478
Views
97
CrossRef citations to date
0
Altmetric
Special Report

Preclinical evaluation of novel antibacterial agents by microbiological and molecular techniques

&
Pages 1045-1063 | Published online: 24 Feb 2005

Bibliography

  • LEVY SB: The Antibiotic Paradox: How Miracle Drugs are Destroying the Miracle. Press, New York, USA (1992).
  • JOHNSTON N: Seeking superbug-busters. Mod. Drug Discov. (2002) 5:34–36.
  • PROJAN SJ: Why is big Pharma getting out of antibacterial drug discovery? Carr: Opin. Microbia (2003) 6:427–430.
  • PROJAN SJ: New (and not so new) antibacterial targets - from where and when will the novel drugs come? Carr: Opin. Pharmaca (2002) 2:513–522.
  • CHOPRA I, HESSE L, O'NEILL AJ: Discovery and development of new antibacterial drugs. In: Trend in Drug Research III: proceedings of the 13th Noordwhkerhout-carnerino symposium (Vol. 32). Van der Goot H (Ed.) Elsevier Press, Amsterdam, Holland (2002):213–225.
  • PROJAN SJ, YOUNGMAN PJ:: new solutions badly needed. Curr. Opin. Microbia (2002) 5:463–465.
  • CHOPRA I, HESSE L, O'NEILL AJ: Exploiting current understanding of antibiotic action for discovery of new drugs. Microbia (2002) 92:4S–15S.
  • FRANCO CMM, COUTINHO LEL: of novel secondary metabolites.Crit. Rev Biotechnol (1991) 11:193–276.
  • DOUGHERTY TJ, PROJAN SJ: Microbial Genomics and Drug Discovery Marcel Dekker, New York, USA (2003).
  • ••An excellent overview of molecularapproaches for antimicrobial drug discovery in the post-genomic era.
  • CHAN PF, MACARRON R, PAYNE DJ, ZALACAIN M, HOLMES DJ: Novel antibacterials: a genomics approach to drug. Curr. Drug Targets Infect. Disord. (2002) 2:291–308.
  • •Provides a useful discussion of genomics/ bioinformatics in the drug discovery process.
  • SILVER L, BOSTIAN K: Screening of natural products for antimicrobial agents..Microbia Infect. Dis. (1990) 9:455–461.
  • GOOTZ TD: Discovery and development of new antimicrobial agents. Clin. Microbia Rev (1990) 3:13–31.
  • BILLSTEIN SA: How the pharmaceutical industry brings an antibiotic drug to market in the United States. Antimicrob. Agents Chemother. (1994) 38:2679–2682.
  • BEAM TR, GILBERT DN, KUNIN CM: General guidelines for the clinical evaluation of anti-infective drug products. Clin. Infect. Dis. (1992) 15:S5–S32.
  • TUNKEL AR, SCHELD WM: of therapy in animal models to bacterial infection in human disease. Infect. Dis. Clin. North Am. (1989) 3:441–459.
  • FOOD AND DRUG: Guideline and Format of the Microbiology Section of an Application (Docket No. 85D-0245), US Department of Health and Human Services (1990).
  • Antibiotics in Laboratory Medicine V Lorian (Ed.), Williams & Wilkins, Baltimore, USA (1996).
  • O'NEILL AJ, OLIVA B, STOREY C et al: RNA polymerase inhibitors with activity against rifampin-resistant mutants of aureus. Antimicrob. Agents Chemother. (2000) 44:3163–3166.
  • OLIVA B, MILLER K, CAGGIANO N al.: Antimicrobial properties and mechanisms of action of novel quinoline-indole agents possessing potent anti-staphylococcal activity. Antimicrob. Agents Chemother. (2003) 47:458–466.
  • EVANS SM, CASARTELLI A, HERREROS E et al.: Development of a high throughput in vitro toxicity screen predictive of high acute in vivo toxic potential. Toxica Vitro (2001) 15:579–584.
  • GE Y, DIFUNTORUM S, TOUAMI S et al.: In vitro antimicrobial activity of GSQ1530, a new heteroaromatic polycyclic compound. Antimicrob. Agents Chemother. (2002) 46:3168–3174.
  • PAYNE DJ, MILLER WH, BERRY V et al.: Discovery of a novel and potent class of FabI-directed antibacterial agents.. Agents Chemother. (2002) 46:3118–3124.
  • IANDOLO JJ, WORRELL V, GROICHER KH et al.: Comparative analysis of the genomes of the temperate bacteriophages phi 11, phi 12 and phi 13 of Staphylococcus aureus 8325. Gene (2002) 289:109–118.
  • FAIRWEATHER N, KENNEDY S, FOSTER TJ, KEHOE M, DOUGAN G: Expression of a cloned Staphylococcus aureus alpha-hemolysin determinant in Bacillus subtilis and Staphylococcus aureus. Infect. Inman. (1983) 41:1112–1117.
  • NIKAIDO H: Multiple antibiotic resistanceand efflux. Carr. Opin. Microbia (1998) 1:516–523.
  • SULAVIK MC, HOUSEWEART C, CRAMER C et al.: Antibiotic susceptibility profiles of Escherichia coil strains lacking multidrug efflux pump genes. Arkin-nu-ob. Agents Chemother. (2001) 45:1126–1136.
  • SUKUPOLVI S, VAARA M: Salmonella gphimurium and Escherichia coil mutants with increased outer membrane permeability to hydrophobic compounds. Biochim. Biophys. Acta (1989) 988:377–387.
  • AUSTIN EA, GRAVES JF, HITE LA, PARKER CT, SCHNAITMAN CA: Genetic analysis of lipopolysaccharide core biosynthesis by Escherichia coil K-12: insertion mutagenesis of the rfa locus. (1990) 172:5312–5325.
  • CLARK D: Novel antibiotic hypersensitive mutants of Escherichia colt. Genetic mapping and chemical characterization. Microbia Lett. (1984) 21:189–195.
  • HEISLER LM, SUZUKI H, LANDICK R, GROSS CA: Four contiguous amino acids define the target for streptolydigin resistance in the Beta subunit of Escherichia coil RNA Polymerase. Biol. Chem. (1993) 268:25369–25375.
  • LING L, DAVEY ME, SCHUMACHER T et al.: Novel permeable strains of E. coliwith improved properties for screening and mechanism of action studies. 43rd Interscience Conference of Antimicrobial Agents & Chemotherapy(2003) (Abstract 1467).
  • KOETH LM, KING A, KNIGHT H et al:Comparison of cation-adjusted Mueller-Hinton broth with Iso-Sensitest broth for the NCCLS broth microdilution method. .1. Antimicrob. Chemother: (2000) 46:369–376.
  • ANDREWS JM: Determination of minimum inhibitory concentrations. J.Antimicrob. Chemother: (2001) 48:5–16.
  • WHEAT PF: History and development of antimicrobial susceptibility testing methodology. I Antimicrob. Chemother: (2001) 48 (Suppl. 1):1–4.
  • NATIONAL COMMITTEE FOR CLINICAL LABORATORY STANDARDS: Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically (4th Edn). Approved standard M7-A4 National Committee for Clinical Laboratory Standards, Villanova,, USA (1997).
  • O'NEILL AJ, BOSTOCK J, MOITA A, CHOPRA I: Antimicrobial activity and mechanisms of resistance to cephalosporin P1, an antibiotic related to fusidic acid. .1. Antimicrob. Chemother: (2003) 50:839–848.
  • SLATER K: Cytotoxicity tests for high-throughput drug discovery. Car: Opin. Biotechnol (2001) 12:70–74.
  • BUGELSKI PJ, ATIF U, MOLTON S et al.: A strategy for primary high throughput cytotoxicity screening in pharmaceutical toxicology. Pharm. Res. (2000) 17:1265–1272.
  • DUNMAN PM, PROJAN SJ: Expression profiling uses in antibacterial chemotherapy development. In: Microbial Cenomics and Drug Discovery TJ Dougherty, SJ Projan (Eds), Marcel Dekker, New York, USA (2003).
  • CROWTHER DJ: Applications of microarrays in the pharmaceutical industry.. Opin. Pharmaca (2002) 2:551–554.
  • GOLLAPUDI BB, KRISHNA G: Practical aspects of mutagenicity testing strategy: an industrial perspective. Mutat. Res. (2000) 455:21–28.
  • ASHBY J, TENNANT RW: Chemical structure, Salmonella mutagenicity and extent of carcinogenicity as indicators of genotoxic carcinogenesis among 222 chemicals tested in rodents by the US NCl/ NTP. Mutat. Res. (1988) 204:17–115.
  • ASHBY J, PATON D: The influence of chemical structure on the extent and sites of carcinogenesis for 522 rodent carcinogens and 55 different human carcinogen exposures. Mutat. Res. (1993) 286:3–74.
  • MORTELMANS K, ZEIGER E: The Ames Salmonellalmicrosome mutagenicity assay. Mutat. Res. Fundam. Ma. Mech. Mutagen (2000) 455:29–60.
  • GOCKE E: Mechanism of quinolone mutagenicity in bacteria. Mutat. Res. (1991) 248:135–143.
  • POWER EG, PHILLIPS I: Correlation between umuCinduction and Salmonella mutagenicity assay for quinolone antimicrobial agents. FEMS Microbia Lett. (1993) 112:251–254.
  • SHIMADA H, ITOH S, HATTORI C, TADA S, MATSUURA Y: Mutagenicity of the new quinolone antibacterial agent levofloxacin. Arzneimittelforschung (1992) 43:378–385.
  • BEABER JW, HOCHHUT B, MK: SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature (2004) 427:72–74.
  • PURVES D, HARVEY C, TWEATS D, LUMLEY CE: Genotoxicity testing: current and strategies used by the pharmaceutical industry. Mutagenesis (1995) 10:297–312.
  • GARRIOTT ML, PHELPS JB, HOFFMAN WP: A protocol for the in vitro micronucleus test. I. Contributions to the development of a protocol suitable for regulatory submissions from an examination of 16 chemicals with different mechanisms of action and different levels of activity. Mutat. Res. (2002) 517:123–134.
  • KISKINIS E, SUTER W, HARTMANN A: throughput Comet assay using 96-well plates. Mutagenesis (2002) 17:37–43.
  • SUCHLAND RJ, GEISLER WM, STAMM WE: Methodologies and cell lines used for antimicrobial susceptibility testing of Chlamydia spp. Antimicrob. Agents Chemother: (2003) 47:636–642.
  • KING A: Recommendations for susceptibility tests on fastidious organisms and those requiring special handling.. Chemother. (2001) 48\(Suppl. 1):77–80.
  • MULLIGAN MJ, COBBS CG: Bacteriostatic versus bactericidal activity. Infect. Dis. Clio. North Am. (1989) 3:389–398.
  • SCHOLAR EM, PRATT WB: The Antimicrobial Drugs. Oxford University Press, New York, USA (2000).
  • OLIVA B, O'NEILL AJ, WILSON JM, O'HANLON PJ, CHOPRA I: properties and mode of action of the pyrrothine holomycin.. Agents Chemother. (2001) 45:532–539.
  • HILLIARD JJ, GOLDSCHMIDT RM, LICATA L, BAUM EZ, BUSH K: Multiple of action for inhibitors of histidine protein kinases from bacterial two-component systems. Antimicrob. Agents Chemother: (1999) 43:1693–1699.
  • SHEN AY, CHEN CP, ROFFLER S: A chelating agent possessing cytotoxicity and antimicrobial activity: 7-morpholinomethy1-8-hydroxyquinoline. Sci. (1999) 64:813–825.
  • RASMUSSEN B, NOLLER HF, DAUBRESSE G et al.: Molecular basis of tetracycline action: identification of analogs whose primary target is not the bacterial ribosome. Antimicrob. Agents Chemother. (1991) 35:2306–2311.
  • RODIONOV DG, ISHIGURO EE: Direct between overproduction of guanosine 3',Y-bispyrophosphate (ppGpp) and penicillin tolerance in Escherichia coli (1995) 177:4224–4229.
  • TUOMANEN E, TOMASZ A: Induction autolysis in nongrowing Escherichia coll. (1986) 167:1077–1080.
  • CARSON CF, MEE BJ, RILEY TV: Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time-kill, lysis, leakage, and salt tolerance assays and electron microscopy. Antimicrob. Agents Chemother: (2002) 46:1914–1920.
  • JOHNSTON MD, HANLON GW, DENYER SP, LAMBERT RJ: Membrane damage to bacteria caused by single and combined biocides. AppL Microbia (2003) 94:1015–1023.
  • OLIVA B, O'NEILL AJ, MILLER K, STUBBINGS W, CHOPRA I: Antistaphylococcal activity and mode of action of clofazimine. I Antimicrob. Chemother. (2004) 53:435–440.
  • PORTER EA, WEISBLUM B, SH: Mimicry of host-defense peptides by unnatural oligomers: antimicrobial beta-peptides. Jim. Chem. Soc. (2002) 124:7324–7330.
  • DIXON RA, CHOPRA I: Polymyxin B and polymyxin B nonapeptide alter cytoplasmic membrane permeability in Escherichia coll. I Antimicrob. Chemother: (1986) 18:557–563.
  • LING LL, LIANG X, PUYANG X, ARVANITES A, OPPERMAN T: Rapid elimination of compounds acting through non-specific membrane perturbation mechanisms. 43rd Interscience Conference of Antimicrobial Agents and Chemotherapy Chicago, USA (2003) (Abstract 1469).
  • STUBBINGS WJ, BOSTOCK JM, INGHAM E, CHOPRA I: Assessment of a microplate method for determining the post-antibiotic effect in Staphylococcus aureus and Escherichia coll. Antimicrob. Chemother. (2004) 54:139–143.
  • ODENHOLT I: Pharmacodynamic effects of subinhibitory antibiotic concentrations. hat. Antimicrob. Agents (2001) 17:1–8.
  • O'GRADY F, LAMBERT HP, FINCH RG, GREENWOOD D: Antibiotic and Chemotherapy Churchill Livingstone, Edinburgh, Scotland (1997).
  • GEORGE RH: The influence of protein binding on the antistaphylococcal activity of antibiotics. Antimicrob. Chemother: (1986) 17:539–540.
  • ROYCHOUDHURY S, BRILL JL, LU WP et al: Development of a screening assay to measure the loss of antibacterial activity in the presence of proteins: its use in optimizing compound structure. Bioma Screen (2003) 8:555–558.
  • VERBIST L: The antimicrobial activity of fusidic acid. I. Antimicrob. Chemother. (1990) 25:1–5.
  • MeNAMARA PJ, TRUEB V, K: Protein binding of ceftriaxone in extravascular fluids. I Pharm. Sci. (1988) 77:401–404.
  • DECROIX MO, ZINI R, JC, TILLEMENT JP: Cefazolin serum protein binding and its inhibition by bilirubin, fatty acids and other drugs. Biochem. Pharmaca (1988) 37:2807–2814.
  • BERNAREGGI A, BORGONOVI M, DEL FAVERO A, ROSINA R, GAVANAGHI L: Teicoplanin binding in plasma following administration of increasing intravenous doses to healthy volunteers. Eur. J. Drug Metab. Pharmacokinet. (1991) (Spec. No. 3):256–260.
  • CERI H, OLSON ME, STREMICK C et al.: The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofllms.j Clio. Microbia (1999) 37:1771–1776.
  • GRAY CP, KECK W: Genomic strategies in antibacterial drug discovery. In: Microbial Genomics and Drug Discovery Dougherty, SJ Projan (Eds), Marcel Dekker, New York, USA (2003).
  • STRUTHERS JK: The use of a continuous culture system to study the antimicrobial susceptibility of bacteria in biofilm. In: Antibiotic Resistance Methods and Protocols. SH Gillespie (Ed.), Humana, Totowa, USA (2000).
  • HODGSON AE, NELSON SM, MR, GILBERT P: A simple in vitro model for growth control of bacterial biofilms. I Appl. Bacteria (1995) 79:87–93.
  • BUDHANI RK, STRUTHERS JK: The use of Sorbarod biofilms to study the antimicrobial susceptibility of a strain of Streptococcus pneumoniae. Antimicrob. Chemother. (1997) 40:601–602.
  • TUCKMAN M, PETERSEN PJ, PROJAN SJ: Mutations in the interdomain loop region of the tetA(A) tetracycline resistance gene increase efflux of minocycline and glycylcyclines. Microb. Drug Resist. (2000) 6:277–282.
  • BARLOW M, HALL BG: Experimental prediction of the evolution of cefepime resistance from the CMY-2 AmpC P-lactamase. Genetics (2003) 164:23–29.
  • LURIA SA, DELBRUCK M: Mutations of bacteria from virus sensitivity to virus resistance. Genetics (1943) 28:491–511.
  • O'NEILL AJ, COVE JH, CHOPRA I: Mutation frequencies for resistance to fusidic acid and rifampicin in Staphylococcus. .1. Antimicrob. Chemother. (2001) 47:647–650.
  • MOBASHERY S, AZUCENA EF: Bacterial antibiotic resistance. In: Nature Encyclopedia of IRO Sciences Nature Publishing Group, London (1999)
  • MILLER K, O'NEILL AJ, CHOPRA I: Response of Escherichia coil hypermutators to selection pressure with antimicrobial agents from different classes. J. Antimicrob. Chemother: (2002) 49:925–934.
  • SCHMID MB: Microbial genomics - new targets, new drugs. Expert Opin. Ther. Targets (2001) 5:465–475.
  • INCE D, ZHANG X, SILVER LC, HOOPER DC: Topoisomerase targeting with and resistance to gemifloxacin in Staphylococcus aureus. Antimicrob. Agents Chemother: (2003) 47:274–282.
  • O'NEILL AJ, CHOPRA I: Use of mutator strains for characterization of novel antimicrobial agents. Antimicrob. Agents Chemother: (2001) 45:1599–1600.
  • CHOPRA I, O'NEILL AJ, MILLER K: The role of mutators in the emergence of antibiotic-resistant bacteria. Drug Resist. UpdaL (2003) 6:137–145.
  • ZHAO XL, DRLICA K: Restricting the selection of antibiotic-resistant mutants: a general strategy derived from fluoroquinolone studies. Clio. Infect. Dis. (2001) 33:S147–S156.
  • ANDERSSON DI, LEVIN BR: The biological cost of antibiotic resistance. Curr. Opin. Microbia (1999) 2:489–493.
  • LENSKI RE: The cost of antibiotic resistance - from the perspective of a bacterium. Ciba Found. Symp. (1997) 207:131–140.
  • HURDLE JG, O'NEILL AJ, INGHAM E, FISHWICK C, CHOPRA I: Analysis of mupirocin resistance and fitness in Staphylococcus aureus by molecular genetic and structural modelling techniques. Antimicrob. Agents Chemother. (2004) (In press).
  • NILSSON Al, BERG OG, ASPEVALL 0, KAHLMETER G, ANDERSSON DI: Biological costs and mechanisms of fosfomycin resistance in Escherichia coll. Antimicrob. Agents Chemother. (2003) 47:2850–2858.
  • BAND OW JE, BROTZ H, LIO, LABISCHINSKI H, HECKER M: Proteomic approach to understanding antibiotic action. Antimicrob. Agents Chemother: (2003) 47:948–955.
  • DOUGHERTY TJ: In: Microbial Genomics and Drug Discovery TJ Dougherty, SJ Projan (Eds), Marcel Dekker, New York, USA (2003).
  • OLIVA B, MAIESE WM, M, BORDERS DB, CHOPRA I: Mode of action of the cyclic depsipeptide antibiotic LL-A0341 13–1 and partial characterization of a Staphylococcus aureus mutant resistant to the antibiotic. Antimicrob. Chemother: (1993) 32:817–830.
  • BANERJEE A, DUBNAU E, A et al.: inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis Science (1994) 263:227–230.
  • DELGADO MA, RINTOUL MR, FARIAS RN, SALOMON RA: Escherichia coil RNA polymerase is the target of the cyclopeptide antibiotic microcin J25. (2001) 183:4543–4550.
  • SIVASUBRAMANIAN N, JAYARAMAN R: Mapping of two transcription mutations 0.1nI and drill) conferring thiolutin resistance, adjacent to dnaZ and rho in Escherichia coil Ma Gen. Genet. (1980) 180:609–615.
  • LUCHANSKY JB, PATTEE PA: Isolation of transposon Tn551 insertions near chromosomal markers of interest in Staphylococcus aureus Bacteria (1984) 159:894–899.
  • BELANGER AE, LAI A, MA, LEBLANC DJ: PCR-based ordered genomic libraries: A new approach to drug target identification for Streptococcus pneumonia e Antimicrob. Agents Chemother. (2002) 46:2507–2512.
  • UTAIDA S, DUNMAN PM, MACAPAGAL D et Genome-wide transcriptional profiling of the response of Staphylococcus aureusto cell-wall-active antibiotics reveals a cell-wall-stress stimulon. Microbiology (2003) 149:2719–2732.
  • PHADTARE S, KATO I, INOUYE M: DNA microarray analysis of the expression profile of Escherichia coliin response to treatment with 4,5-dihydroxy-2-cyclopenten-l-one. Bacteria (2002) 184:6725–6729.
  • SHAW KJ, MILLER N, LIU X et at Comparison of the changes in global gene expression of Escherichia collinduced by four bactericidal agents. .1 Ma Microbia Biotechna (2003) 5:105–122.
  • EVERS S, DI PADOVA K, MEYER M et al.: Mechanism-related changes in the gene transcription and protein synthesis patterns of Haemophilus influenzae after treatment with transcriptional and translational inhibitors. Proteomics (2001) 1:522–544.
  • SINGH VK, JAYASWAL RK, WILKINSON BJ: Cell wall-active antibiotic induced proteins of Staphylococcus aureus identified using a proteomic approach. FEMS Microbia Lett. (2001) 199:79–84.
  • SABINA J, DOVER N, TEMPLETON LJ et al.: Interfering with different steps of protein synthesis explored by transcriptional profiling of Escherichia coif K-12. (2003) 185:6158-6170.
  • GMUENDER H, KURATLI K, DI PADOVA K et al.: Gene expression changes triggered by exposure of Haemophilus influenzae to novobiocin or ciprofloxacin: combined transcription and translation analysis. Genome Res. (2001) 11:28–42.
  • CHATTERJEE PK, STERNBERG NL: A general genetic approach in Escherichia coil for determining the mechanism(s) of action of tumoricidal agents: application to DMP 840, a tumoricidal agent. Proc. Nati Acad. Sci. USA (1995) 92:8950–8954.
  • HUANG J, HE J, SHEN Wet al.: A novel approach for studying antibiotic mode of action and resistance using a Staphylococcus aureus ORF expression library. 43rd Interscience Conference of Antimicrobial Agents and Chemotherapy Chicago, USA (2003) (Abstract 1468).
  • APFEL CM, LOCHER H, EVERS S et al.: Peptide deformylase as an antibacterial drug target: target validation and resistance development. Antimicrob. Agents Chemother. (2001) 45:1058–1064.
  • DEVITO JA, MILLS JA, LIU VG et al.: An array of target-specific screening strains for antibacterial discovery. Nat. Biotechna (2002) 20:478–483.
  • FAN F, LUNSFORD RD, SYLVESTER D et al.: Regulated ectopic expression and allelic-replacement mutagenesis as a method for gene essentiality testing in Staphylococcus aureus. Plasmid (2001) 46:71–75.
  • ZHANG L, FAN F, PALMER LM et al: Regulated gene expression in Staphylococcus aureus for identifying conditional lethal and antibiotic mode of action. Gene (2000) 255:297–305.
  • CHAN PF, O'DWYER KM, PALMER LM et al.: Characterization of a novel fucose-regulated promoter (P1) suitable for gene essentiality and antibacterial mode-of-action studies in Streptococcus pneumoniae. (2003) 185:2051–2058.
  • YIN D, FOX B, LONETTO ML et at.: Identification of antimicrobial targets using a comprehensive genomic approach. Pharmacogenomics (2004) 5:101–113.
  • FORSYTH RA, HASELBECK RJ, OHLSEN KL et al.: A genome-wide strategy for the identification of essential genes in Staphylococcus aureus. Ma Microbia (2002) 43:1387–1400.
  • GOOD L: Diverse antisense mechanisms and applications. Cell. Ma Life Sci. (2003) 60:823–824.
  • GOOD L, NIELSEN PE: Antisense inhibition of gene expression in bacteria by PNA targeted to mRNA. Nat. Biotechna (1998) 16:355–358.
  • TAO J, WENDLER P, CONNELLY G et al.: Drug target validation: lethal infection blocked by inducible peptide. Proc. Nati Acad. Sci. USA (2000) 97:783–786.
  • STUBBINGS W, INGHAM E, I: Deletion of the multiple drug efflux pump AcrAB in Escherichia coil prolongs the postantibiotic effect. 42nd Interscience Conference on Antimicrobial Agents and Chemotherapy San Diego, USA (2002).
  • TENOVER FC: Development and spread of bacterial resistance to antimicrobial agents: an overview. Clio. Infect. Dis. (2001) 33\(Suppl. 3):5108–5115.
  • CLARK NM, HERSHBERGER E, ZERVOSC MJ, LYNCH JP 3rd: Antimicrobial resistance among Gram-positive organisms in the intensive care unit. Car: Opin. Crit. Care (2003) 9:403–412.
  • CLARK NM, PATTERSON J, LYNCH JP 3rd: Antimicrobial resistance among Gram-negative organisms in the intensive care unit. CWT. Opin. Grit. Care (2003) 9:413–423.
  • PUBLIC HEALTH LABORATORY SERVICE: Antimicrobial resistance in 2000: England & Wales: Public Health Laboratory Service, London (2002).
  • DRLICA K: Mechanism of fluoroquinolone action. Carr: Opin. Microbial. (1999) 2:504–508.
  • BIANCHI AA, BANEYX F: Stress responses as a tool to detect and characterize the mode of action of antibacterial agents.. Environ. Microbial. (1999) 65:5023–5027.
  • SHAPIRO E, BANEYX F: Stress-based identification and classification of antibacterial agents: second-generation Escherichia co/ireporter strains and optimization of detection. Antlinicrob. Agents Cheinother. (2002) 46:2490–2497.
  • OH JT, CAJAL Y, SKOWRONSKA EM et al.: Cationic peptide antimicrobials induce selective transcription of inicFand osinY in Escherichia coll. Biochim. Biophys. Acta (2000) 1463:43–54.
  • FISCHER HP, BRUNNER NA, WIELAND B et al.: Identification of antibiotic stress-inducible promoters: a systematic approach to novel pathway-specific reporter assays for antibacterial drug discovery. Genome Res. (2004) 14:90–98.
  • SUN D, COHEN S, MANI N, MURPHY C, ROTHSTEIN DM: A-specific cell based screening system detect bacterial cell wall inhibitors. .1. Antibiot. (Tokyo) (2002) 55:279–287.
  • CHOPRA I: Antibiotics. In: Nature Encyclopedia of Life Sciences. Nature Publishing Group, London (June 2001). http://www.els.net/

Websites

  • http://www.the-scientist.com/images/200 1 /pdfs/cytol_010305.pdf detailing the suppliers of cytotoxicity reagents.
  • http://www.the-scientist.com/images/200 1/pdfs/cyto2_010305.pdf detailing the suppliers of cytotoxicity reagents.
  • http://www.atcc.org/ LGC Promochem website.
  • http://www.hpa.org.uldsrmd/ div_cdmssd_nctc/index.htm Health Protection Agency website.
  • http://www.nccls.org NCCLS website.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.