57
Views
11
CrossRef citations to date
0
Altmetric
Review

Nitric oxide: emerging concepts about its use in cell-based therapies

, , , &
Pages 33-43 | Published online: 07 Dec 2006

Bibliography

  • PALMER RM, FERRIGE AG, MONCADA S: Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature (1987) 327(6122):524-526.
  • IGNARRO LJ, BUGA GM, WOOD KS, BYRNS RE, CHAUDHURI G: Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc. Natl. Acad. Sci. USA (1987) 84(24):9265-9269.
  • FURCHGOTT RF, ZAWADZKI JV: The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature (1980) 288(5789):373-376.
  • BOGDAN C: Nitric oxide and the immune response. Nat. Immunol. (2001) 2(10):907-916.
  • STAMLER JS, MEISSNER G: Physiology of nitric oxide in skeletal muscle. Physiol. Rev. (2001) 81(1):209-237.
  • FORSTERMANN U, MUNZEL T: Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation (2006) 113(13):1708-1714.
  • ESPLUGUES JV: NO as a signalling molecule in the nervous system. Br. J. Pharmacol. (2002) 135(5):1079-1095.
  • RUEL M, WU GF, KHAN TA et al.: Inhibition of the cardiac angiogenic response to surgical FGF-2 therapy in a Swine endothelial dysfunction model. Circulation (2003) 108(Suppl. 1):II335-II340.
  • VOISINE P, LI J, BIANCHI C et al.: Effects of l-arginine on fibroblast growth factor 2-induced angiogenesis in a model of endothelial dysfunction. Circulation (2005) 112(Suppl. 9):I202-I207.
  • BALLARD RA, TRUOG WE, CNAAN A et al.: Inhaled nitric oxide in preterm infants undergoing mechanical ventilation. N. Engl. J. Med. (2006) 355(4):343-353.
  • KINSELLA JP, CUTTER GR, WALSH WF et al.: Early inhaled nitric oxide therapy in premature newborns with respiratory failure. N. Engl. J. Med. (2006) 355(4):354-364.
  • THATCHER GR: An introduction to NO-related therapeutic agents. Curr. Top. Med. Chem. (2005) 5(7):597-601.
  • ALDERTON WK, COOPER CE, KNOWLES RG: Nitric oxide synthases: structure, function and inhibition. Biochem. J. (2001) 357(Part 3):593-615.
  • PERSICHINI T, MAZZONE V, POLTICELLI F et al.: Mitochondrial type I nitric oxide synthase physically interacts with cytochrome c oxidase. Neurosci. Lett. (2005) 384(3):254-259.
  • KATO K, GIULIVI C: Critical overview of mitochondrial nitric-oxide synthase. Front. Biosci. (2006) 11:2725-2738.
  • OESS S, ICKING A, FULTON D, GOVERS R, MULLER-ESTERL W: Subcellular targeting and trafficking of nitric oxide synthases. Biochem. J. (2006) 396(3):401-409.
  • FERNANDEZ-HERNANDO C, FUKATA M, BERNATCHEZ PN et al.: Identification of Golgi-localized acyl transferases that palmitoylate and regulate endothelial nitric oxide synthase. J. Cell Biol. (2006) 174(3):369-377.
  • GATH I, EBERT J, GODTEL-ARMBRUST U et al.: NO synthase II in mouse skeletal muscle is associated with caveolin 3. Biochem. J. (1999) 340(Part 3):723-728.
  • KORHÔNEN R, LAHTI A, KANKAANRANTA H, MOILANEN E: Nitric oxide production and signaling in inflammation. Curr. Drug Targets Inflamm. Allergy (2005) 4(4):471-479.
  • SAKURAI H, KOHSAKA H, LIU MF et al.: Nitric oxide production and inducible nitric oxide synthase expression in inflammatory arthritides. J. Clin. Invest. (1995) 96(5):2357-2363.
  • HANAFY KA, KRUMENACKER JS, MURAD F: NO, nitrotyrosine, and cyclic GMP in signal transduction. Med. Sci. Monit. (2001) 7(4):801-819.
  • HESS DT, MATSUMOTO A, KIM SO, MARSHALL HE, STAMLER JS: Protein S-nitrosylation: purview and parameters. Nat. Rev. Mol. Cell. Biol. (2005) 6(2):150-166.
  • MONCADA S, ERUSALIMSKY JD: Does nitric oxide modulate mitochondrial energy generation and apoptosis? Nat. Rev. Mol. Cell. Biol. (2002) 3(3):214-220.
  • CLEMENTI E, BROWN GC, FOXWELL N, MONCADA S: On the mechanism by which vascular endothelial cells regulate their oxygen consumption. Proc. Natl. Acad. Sci. USA (1999) 96(4):1559-1562.
  • SEMENZA GL: Perspectives on oxygen sensing. Cell (1999) 98(3):281-284.
  • BELTRAN B, MATHUR A, DUCHEN MR, ERUSALIMSKY JD, MONCADA S: The effect of nitric oxide on cell respiration: a key to understanding its role in cell survival or death. Proc. Natl. Acad. Sci. USA (2000) 97(26):14602-14607.
  • HAGEN T, TAYLOR CT, LAM F, MONCADA S: Redistribution of intracellular oxygen in hypoxia by nitric oxide: effect on HIF1α. Science (2003) 302(5652):1975-1978.
  • QUINTERO M, BRENNAN PA, THOMAS GJ, MONCADA S: Nitric oxide is a factor in the stabilization of hypoxia-inducible factor-1α in cancer: role of free radical formation. Cancer Res. (2006) 66(2):770-774.
  • BELTRAN B, ORSI A, CLEMENTI E, MONCADA S: Oxidative stress and S-nitrosylation of proteins in cells. Br. J. Pharmacol. (2000) 129(5):953-960.
  • CLEMENTI E, BROWN GC, FEELISCH M, MONCADA S: Persistent inhibition of cell respiration by nitric oxide: crucial role of S-nitrosylation of mitochondrial complex I and protective action of glutathione. Proc. Natl. Acad. Sci. USA (1998) 95(13):7631-7636.
  • MANNICK JB, HAUSLADEN A, LIU L et al.: Fas-induced caspase denitrosylation. Science (1999) 284(5414):651-654.
  • MANNICK JB, SCHONHOFF C, PAPETA N et al.: S-nitrosylation of mitochondrial caspases. J. Cell Biol. (2001) 154(6):1111-1116.
  • MIKKELSEN RB, WARDMAN P: Biological chemistry of reactive oxygen and nitrogen and radiation-induced signal transduction mechanisms. Oncogene (2003) 22(37):5734-5754.
  • HAENDELER J, HOFFMANN J, TISCHLER V et al.: Redox regulatory and anti-apoptotic functions of thioredoxin depend on S-nitrosylation at cysteine 69. Nat. Cell Biol. (2002) 4(10):743-749.
  • REYNAERT NL, CKLESS K, KORN SH et al.: Nitric oxide represses inhibitory κB kinase through S-nitrosylation. Proc. Natl. Acad. Sci. USA (2004) 101(24):8945-8950.
  • SCHONHOFF CM, DAOU MC, JONES SN, SCHIFFER CA, ROSS AH: Nitric oxide-mediated inhibition of Hdm2-p53 binding. Biochemistry (2002) 41(46):13570-13574.
  • LANDER HM, OGISTE JS, PEARCE SF, LEVI R, NOVOGRODSKY A: Nitric oxide-stimulated guanine nucleotide exchange on p21ras. J. Biol. Chem. (1995) 270(13):7017-7020.
  • SNYDER AH, McPHERSON ME, HUNT JF et al.: Acute effects of aerosolized S-nitrosoglutathione in cystic fibrosis. Am. J. Respir. Crit. Care Med. (2002) 165(7):922-926.
  • GASTON B, SINGEL D, DOCTOR A, STAMLER JS: S-nitrosothiol signaling in respiratory biology. Am. J. Respir. Crit. Care Med. (2006) 173(11):1186-1193.
  • ZAMAN K, CARRARO S, DOHERTY J et al.: S-nitrosylating agents: a novel class of compounds that increase cystic fibrosis transmembrane conductance regulator expression and maturation in epithelial cells. Mol. Pharmacol. (2006) 70(4):1435-1442.
  • CLEMENTI E: Role of nitric oxide and its intracellular signalling pathways in the control of Ca2+ homeostasis. Biochem. Pharmacol. (1998) 55(6):713-718.
  • CLEMENTI E, BORGESE N, MELDOLESI J: Interactions between nitric oxide and sphingolipids and the potential consequences in physiology and pathology. Trends Pharmacol. Sci. (2003) 24(10):518-523.
  • PILZ RB, CASTEEL DE: Regulation of gene expression by cyclic GMP. Circ. Res. (2003) 93(11):1034-1046.
  • BELLAMY TC, GRIFFITHS C, GARTHWAITE J: Differential sensitivity of guanylyl cyclase and mitochondrial respiration to nitric oxide measured using clamped concentrations. J. Biol. Chem. (2002) 277(35):31801-31807.
  • NISOLI E, CLEMENTI E, PAOLUCCI C et al.: Mitochondrial biogenesis in mammals: the role of endogenous nitric oxide. Science (2003) 299(5608):896-899.
  • NISOLI E, FALCONE S, TONELLO C et al.: Mitochondrial biogenesis by NO yields functionally active mitochondria in mammals. Proc. Natl. Acad. Sci. USA (2004) 101(47):16507-16512.
  • NISOLI E, TONELLO C, CARDILE A et al.: Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science (2005) 310(5746):314-317.
  • CHOI BM, PAE HO, JANG SI, KIM YM, CHUNG HT: Nitric oxide as a pro-apoptotic as well as anti-apoptotic modulator. J. Biochem. Mol. Biol. (2002) 35(1):116-126.
  • FRASER M, CHAN SL, CHAN SS, FISCUS RR, TSANG BK: Regulation of p53 and suppression of apoptosis by the soluble guanylyl cyclase/cGMP pathway in human ovarian cancer cells. Oncogene (2006) 25(15):2203-2212.
  • BAUER A, VILLUNGER A, LABI V et al.: The NF-κB regulator Bcl-3 and the BH3-only proteins Bim and Puma control the death of activated T cells. Proc. Natl. Acad. Sci. USA (2006) 103(29):10979-10984.
  • BUDD RC, YEH WC, TSCHOPP J: cFLIP regulation of lymphocyte activation and development. Nat. Rev. Immunol. (2006) 6(3):196-204.
  • SERHAN CN, SAVILL J: Resolution of inflammation: the beginning programs the end. Nat. Immunol. (2005) 6(12):1191-1197.
  • BANCHEREAU J, PALUCKA AK: Dendritic cells as therapeutic vaccines against cancer. Nat. Rev. Immunol. (2005) 5(4):296-306.
  • WALDMANN TA: Effective cancer therapy through immunomodulation. Ann. Rev. Med. (2006) 57:65-81.
  • SCIORATI C, ROVERE P, FERRARINI M et al.: Autocrine nitric oxide modulates CD95-induced apoptosis in γδ T lymphocytes. J. Biol. Chem. (1997) 272(37):23211-23215.
  • MANNICK JB, MIAO XQ, STAMLER JS: Nitric oxide inhibits Fas-induced apoptosis. J. Biol. Chem. (1997) 272(39):24125-24128.
  • NAGY G, KONCZ A, PERL A: T cell activation-induced mitochondrial hyperpolarization is mediated by Ca2+- and redox-dependent production of nitric oxide. J. Immunol. (2003) 171(10):5188-5197.
  • IBIZA S, VICTOR VM, BOSCA I et al.: Endothelial nitric oxide synthase regulates T cell receptor signaling at the immunological synapse. Immunity (2006) 24(6):753-765.
  • ROVERE P, CLEMENTI E, FERRARINI M et al.: CD95 engagement releases calcium from intracellular stores of long term activated, apoptosis-prone γδ T cells. J. Immunol. (1996) 156(12):4631-4637.
  • MANFREDI AA, HELTAI S, ROVERE P et al.: Mycobacterium tuberculosis exploits the CD95/CD95 ligand system of γδ T cells to cause apoptosis. Eur. J. Immunol. (1998) 28(6):1798-1806.
  • FERRARINI M, CONSOGNO G, ROVERE P et al.: Inhibition of caspases maintains the antineoplastic function of γδ T cells repeatedly challenged with lymphoma cells. Cancer Res. (2001) 61(7):3092-3095.
  • PERROTTA C, FALCONE S, CAPOBIANCO A et al.: Nitric oxide confers therapeutic activity to dendritic cells in a mouse model of melanoma. Cancer Res. (2004) 64(11):3767-3771.
  • SCIORATI C, ROVERE P, FERRARINI M et al.: Generation of nitric oxide by the inducible nitric oxide synthase protects γδ T cells from Mycobacterium tuberculosis-induced apoptosis. J. Immunol. (1999) 163(3):1570-1576.
  • SALLUSTO F, NICOLO C, DE MARIA R, CORINTI S, TESTI R: Ceramide inhibits antigen uptake and presentation by dendritic cells. J. Exp. Med. (1996) 184(6):2411-2416.
  • PERROTTA C, DE PALMA C, FALCONE S, SCIORATI C, CLEMENTI E: Nitric oxide, ceramide and sphingomyelinase-coupled receptors: a tale of enzymes and messengers coordinating cell death, survival and differentiation. Life Sci. (2005) 77(14):1732-1739.
  • PAOLUCCI C, ROVERE P, DE NADAI C, MANFREDI AA, CLEMENTI E: Nitric oxide inhibits the tumor necrosis factor α-regulated endocytosis of human dendritic cells in a cyclic GMP-dependent way. J. Biol. Chem. (2000) 275(26):19638-19644.
  • PAOLUCCI C, BURASTERO SE, ROVERE-QUERINI P et al.: Synergism of nitric oxide and maturation signals on human dendritic cells occurs through a cyclic GMP-dependent pathway. J. Leukoc. Biol. (2003) 73(2):253-262.
  • CORINTI S, PASTORE S, MASCIA F, GIROLOMONI G: Regulatory role of nitric oxide on monocyte-derived dendritic cell functions. J. Interferon Cytokine Res. (2003) 23(8):423-431.
  • GIORDANO D, MAGALETTI DM, CLARK EA: Nitric oxide and cGMP protein kinase (cGK) regulate dendritic-cell migration toward the lymph-node-directing chemokine CCL19. Blood (2006) 107(4):1537-1545.
  • MORITA R, UCHIYAMA T, HORI T: Nitric oxide inhibits IFN-α production of human plasmacytoid dendritic cells partly via a guanosine 3′,5′-cyclic monophosphate-dependent pathway. J. Immunol. (2005) 175(2):806-812.
  • FRANCHI L, MALISAN F, TOMASSINI B, TESTI R: Ceramide catabolism critically controls survival of human dendritic cells. J. Leukoc. Biol. (2006) 79(1):166-172.
  • WONG SH, SANTAMBROGIO L, STROMINGER JL: Caspases and nitric oxide broadly regulate dendritic cell maturation and surface expression of class II MHC proteins. Proc. Natl. Acad. Sci. USA (2004) 101(51):17783-17788.
  • WESCHE DE, LOMAS-NEIRA JL, PERL M, CHUNG CS, AYALA A: Leukocyte apoptosis and its significance in sepsis and shock. J. Leukoc. Biol. (2005) 78(2):325-337.
  • FALCONE S, PERROTTA C, DE PALMA C et al.: Activation of acid sphingomyelinase and its inhibition by the nitric oxide/cyclic guanosine 3′,5′-monophosphate pathway: key events in Escherichia coli-elicited apoptosis of dendritic cells. J. Immunol. (2004) 173(7):4452-4463.
  • KANTO T, KALINSKI P, HUNTER OC, LOTZE MT, AMOSCATO AA: Ceramide mediates tumor-induced dendritic cell apoptosis. J. Immunol. (2001) 167(7):3773-3784.
  • HUANG J, TATSUMI T, PIZZOFERRATO E, VUJANOVIC N, STORKUS WJ: Nitric oxide sensitizes tumor cells to dendritic cell-mediated apoptosis, uptake, and cross-presentation. Cancer Res. (2005) 65(18):8461-8470.
  • TRINITE B, CHAUVIN C, PECHE H et al.: Immature CD4- CD103+ rat dendritic cells induce rapid caspase-independent apoptosis-like cell death in various tumor and nontumor cells and phagocytose their victims. J. Immunol. (2005) 175(4):2408-2417.
  • ZEH HJ III, LOTZE MT: Addicted to death: invasive cancer and the immune response to unscheduled cell death. J. Immunother. (2005) 28(1):1-9.
  • SMITH A: A glossary for stem-cell biology. Nature (2006) 441(7097):1060.
  • DE HAAN G, GERRITS A, BYSTRYKH L: Modern genome-wide genetic approaches to reveal intrinsic properties of stem cells. Curr. Opin. Hematol. (2006) 13(4):249-253.
  • LI L, NEAVES WB: Normal stem cells and cancer stem cells: the niche matters. Cancer Res. (2006) 66(9):4553-4557.
  • DESPARS G, NI K, BOUCHARD A, O’NEILL TJ, O’NEILL HC: Molecular definition of an in vitro niche for dendritic cell development. Exp. Hematol. (2004) 32(12):1182-1193.
  • MOORE KA, LEMISCHKA IR: Stem cells and their niches. Science (2006) 311(5769):1880-1885.
  • VAN DAMME A, THORREZ L, MA L et al.: Efficient lentiviral transduction and improved engraftment of human bone marrow mesenchymal cells. Stem Cells (2006) 24(4):896-907.
  • GONCALVES MA, DE VRIES AA, HOLKERS M et al.: Human mesenchymal stem cells ectopically expressing full-length dystrophin can complement Duchenne muscular dystrophy myotubes by cell fusion. Hum. Mol. Genet. (2006) 15(2):213-221.
  • WALTER G, CORDIER L, BLOY D, SWEENEY HL: Noninvasive monitoring of gene correction in dystrophic muscle. Magn. Reson. Med. (2005) 54(6):1369-1376.
  • BROWN BD, VENNERI MA, ZINGALE A, SERGI LS, NALDINI L: Endogenous microRNA regulation suppresses transgene expression in hematopoietic lineages and enables stable gene transfer. Nat. Med. (2006) 12(5):585-591.
  • DASS B, OLANOW CW, KORDOWER JH: Gene transfer of trophic factors and stem cell grafting as treatments for Parkinson’s disease. Neurology (2006) 66(10 Suppl. 4):S89-S103.
  • GARBOSSA D, FONTANELLA M, FRONDA C et al.: New strategies for repairing the injured spinal cord: the role of stem cells. Neurol. Res. (2006) 28(5):500-504.
  • NAKAMURA M, OKANO H, TOYAMA Y et al.: Transplantation of embryonic spinal cord-derived neurospheres support growth of supraspinal projections and functional recovery after spinal cord injury in the neonatal rat. J. Neurosci. Res. (2005) 81(4):457-468.
  • CAO Q, XU XM, DEVRIES WH et al.: Functional recovery in traumatic spinal cord injury after transplantation of multineurotrophin-expressing glial-restricted precursor cells. J. Neurosci. (2005) 25(30):6947-6957.
  • ANVERSA P, KAJSTURA J, LERI A, BOLLI R: Life and death of cardiac stem cells: a paradigm shift in cardiac biology. Circulation (2006) 113(11):1451-1463.
  • URBANEK K, TORELLA D, SHEIKH F et al.: Myocardial regeneration by activation of multipotent cardiac stem cells in ischemic heart failure. Proc. Natl. Acad. Sci. USA (2005) 102(24):8692-8697.
  • TORELLA D, ELLISON GM, NADAL-GINARD B, INDOLFI C: Cardiac stem and progenitor cell biology for regenerative medicine. Trends Cardiovasc. Med. (2005) 15(6):229-236.
  • GALLI D, INNOCENZI A, STASZEWSKY L et al.: Mesoangioblasts, vessel-associated multipotent stem cells, repair the infarcted heart by multiple cellular mechanisms: a comparison with bone marrow progenitors, fibroblasts, and endothelial cells. Arterioscler. Thromb. Vasc. Biol. (2005) 25(4):692-697.
  • DAWN B, STEIN AB, URBANEK K et al.: Cardiac stem cells delivered intravascularly traverse the vessel barrier, regenerate infarcted myocardium, and improve cardiac function. Proc. Natl. Acad. Sci. USA (2005) 102(10):3766-3771.
  • FUKUDA H, TAKAHASHI J, WATANABE K et al.: Fluorescence-activated cell sorting-based purification of embryonic stem cell-derived neural precursors averts tumor formation after transplantation. Stem Cells (2006) 24(3):763-771.
  • LINDVALL O, KOKAIA Z: Stem cells for the treatment of neurological disorders. Nature (2006) 441(7097):1094-1096.
  • SORENSEN AT, THOMPSON L, KIRIK D et al.: Functional properties and synaptic integration of genetically labelled dopaminergic neurons in intrastriatal grafts. Eur. J. Neurosci. (2005) 21(10):2793-2799.
  • EMERY AE: The muscular dystrophies. Lancet (2002) 359(9307):687-695.
  • RODRIGUEZ AM, PISANI D, DECHESNE CA et al.: Transplantation of a multipotent cell population from human adipose tissue induces dystrophin expression in the immunocompetent mdx mouse. J. Exp. Med. (2005) 201(9):1397-1405.
  • COSSU G, SAMPAOLESI M: New therapies for muscular dystrophy: cautious optimism. Trends Mol. Med. (2004) 10(10):516-520.
  • TORRENTE Y, BELICCHI M, SAMPAOLESI M et al.: Human circulating AC133+ stem cells restore dystrophin expression and ameliorate function in dystrophic skeletal muscle. J. Clin. Invest. (2004) 114(2):182-195.
  • DE BARI C, DELL’ACCIO F, VANDENABEELE F et al.: Skeletal muscle repair by adult human mesenchymal stem cells from synovial membrane. J. Cell Biol. (2003) 160(6):909-918.
  • PAYNE TR, OSHIMA H, SAKAI T et al.: Regeneration of dystrophin-expressing myocytes in the mdx heart by skeletal muscle stem cells. Gene Ther. (2005) 12(16):1264-1274.
  • MINASI MG, RIMINUCCI M, DE ANGELIS L et al.: The meso-angioblast: a multipotent, self-renewing cell that originates from the dorsal aorta and differentiates into most mesodermal tissues. Development (2002) 129(11):2773-2783.
  • SAMPAOLESI M, TORRENTE Y, INNOCENZI A et al.: Cell therapy of α-sarcoglycan null dystrophic mice through intra-arterial delivery of mesoangioblasts. Science (2003) 301(5632):487-492.
  • ENGVALL E, WEWER UM: The new frontier in muscular dystrophy research: booster genes. FASEB J. (2003) 17(12):1579-1584.
  • TEWS DS, GOEBEL HH: Cytokine expression profile in idiopathic inflammatory myopathies. J. Neuropathol. Exp. Neurol. (1996) 55(3):342-347.
  • RANDO TA, DISATNIK MH, YU Y, FRANCO A: Muscle cells from mdx mice have an increased susceptibility to oxidative stress. Neuromuscul. Disord. (1998) 8(1):14-21.
  • CARRASCO M, CANICIO J, PALACIN M, ZORZANO A, KALIMAN P: Identification of intracellular signaling pathways that induce myotonic dystrophy protein kinase expression during myogenesis. Endocrinology (2002) 143(8):3017-3025.
  • KALIMAN P, CANICIO J, TESTAR X, PALACIN M, ZORZANO A: Insulin-like growth factor-II, phosphatidylinositol 3-kinase, nuclear factor-κB and inducible nitric-oxide synthase define a common myogenic signaling pathway. J. Biol. Chem. (1999) 274(25):17437-17444.
  • PISCONTI A, BRUNELLI S, DI PADOVA M et al.: Follistatin induction by nitric oxide through cyclic GMP: a tightly regulated signaling pathway that controls myoblast fusion. J. Cell Biol. (2006) 172(2):233-244.
  • ANDERSON JE: A role for nitric oxide in muscle repair: nitric oxide-mediated activation of muscle satellite cells. Mol. Biol. Cell (2000) 11(5):1859-1874.
  • TATSUMI R, HATTORI A, IKEUCHI Y, ANDERSON JE, ALLEN RE: Release of hepatocyte growth factor from mechanically stretched skeletal muscle satellite cells and role of pH and nitric oxide. Mol. Biol. Cell (2002) 13(8):2909-2918.
  • WAGERS AJ, CONBOY IM: Cellular and molecular signatures of muscle regeneration: current concepts and controversies in adult myogenesis. Cell (2005) 122(5):659-667.
  • MONCADA S, PALMER RM, HIGGS EA: Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol. Rev. (1991) 43(2):109-142.
  • GALVEZ BG, SAMPAOLESI M, BRUNELLI S et al.: Complete repair of dystrophic skeletal muscle by mesoangioblasts with enhanced migration ability. J. Cell Biol. (2006) 174(2):231-243.
  • WEHLING M, SPENCER MJ, TIDBALL JG: A nitric oxide synthase transgene ameliorates muscular dystrophy in mdx mice. J. Cell Biol. (2001) 155(1):123-131.
  • VOISIN V, SEBRIE C, MATECKI S et al.: l-arginine improves dystrophic phenotype in mdx mice. Neurobiol. Dis. (2005) 20(1):123-130.
  • BARTON ER, MORRIS L, KAWANA M, BISH LT, TOURSEL T: Systemic administration of l-arginine benefits mdx skeletal muscle function. Muscle Nerve (2005) 32(6):751-760.
  • ALDINI G, CARINI M, ORIOLI M, FACINO RM, WENK GL: Metabolic profile of NO–flurbiprofen (HCT1026) in rat brain and plasma: a LC-MS study. Life Sci. (2002) 71(13):1487-1500.
  • GOVONI M, CASAGRANDE S, MAUCCI R, CHIROLI V, TOCCHETTI P: In vitro metabolism of (nitrooxy)butyl ester nitric oxide-releasing compounds: comparison with glyceryl trinitrate. J. Pharmacol. Exp. Ther. (2006) 317(2):752-761.
  • CARINI M, ALDINI G, ORIOLI M et al.: Nitric oxide release and distribution following oral and intraperitoneal administration of nitroaspirin (NCX 4016) in the rat. Life Sci. (2004) 74(26):3291-3305.
  • SCHNITZER TJ, KIVITZ AJ, LIPETZ RS, SANDERS N, HEE A: Comparison of the COX-inhibiting nitric oxide donator AZD3582 and rofecoxib in treating the signs and symptoms of osteoarthritis of the knee. Arthritis Rheum. (2005) 53(6):827-837.
  • GRESELE P, MOMI S: Pharmacologic profile and therapeutic potential of NCX 4016, a nitric oxide-releasing aspirin, for cardiovascular disorders. Cardiovasc. Drug Rev. (2006) 24(2):148-168.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.