormalities within the retina of diabetic humans. Curr. Eye Res. (2003) 27:7–13.
  • JOUSSEN AM, POULAKI V, QIN W et al.: Retinal vascular endothelial growth factor induces intercellular adhesion molecule-1 and endothelial nitric oxide synthase expression and initiates early diabetic retinal leukocyte adhesion in vivo. Am. J Pathol. (2002) 160:501–509.
  • CORBETT JA, TILTON RG, CHANG Ket al.: Aminoguanidine, a novel inhibitor of nitric oxide formation, prevents diabetic vascular dysfunction. Diabetes (1992) 41:552–556.
  • ANTONETTI DA, BARBER AJ, KHIN Set al.: Vascular permeability in experimental diabetes is associated with reduced endothelial occludin content: vascular endothelial growth factor decreases occludin in retinal endothelial cells. Penn State Retina Research Group. Diabetes (1998) 47:1953–1959.
  • JOUSSEN AM, POULAKI V, TSUJIKAWA A et al.: Suppression of diabetic retinopathy with angiopoietin-1. Am. J Pathol. (2002) 160:1683–1693.
  • BARBER AJ, ANTONETTI DA, GARDNER TW: Altered expression of retinal occludin and glial flbrillary acidic protein in experimental diabetes. The Penn State Retina Research Group. Invest. Ophthalmol. Vis. Li. (2000) 41:3561–3568.
  • MIZUTANI M, KERN TS, LORENZI M: Accelerated death of retinal microvascular cells in human and experimental diabetic retinopathy.j Clin. Invest. (1996) 97:2883–2890.
  • BARBER AJ, LIETH E, KHIN SA et al.: Neural apoptosis in the retina during experimental and human diabetes. Early onset and effect of insulin. j Clin. Invest. (1998) 102:783–191.
  • MIZUTANI M, GERHARDINGER C, LORENZI M: Muller cell changes in human diabetic retinopathy. Diabetes (1998) 47:445–449.
  • AREND WP, MALYAK M, SMITH MF Jr et al.: Binding of IL-1 a, IL-1 13, and IL-1 receptor antagonist by soluble IL-1 receptors and levels of soluble IL-1 receptors in synovial fluids. I Immunol. (1994) 153:4766–4774.
  • SIMS JE, GAYLE MA, SLACK JL et al.: Interleukin 1 signaling occurs exclusively via the type I receptor. Proc. Natl. Acad. Li. USA (1993) 90:6155–6159.
  • ROTHWELL NJ, LUHESHI GN: Interleukin 1 in the brain: biology, pathology and therapeutic target. Trends Neurosci. (2000) 23:618–625.
  • •Review of IL-1I3 function in the brain.
  • SPARACIO SM, ZHANG Y, VILCEK J, BEN VENISTE EN: Cytokine regulation of interleukin-6 gene expression in astrocytes involves activation of an NF-x13-like nuclear protein. j Neuroimmunol. (1992) 39:231–242.
  • CHUNG IY, BEN VENISTE EN: Tumornecrosis factor-a production by astrocytes. Induction by lipopolysaccharide, and IL-1-I3. j Immunol (1990) 144:2999–3007.
  • BOUTIN H, LEFEUVRE RA, HORAI R et al.: Role of IL-la and IL-113 in ischemic brain damage. J. Neurosci. (2001) 21:5528–5534.
  • GOOSSENS V, GROOTEN J, DE VOS K, FIERS W: Direct evidence for tumor necrosis factor-induced mitochondrial reactive oxygen intermediates and their involvement in cytotoxicity. Proc. Natl. Acad. Sci. USA (1995) 92:8115–8119.
  • BROWNLEE M: Biochemistry and molecular cell biology of diabetic complications. Nature (2001) 414:813–820.
  • KOWLURU RA, KENNEDY A: Therapeutic potential of anti-oxidants and diabetic retinopathy. Expert Opin. Investig. Drugs (2001) 10:1665–1676.
  • LIMB GA, SOOMRO H, JANIKOUN S, HOLLIFIELD RD, SHILLING J: Evidence for control of tumour necrosis factor-a (TNF-a) activity by TNF receptors in patients with proliferative diabetic retinopathy. CM]. Exp. Immunol (1999) 115:409–414.
  • KULSENG B, VATTEN L, ESPEVIK T: Soluble tumor necrosis factor receptors in sera from patients with insulin-dependent diabetes mellitus: relations to duration and complications of disease. Acta Diabetol (1999) 36:99–105.
  • DOGANAY S, EVEREKLIOGLU C, ER H et al: Comparison of serum NO, TNF-alpha, IL- lbeta, sIL-2R, IL-6 and IL-8 levels with grades of retinopathy in patients with diabetes mellitus. Eye (2002) 16:163–170.
  • YUUKI T, KANDA T, KIMURA Y et al: Inflammatory cytokines in vitreous fluid and serum of patients with diabetic vitreoretinopathy. J. Diabetes Complications (2001) 15:257–259.
  • ROBAYE B, MOSSELMANS R, FIERS W, DUMONT JE, GALAND P: Tumor necrosis factor induces apoptosis (programmed cell death) in normal endothelial cells in vitro. Am. J. Pathol (1991) 138:447–453.
  • POBER JS: Activation and injury of endothelial cells by cytokines. Pathol Biol. (Paris) (1998) 46:159–163.
  • MANTOVANI A, BUSSOLINO F, INTRONA M: Cytokine regulation of endothelial cell function: from molecular level to the bedside. Immutiol Today (1997) 18:231–240.
  • JOUSSEN AM, MURATA T, TSUJIKAWA A etal.: Leukocyte-mediated endothelial cell injury and death in the diabetic retina. Am. J. Pathol (2001) 158:147–152.
  • YAMASHIRO K, TSUJIKAWA A, ISHIDA S et al: Platelets accumulate in the diabetic retinal vasculature following endothelial death and suppress blood-retinal barrier breakdown. Am. J. Pathol (2003) 163:253–259.
  • JOUSSEN AM, POULAKI V, MITSIADES N et al: Suppression of Fas-FasL-induced endothelial cell apoptosis prevents diabetic blood-retinal barrier breakdown in a model of streptozotocin-induced diabetes. FASEB J. (2003) 17:76–78.
  • LI Q, PURO DG: Diabetes-induced dysfunction of the glutamate transporter in retinal Muller cells. Invest. Ophthalmol Vis. Sci. (2002) 43:3109–3116.
  • LIETH E, BARBER AJ, XU B et al: Glialreactivity and impaired glutamate metabolism in short-term experimental diabetic retinopathy. Penn State Retina Research Group. Diabetes (1998) 47:815–820.
  • RUNGGER-BRANDLE E, DOSSO AA, LEUENBERGER PM: Glial reactivity, an early feature of diabetic retinopathy. Invest. Ophthalmol Vis. Sci. (2000) 41:1971–1980.
  • JOUSSEN AM, POULAKI V, MITSIADES N et al: Nonsteroidal anti-inflammatory drugs prevent early diabetic retinopathy via TNF-a suppression. FASEB J. (2002) 16:438–440.
  • •First publication to show that anti-TNF-a agents might be promising drugs to prevent diabetic retinopathy.
  • ALNEMRI ES: Mammalian cell death proteases: a family of highly conserved aspartate specific cysteine proteases. J. Cell. Biochem. (1997) 64:33–42.
  • NICHOLSON DW, THORNBERRY NA: Caspases: killer proteases. Trends Biochem. Sci. (1997) 22:299–306.
  • ZHIVOTOVSKY B, BURGESS DH, VANAGS DM, ORRENIUS S: Involvement of cellular proteolytic machinery in apoptosis. Biochem. Biophys. Res. Commun. (1997) 230:481–488.
  • NICHOLSON DW, ALI A, THORNBERRY NA et al: Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis [see comments]. Nature (1995) 376:37–43.
  • YUAN J: Transducing signals of life and death. Curr. Opin Cell Biol. (1997) 9:247–251.
  • SALVESEN GS, DIXIT VM: Caspases: intracellular signaling by proteolysis. Cell (1997) 91:443–446.
  • GHAYUR T, BANERJEE S, HUGUNIN M et al.: Caspase-1 processes IFN-y-inducing factor and regulates LPS-induced IFN-y production. Nature (1997) 386:619–623.
  • WANG S, MIURA M, JUNG YK et al: Murine caspase-11, an ICE-interacting protease, is essential for the activation of ICE. Cell (1998) 92:501–509.
  • THOME M, HOFMANN K, BURNS K etal.: Identification of CARDIAK, a RIP-like kinase that associates with caspase-1. Curt: Biol. (1998) 8:885–888.
  • HUMKE EW, SHRIVER SK, STAROVASNIK MA, FAIRBROTHERWJ, DIXIT VM: ICEBERG: a novel inhibitor of interleukin-113 generation. Cell (2000) 103:99–111.
  • POYET JL, SRINIVASULA SM, TNANI M et al: Identification of Ipaf, a human caspase-l-activating protein related to Apaf-1. Bia. Chem. (2001) 276:28309–28313.
  • GUPTA S, RADHA V, FURUKAWA Y, SWARUP G: Direct transcriptional activation of human caspase-1 by tumor suppressor p53. 1 Biol. Chem. (2001) 276:10585–10588.
  • WILLIAM R, WATSON G, ROTSTEIN OD et al.: The IL-113 converting enzyme (caspase-1) inhibits apoptosis of inflammatory neutrophils through activation of Immutiol (1998) 161:957–962.
  • ALI A, MUNDLE SD, RAGASA D et al:Sequential activation of caspase-1 and caspase-3-like proteases during apoptosis in myelodysplastic syndromes. J. Hematother. Stem Cell Res. (1999) 8:343–356.
  • MIURA M, ZHU H, ROTELLO R, HARTWIEG EA, YUAN J: Induction of apoptosis in fibroblasts by IL-1P-converting enzyme, a mammalian homolog of the C. elegans cell death gene ced-3. Cell (1993) 75:653–660.
  • FRIEDLANDER RM, GAGLIARDINI V, ROTELLO RJ, YUAN J: Functional role of interleukin i3 (IL-13) in IL-113- converting enzyme-mediated apoptosis. J. Exp. Med. (1996) 184:717–724.
  • FRIEDLANDER RM: Role of caspase 1 in neurologic disease. Arch. Neural. (2000) 57:1273–1276.
  • ••Excellent review demonstrating thepotential importance of caspase-1 in neurodegenerative diseases. Since brain and retina are very similar, these concepts might also be true for diabetic retinopathy.
  • PASINELLI P, BORCHELT DR, HOUSEWEART MK, CLEVELAND DW, BROWN RH Jr: Caspase-1 is activated in neural cells and tissue with amyotrophic lateral sclerosis-associated mutations in copper-zinc superoxide dismutase. Proc. Natl. Acad. Sci. USA (1998) 95:15763–15768.
  • PASINELLI P, HOUSEWEART MK, BROWN RH, CLEVELAND DW: Caspase-1 and -3 are sequentially activated in motor neuron death in Cu,Zn superoxide dismutase-mediated familial amyotrophic lateral sclerosis. Proc. Natl. Acad. Sci. USA (2000) 97:13901–13906.
  • GUEGAN C, VILA M, TEISSMAN P et al.: Instrumental activation of bid by caspase-1 in a transgenic mouse model of ALS. Mol. Cell. Neurosci. (2002) 20:553.
  • HARA H, FRIEDLANDER RM, GAGLIARDINI V et al.: Inhibition of interleukin 113 converting enzyme family proteases reduces ischemic and excitotoxic neuronal damage. Proc. Natl. Acad. Sci. USA (1997) 94:2007–2012.
  • LODDICK SA, ROTHWELL NJ: Neuroprotective effects of human recombinant interleukin-1 receptor antagonist in focal cerebral ischaemia in the rat. j. Cereb. Blood Flow Metab. (1996) 16:932–940.
  • HARA H, FINK K, ENDRES M et al.: Attenuation of transient focal cerebral ischemic injury in transgenic mice expressing a mutant ICE inhibitory protein. Cereb. Blood Flow Metab. (1997) 17:370–375.
  • FRIEDLANDER RM, GAGLIARDINI V, HARA H etal.: Expression of a dominant negative mutant of interleukin-lp converting enzyme in transgenic mice prevents neuronal cell death induced by trophic factor withdrawal and ischemic brain injury. j. Exp. Med. (1997) 185:933–940.
  • GREENWALD R, GOLUB L: Biologic properties of non-antibiotic, chemically modified tetracyclines (CMTs): a structured, annotated bibliography. C1117: Med. Chem. (2001) 8:237–242.
  • CRAIG RG, YU Z, XU L etal.: A chemically modified tetracycline inhibits streptozotocin-induced diabetic depression of skin collagen synthesis and steady-state type I procollagen mRNA. Biochim. Biophys. Acta (1998) 1402:250–260.
  • RYAN ME, RAMAMURTHY NS, SORSA T, GOLUB LM: MMP-mediated events in diabetes. Ann. NY Acad. Sci. (1999) 878:311–334.
  • CHEN M, ONA VO, LI M et al.: Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease. Nat. Med. (2000) 6(7):797–801.
  • •This publication shows the potential of minocycline as a caspase-1 inhibitor.
  • ZHU S, STAVROVSKAYA IG, DROZDA M et al.: Minocycline inhibits cytochrome c release and delays progression of amyotropic lateral sclerosis in mice. Nature (2002) 417:74–78.
  • •This publication confirmed that minocycline represents a suitable drug for diseases that involve the upregulation of caspase-1.
  • RANDLE JC, HARDING MW, KU G, SCHONHARTING M, KURRLE R: ICE/Caspase-1 inhibitors as novel anti-inflammatory drugs. Expert Opin. Investig. Drugs (2001) 10:1207–1209.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.