201
Views
104
CrossRef citations to date
0
Altmetric
Review

Back to basics: how natural products can provide the basis for new therapeutics

, , &
Pages 1753-1773 | Published online: 30 Oct 2007

Bibliography

  • JEMAL A, SIEGEL R, WARD E et al.: Cancer statistics, 2007. CA Cancer J. Clin. (2007) 57(1):43-66.
  • HANAHAN D, WEINBERG RA: The hallmarks of cancer. Cell (2000) 100(1):57-70.
  • DA ROCHA AB, LOPES RM, SCHWARTSMANN G: Natural products in anticancer therapy. Curr. Opin. Pharmacol. (2001) 1(4):364-369.
  • MANN J: Natural products in cancer chemotherapy: past, present and future. Nat. Rev. Cancer (2002) 2(2):143-148.
  • NEWMAN DJ, CRAGG GM, SNADER KM: The influence of natural products upon drug discovery. Nat. Prod. Rep. (2000) 17(3):215-234.
  • GARODIA P, ICHIKAWA H, MALANI N et al.: From ancient medicine to modern medicine: ayurvedic concepts of health and their role in inflammation and cancer. J. Soc. Integr. Oncol. (2007) 5(1):25-37.
  • DUFLOS A, KRUCZYNSKI A, BARRET JM: Novel aspects of natural and modified vinca alkaloids. Curr. Med. Chem. Anticancer Agents (2002) 2(1):55-70.
  • ZUBROD CG: Origins and development of chemotherapy research at the National Cancer Institute. Cancer Treat. Rep. (1984) 68(1):9-19.
  • BLUNT JW, COPP BR, HU WP et al.: Marine natural products. Nat. Prod. Rep. (2007) 24(1):31-86.
  • MAYER AM, GUSTAFSON KR: Marine pharmacology in 2003 – 2004: anti-tumour and cytotoxic compounds. Eur. J. Cancer (2006) 42(14):2241-2270.
  • FAULKNER DJ: Marine natural products. Nat. Prod. Rep. (2002) 19(1):1-48.
  • ABE M, INOUE D, MATSUNAGA K et al.: Goniodomin A, an antifungal polyether macrolide, exhibits antiangiogenic activities via inhibition of actin reorganization in endothelial cells. J. Cell Physiol. (2002) 190(1):109-116.
  • RAWAT DS, JOSHI MC, JOSHI P et al.: Marine peptides and related compounds in clinical trial. Anticancer Agents Med. Chem. (2006) 6(1):33-40.
  • SURH YJ: Cancer chemoprevention with dietary phytochemicals. Nat. Rev. Cancer (2003) 3(10):768-780.
  • DORAI T, AGGARWAL BB: Role of chemopreventive agents in cancer therapy. Cancer Lett. (2004) 215(2):129-140.
  • AGGARWAL BB, SHISHODIA S: Molecular targets of dietary agents for prevention and therapy of cancer. Biochem. Pharmacol. (2006) 71(10):1397-1421.
  • AGGARWAL BB, SHISHODIA S, YOUNG-JOON S: The molecular targets and therapeutic uses of curcumin in health and disease. Springer Publishers, New York, USA (2007).
  • SHISHODIA S, SETHI G, AGGARWAL BB: Curcumin: getting back to the roots. Ann. NY Acad. Sci. (2005) 1056:206-217.
  • AGGARWAL BB, KUMAR A, BHARTI AC: Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res. (2003) 23(1A):363-398.
  • SHISHODIA S, AGGARWAL BB: Resveratrol: a polyphenol for all seasons. CRC Press Taylor and Francis, Boca Raton, USA (2006).
  • AGGARWAL BB, BHARDWAJ A, AGGARWAL RS et al.: Role of resveratrol in prevention and therapy of cancer: preclinical and clinical studies. Anticancer Res. (2004) 24(5A):2783-2840.
  • SHUKLA Y, SINGH M: Cancer preventive properties of ginger: a brief review. Food Chem. Toxicol. (2007) 45(5):683-690.
  • KIM SO, CHUN KS, KUNDU JK et al.: Inhibitory effects of [6]-gingerol on PMA-induced COX-2 expression and activation of NF-κB and p38 MAPK in mouse skin. Biofactors (2004) 21(1-4):27-31.
  • SINGH S, NATARAJAN K, AGGARWAL BB: Capsaicin (8-methyl-N-vanillyl-6-nonenamide) is a potent inhibitor of nuclear transcription factor-κB activation by diverse agents. J. Immunol. (1996) 157(10):4412-4420.
  • BHUTANI M, PATHAK AK, NAIR AS et al.: Capsaicin is a novel blocker of constitutive and interleukin-6-inducible STAT3 activation. Clin. Cancer Res. (2007) 13(10):3024-3032.
  • MIN JK, HAN KY, KIM EC et al.: Capsaicin inhibits in vitro and in vivo angiogenesis. Cancer Res. (2004) 64(2):644-651.
  • KHAN N, AFAQ F, SALEEM M et al.: Targeting multiple signaling pathways by green tea polyphenol (-)-epigallocatechin3-gallate. Cancer Res. (2006) 66(5):2500-2505.
  • NATARAJAN K, MANNA SK, CHATURVEDI MM et al.: Protein tyrosine kinase inhibitors block tumor necrosis factor-induced activation of NF-κB, degradation of IκBα, nuclear translocation of p65, and subsequent gene expression. Arch. Biochem. Biophys. (1998) 352(1):59-70.
  • SARKAR FH, ADSULE S, PADHYE S et al.: The role of genistein and synthetic derivatives of isoflavone in cancer prevention and therapy. Mini. Rev. Med. Chem. (2006) 6(4):401-407.
  • SENDEROWICZ AM: Inhibitors of cyclin-dependent kinase modulators for cancer therapy. Prog. Drug Res. (2005) 63:183-206.
  • TAKADA Y, AGGARWAL BB: Flavopiridol inhibits NF-κB activation induced by various carcinogens and inflammatory agents through inhibition of IκBα kinase and p65 phosphorylation: abrogation of cyclin D1, cyclooxygenase-2, and matrix metalloprotease-9. J. Biol. Chem. (2004) 279(6):4750-4759.
  • AGARWAL R, AGARWAL C, ICHIKAWA H et al.: Anticancer potential of silymarin: from bench to bed side. Anticancer Res. (2006) 26(6B):4457-4498.
  • GAZAK R, WALTEROVA D, KREN V: Silybin and silymarin – new and emerging applications in medicine. Curr. Med. Chem. (2007) 14(3):315-338.
  • ICHIKAWA H, NAKAMURA Y, KASHIWAD Y et al.: Anticancer drugs designed by Mother Nature: ancient drugs but modern targets. Current pharmaceutical design. Curr. Pharm. Design (2007) (In Press).
  • AGGARWAL BB, TAKADA Y, OOMMEN OV: From chemoprevention to chemotherapy: common targets and common goals. Expert Opin. Investig. Drugs (2004) 13(10):1327-1338.
  • CHANG L, KARIN M: Mammalian MAP kinase signalling cascades. Nature (2001) 410(6824):37-40.
  • CHEN YR, TAN TH: Inhibition of the c-Jun N-terminal kinase (JNK) signaling pathway by curcumin. Oncogene (1998) 17(2):173-178.
  • KATIYAR SK, AFAQ F, AZIZUDDIN K et al.: Inhibition of UVB-induced oxidative stress-mediated phosphorylation of mitogen-activated protein kinase signaling pathways in cultured human epidermal keratinocytes by green tea polyphenol (-)-epigallocatechin-3-gallate. Toxicol. Appl. Pharmacol. (2001) 176(2):110-117.
  • STEWART JR, O'BRIAN CA: Resveratrol antagonizes EGFR-dependent Erk1/2 activation in human androgen-independent prostate cancer cells with associated isozyme-selective PKC α inhibition. Invest. New Drugs (2004) 22(2):107-117.
  • ALKHALAF M, JAFFAL S: Potent antiproliferative effects of resveratrol on human osteosarcoma SJSA1 cells: novel cellular mechanisms involving the ERKs/p53 cascade. Free Radic. Biol. Med. (2006) 41(2):318-325.
  • SHE QB, BODE AM, MA WY et al.: Resveratrol-induced activation of p53 and apoptosis is mediated by extracellular-signal-regulated protein kinases and p38 kinase. Cancer Res. (2001) 61(4):1604-1610.
  • RAFF MC: Social controls on cell survival and cell death. Nature (1992) 356(6368):397-400.
  • HAHN WC, WEINBERG RA: Rules for making human tumor cells. N. Engl. J. Med. (2002) 347(20):1593-1603.
  • SHEN F, CHEN SJ, DONG XJ et al.: Suppression of IL-8 gene transcription by resveratrol in phorbol ester treated human monocytic cells. J. Asian Nat. Prod. Res. (2003) 5(2):151-157.
  • KANEUCHI M, SASAKI M, TANAKA Y et al.: Resveratrol suppresses growth of Ishikawa cells through down-regulation of EGF. Int. J. Oncol. (2003) 23(4):1167-1172.
  • DANCEY JE, FREIDLIN B: Targeting epidermal growth factor receptor-are we missing the mark? Lancet (2003) 362(9377):62-64.
  • KORUTLA L, KUMAR R: Inhibitory effect of curcumin on epidermal growth factor receptor kinase activity in A431 cells. Biochim. Biophys. Acta (1994) 1224(3):597-600.
  • KORUTLA L, CHEUNG JY, MENDELSOHN J et al.: Inhibition of ligand-induced activation of epidermal growth factor receptor tyrosine phosphorylation by curcumin. Carcinogenesis (1995) 16(8):1741-1745.
  • ROBERTS-THOMSON SJ: Peroxisome proliferator-activated receptors in tumorigenesis: targets of tumour promotion and treatment. Immunol. Cell Biol. (2000) 78(4):436-441.
  • CHEN A, XU J: Activation of PPARγ by curcumin inhibits Moser cell growth and mediates suppression of gene expression of cyclin D1 and EGFR. Am. J. Physiol. Gastrointest. Liver Physiol. (2005) 288(3):G447-G456.
  • CHEN A, XU J, JOHNSON AC: Curcumin inhibits human colon cancer cell growth by suppressing gene expression of epidermal growth factor receptor through reducing the activity of the transcription factor Egr-1. Oncogene (2006) 25(2):278-287.
  • XIA J, SONG X, BI Z et al.: UV-induced NF-κB activation and expression of IL-6 is attenuated by (-)-epigallocatechin-3-gallate in cultured human keratinocytes in vitro. Int. J. Mol. Med. (2005) 16(5):943-950.
  • SHIMIZU M, DEGUCHI A, LIM JT et al.: (-)-Epigallocatechin gallate and polyphenon E inhibit growth and activation of the epidermal growth factor receptor and human epidermal growth factor receptor-2 signaling pathways in human colon cancer cells. Clin. Cancer Res. (2005) 11(7):2735-2746.
  • SAH JF, BALASUBRAMANIAN S, ECKERT RL et al.: Epigallocatechin-3-gallate inhibits epidermal growth factor receptor signaling pathway. Evidence for direct inhibition of ERK1/2 and AKT kinases. J. Biol. Chem. (2004) 279(13):12755-12762.
  • SARTIPPOUR MR, HEBER D, ZHANG L et al.: Inhibition of fibroblast growth factors by green tea. Int. J. Oncol. (2002) 21(3):487-491.
  • MASUDA M, SUZUI M, LIM JT et al.: Epigallocatechin-3-gallate inhibits activation of HER-2/neu and downstream signaling pathways in human head and neck and breast carcinoma cells. Clin. Cancer Res. (2003) 9(9):3486-3491.
  • MASAMUNE A, KIKUTA K, SATOH M et al.: Green tea polyphenol epigallocatechin-3-gallate blocks PDGF-induced proliferation and migration of rat pancreatic stellate cells. World J. Gastroenterol. (2005) 11(22):3368-3374.
  • CHANG F, LEE JT, NAVOLANIC PM et al.: Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Leukemia (2003) 17(3):590-603.
  • OZES ON, MAYO LD, GUSTIN JA et al.: NF-κB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature (1999) 401(6748):82-85.
  • CARDONE MH, ROY N, STENNICKE HR et al.: Regulation of cell death protease caspase-9 by phosphorylation. Science (1998) 282(5392):1318-1321.
  • AGGARWAL S, ICHIKAWA H, TAKADA Y et al.: Curcumin (diferuloylmethane) down-regulates expression of cell proliferation and antiapoptotic and metastatic gene products through suppression of IκBa kinase and Akt activation. Mol. Pharmacol. (2006) 69(1):195-206.
  • SQUIRES MS, HUDSON EA, HOWELLS L et al.: Relevance of mitogen activated protein kinase (MAPK) and phosphotidylinositol-3-kinase/protein kinase B (PI3K/PKB) pathways to induction of apoptosis by curcumin in breast cells. Biochem. Pharmacol. (2003) 65(3):361-376.
  • LI Y, SARKAR FH: Inhibition of NF-κB activation in PC3 cells by genistein is mediated via Akt signaling pathway. Clin. Cancer Res. (2002) 8(7):2369-2377.
  • QIN J, XIE LP, ZHENG XY et al.: A component of green tea, (-)-epigallocatechin-3-gallate, promotes apoptosis in T24 human bladder cancer cells via modulation of the PI3K/Akt pathway and Bcl-2 family proteins. Biochem. Biophys. Res. Commun. (2007) 354(4):852-857.
  • SEN P, CHAKRABORTY PK, RAHA S: Tea polyphenol epigallocatechin 3-gallate impedes the anti-apoptotic effects of low-grade repetitive stress through inhibition of Akt and NF-κB survival pathways. FEBS Lett. (2006) 580(1):278-284.
  • AZIZ MH, NIHAL M, FU VX et al.: Resveratrol-caused apoptosis of human prostate carcinoma LNCaP cells is mediated via modulation of phosphatidylinositol 3′-kinase/Akt pathway and Bcl-2 family proteins. Mol. Cancer Ther. (2006) 5(5):1335-1341.
  • BHARDWAJ A, SETHI G, VADHAN-RAJ S et al.: Resveratrol inhibits proliferation, induces apoptosis, and overcomes chemoresistance through down-regulation of STAT3 and NF-κB-regulated antiapoptotic and cell survival gene products in human multiple myeloma cells. Blood (2007) 109(6):2293-2302.
  • AGGARWAL BB: NF-κB: the enemy within. Cancer Cell (2004) 6(3):203-208.
  • AHN KS, AGGARWAL BB: Transcription factor NF-κB: a sensor for smoke and stress signals. Ann. NY Acad. Sci. (2005) 1056:218-233.
  • BHARTI AC, DONATO N, SINGH S et al.: Curcumin (diferuloylmethane) down-regulates the constitutive activation of NF-κB and IκBα kinase in human multiple myeloma cells, leading to suppression of proliferation and induction of apoptosis. Blood (2003) 101(3):1053-1062.
  • HAN SS, KEUM YS, SEO HJ et al.: Capsaicin suppresses phorbol ester-induced activation of NF-κB/Rel and AP-1 transcription factors in mouse epidermis. Cancer Lett. (2001) 164(2):119-126.
  • MANNA SK, MUKHOPADHYAY A, AGGARWAL BB: Resveratrol suppresses TNF-induced activation of nuclear transcription factors NF-κB, activator protein-1, and apoptosis: potential role of reactive oxygen intermediates and lipid peroxidation. J. Immunol. (2000) 164(12):6509-6519.
  • SHISHODIA S, AGGARWAL BB: Guggulsterone inhibits NF-κB and IκBα kinase activation, suppresses expression of anti-apoptotic gene products, and enhances apoptosis. J. Biol. Chem. (2004) 279(45):47148-47158.
  • SHISHODIA S, MAJUMDAR S, BANERJEE S et al.: Ursolic acid inhibits NF-κB activation induced by carcinogenic agents through suppression of IκBα kinase and p65 phosphorylation: correlation with down-regulation of cyclooxygenase 2, matrix metalloproteinase 9, and cyclin D1. Cancer Res. (2003) 63(15):4375-4383.
  • TAKADA Y, AGGARWAL BB: Betulinic acid suppresses carcinogen-induced NF-κB activation through inhibition of IκBα kinase and p65 phosphorylation: abrogation of cyclooxygenase-2 and matrix metalloprotease-9. J. Immunol. (2003) 171(6):3278-3286.
  • TAKADA Y, ANDREEFF M, AGGARWAL BB: Indole-3-carbinol suppresses NF-κB and IκBα kinase activation, causing inhibition of expression of NF-κB-regulated antiapoptotic and metastatic gene products and enhancement of apoptosis in myeloid and leukemia cells. Blood (2005) 106(2):641-649.
  • CHAINY GB, MANNA SK, CHATURVEDI MM et al.: Anethole blocks both early and late cellular responses transduced by tumor necrosis factor: effect on NF-κB, AP-1, JNK, MAPKK and apoptosis. Oncogene (2000) 19(25):2943-2950.
  • YANG F, OZ HS, BARVE S et al.: The green tea polyphenol (-)-epigallocatechin-3-gallate blocks NF-κB activation by inhibiting IκB kinase activity in the intestinal epithelial cell line IEC-6. Mol. Pharmacol. (2001) 60(3):528-533.
  • GENG Z, RONG Y, LAU BH: S-allyl cysteine inhibits activation of NF-κB in human T cells. Free Radic. Biol. Med. (1997) 23(2):345-350.
  • KIM GY, KIM JH, AHN SC et al.: Lycopene suppresses the lipopolysaccharide-induced phenotypic and functional maturation of murine dendritic cells through inhibition of mitogen-activated protein kinases and NF-κB. Immunology (2004) 113(2):203-211.
  • GONG L, LI Y, NEDELJKOVIC-KUREPA A et al.: Inactivation of NF-κB by genistein is mediated via Akt signaling pathway in breast cancer cells. Oncogene (2003) 22(30):4702-4709.
  • SHISHODIA S, AGGARWAL BB: Diosgenin inhibits osteoclastogenesis, invasion, and proliferation through the downregulation of Akt, IκB kinase activation and NF-κB-regulated gene expression. Oncogene (2006) 25(10):1463-1473.
  • PLUMMER SM, HOLLOWAY KA, MANSON MM et al.: Inhibition of cyclo-oxygenase 2 expression in colon cells by the chemopreventive agent curcumin involves inhibition of NF-κB activation via the NIK/IKK signalling complex. Oncogene (1999) 18(44):6013-6020.
  • SIWAK DR, SHISHODIA S, AGGARWAL BB et al.: Curcumin-induced antiproliferative and proapoptotic effects in melanoma cells are associated with suppression of IκB kinase and NF-κB activity and are independent of the B-Raf/mitogen-activated/extracellular signal-regulated protein kinase pathway and the Akt pathway. Cancer (2005) 104(4):879-890.
  • PARK KK, CHUN KS, YOOK JI et al.: Lack of tumor promoting activity of capsaicin, a principal pungent ingredient of red pepper, in mouse skin carcinogenesis. Anticancer Res. (1998) 18(6A):4201-4205.
  • SHAULIAN E, KARIN M: AP-1 as a regulator of cell life and death. Nat. Cell Biol. (2002) 4(5):E131-E136.
  • HUANG C, MA WY, YOUNG MR et al.: Shortage of mitogen-activated protein kinase is responsible for resistance to AP-1 transactivation and transformation in mouse JB6 cells. Proc. Natl. Acad. Sci. USA (1998) 95(1):156-161.
  • DONG Z, MA W, HUANG C et al.: Inhibition of tumor promoter-induced activator protein 1 activation and cell transformation by tea polyphenols, (-)-epigallocatechin gallate, and theaflavins. Cancer Res. (1997) 57(19):4414-4419.
  • HAN SS, KEUM YS, SEO HJ et al.: Curcumin suppresses activation of NF-κB and AP-1 induced by phorbol ester in cultured human promyelocytic leukemia cells. J. Biochem. Mol. Biol. (2002) 35(3):337-342.
  • MUKHOPADHYAY A, BUESO-RAMOS C, CHATTERJEE D et al.: Curcumin downregulates cell survival mechanisms in human prostate cancer cell lines. Oncogene (2001) 20(52):7597-7609.
  • REICH NC, LIU L: Tracking STAT nuclear traffic. Nat. Rev. Immunol. (2006) 6(8):602-612.
  • AGGARWAL BB, SETHI G, AHN KS et al.: Targeting signal-transducer-and-activator-of-transcription-3 for prevention and therapy of cancer: modern target but ancient solution. Ann. NY Acad. Sci. (2006) 1091:151-169.
  • TEDESCHI E, MENEGAZZI M, YAO Y et al.: Green tea inhibits human inducible nitric-oxide synthase expression by down-regulating signal transducer and activator of transcription-1α activation. Mol. Pharmacol. (2004) 65(1):111-120.
  • MASUDA M, SUZUI M, WEINSTEIN IB: Effects of epigallocatechin-3-gallate on growth, epidermal growth factor receptor signaling pathways, gene expression, and chemosensitivity in human head and neck squamous cell carcinoma cell lines. Clin. Cancer Res. (2001) 7(12):4220-4229.
  • BHARTI AC, DONATO N, AGGARWAL BB: Curcumin (diferuloylmethane) inhibits constitutive and IL-6-inducible STAT3 phosphorylation in human multiple myeloma cells. J. Immunol. (2003) 171(7):3863-3871.
  • HENGARTNER MO: The biochemistry of apoptosis. Nature (2000) 407(6805):770-776.
  • KERR JF, WYLLIE AH, CURRIE AR: Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer (1972) 26(4):239-257.
  • VAUX DL, KORSMEYER SJ: Cell death in development. Cell (1999) 96(2):245-254.
  • DANIAL NN, KORSMEYER SJ: Cell death: critical control points. Cell (2004) 116(2):205-219.
  • KAUFMANN SH, EARNSHAW WC: Induction of apoptosis by cancer chemotherapy. Exp. Cell Res. (2000) 256(1):42-49.
  • HERR I, DEBATIN KM: Cellular stress response and apoptosis in cancer therapy. Blood (2001) 98(9):2603-2614.
  • REED JC: Apoptosis-based therapies. Nat. Rev. Drug Discov. (2002) 1(2):111-121.
  • FULDA S, DEBATIN KM: Resveratrol modulation of signal transduction in apoptosis and cell survival: a mini-review. Cancer Detect. Prev. (2006) 30(3):217-223.
  • FULDA S, DEBATIN KM: Sensitization for tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by the chemopreventive agent resveratrol. Cancer Res. (2004) 64(1):337-346.
  • BRUSSELMANS K, DE SCHRIJVER E, HEYNS W et al.: Epigallocatechin-3-gallate is a potent natural inhibitor of fatty acid synthase in intact cells and selectively induces apoptosis in prostate cancer cells. Int. J. Cancer (2003) 106(6):856-862.
  • CHEN ZP, SCHELL JB, HO CT et al.: Green tea epigallocatechin gallate shows a pronounced growth inhibitory effect on cancerous cells but not on their normal counterparts. Cancer Lett. (1998) 129(2):173-179.
  • CHUNG JH, HAN JH, HWANG EJ et al.: Dual mechanisms of green tea extract (EGCG)-induced cell survival in human epidermal keratinocytes. FASEB J. (2003) 17(13):1913-1915.
  • HIBASAMI H, ACHIWA Y, FUJIKAWA T et al.: Induction of programmed cell death (apoptosis) in human lymphoid leukemia cells by catechin compounds. Anticancer Res. (1996) 16(4A):1943-1946.
  • KEMBERLING JK, HAMPTON JA, KECK RW et al.: Inhibition of bladder tumor growth by the green tea derivative epigallocatechin-3-gallate. J. Urol. (2003) 170(3):773-776.
  • HORIE N, HIRABAYASHI N, TAKAHASHI Y et al.: Synergistic effect of green tea catechins on cell growth and apoptosis induction in gastric carcinoma cells. Biol. Pharm. Bull. (2005) 28(4):574-579.
  • CHEN C, SHEN G, HEBBAR V et al.: Epigallocatechin-3-gallate-induced stress signals in HT-29 human colon adenocarcinoma cells. Carcinogenesis (2003) 24(8):1369-1378.
  • YANG GY, LIAO J, KIM K et al.: Inhibition of growth and induction of apoptosis in human cancer cell lines by tea polyphenols. Carcinogenesis (1998) 19(4):611-616.
  • MUTO A, HORI M, SASAKI Y et al.: Emodin has a cytotoxic activity against human multiple myeloma as a Janus-activated kinase 2 inhibitor. Mol. Cancer Ther. (2007) 6(3):987-994.
  • KARUNAGARAN D, RASHMI R, KUMAR TR: Induction of apoptosis by curcumin and its implications for cancer therapy. Curr. Cancer Drug Targets (2005) 5(2):117-129.
  • BUSH JA, CHEUNG KJ Jr, LI G: Curcumin induces apoptosis in human melanoma cells through a Fas receptor/caspase-8 pathway independent of p53. Exp. Cell Res. (2001) 271(2):305-314.
  • SHISHODIA S, AMIN HM, LAI R et al.: Curcumin (diferuloylmethane) inhibits constitutive NF-κB activation, induces G1/S arrest, suppresses proliferation, and induces apoptosis in mantle cell lymphoma. Biochem. Pharmacol. (2005) 70(5):700-713.
  • KATIYAR SK, ROY AM, BALIGA MS: Silymarin induces apoptosis primarily through a p53-dependent pathway involving Bcl-2/Bax, cytochrome c release, and caspase activation. Mol. Cancer Ther. (2005) 4(2):207-216.
  • ZHONG X, ZHU Y, LU Q et al.: Silymarin causes caspases activation and apoptosis in K562 leukemia cells through inactivation of Akt pathway. Toxicology (2006) 227(3):211-216.
  • EARNSHAW WC, MARTINS LM, KAUFMANN SH: Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Ann. Rev. Biochem. (1999) 68:383-424.
  • SLEE EA, ADRAIN C, MARTIN SJ: Serial killers: ordering caspase activation events in apoptosis. Cell Death Differ. (1999) 6(11):1067-1074.
  • MORAGODA L, JASZEWSKI R, MAJUMDAR AP: Curcumin induced modulation of cell cycle and apoptosis in gastric and colon cancer cells. Anticancer Res. (2001) 21(2A):873-878.
  • ANTO RJ, MUKHOPADHYAY A, DENNING K et al.: Curcumin (diferuloylmethane) induces apoptosis through activation of caspase-8, BID cleavage and cytochrome c release: its suppression by ectopic expression of Bcl-2 and Bcl-xl. Carcinogenesis (2002) 23(1):143-150.
  • SIKORA E, BIELAK-ZMIJEWSKA A, MAGALSKA A et al.: Curcumin induces caspase-3-dependent apoptotic pathway but inhibits DNA fragmentation factor 40/caspase-activated DNase endonuclease in human Jurkat cells. Mol. Cancer Ther. (2006) 5(4):927-934.
  • DORRIE J, GERAUER H, WACHTER Y et al.: Resveratrol induces extensive apoptosis by depolarizing mitochondrial membranes and activating caspase-9 in acute lymphoblastic leukemia cells. Cancer Res. (2001) 61(12):4731-4739.
  • SHIMIZU T, NAKAZATO T, XIAN MJ et al.: Resveratrol induces apoptosis of human malignant B cells by activation of caspase-3 and p38 MAP kinase pathways. Biochem. Pharmacol. (2006) 71(6):742-750.
  • MOHAN J, GANDHI AA, BHAVYA BC et al.: Caspase-2 triggers Bax-Bak-dependent and -independent cell death in colon cancer cells treated with resveratrol. J. Biol. Chem. (2006) 281(26):17599-17611.
  • TSOU MF, LU HF, CHEN SC et al.: Involvement of Bax, Bcl-2, Ca2+ and caspase-3 in capsaicin-induced apoptosis of human leukemia HL-60 cells. Anticancer Res. (2006) 26(3A):1965-1971.
  • STIEWE T: The p53 family in differentiation and tumorigenesis. Nat. Rev. Cancer (2007) 7(3):165-168.
  • VOGELSTEIN B, LANE D, LEVINE AJ: Surfing the p53 network. Nature (2000) 408(6810):307-310.
  • LEVESQUE AA, EASTMAN A: p53-based cancer therapies: is defective p53 the Achilles heel of the tumor? Carcinogenesis (2007) 28(1):13-20.
  • HAN SS, CHUNG ST, ROBERTSON DA et al.: Curcumin causes the growth arrest and apoptosis of B cell lymphoma by downregulation of egr-1, c-myc, bcl-XL, NF-κB, and p53. Clin. Immunol. (1999) 93(2):152-161.
  • PARK MJ, KIM EH, PARK IC et al.: Curcumin inhibits cell cycle progression of immortalized human umbilical vein endothelial (ECV304) cells by up-regulating cyclin-dependent kinase inhibitor, p21WAF1/CIP1, p27KIP1 and p53. Int. J. Oncol. (2002) 21(2):379-383.
  • HUANG C, MA WY, GORANSON A et al.: Resveratrol suppresses cell transformation and induces apoptosis through a p53-dependent pathway. Carcinogenesis (1999) 20(2):237-242.
  • BAEK SJ, WILSON LC, ELING TE: Resveratrol enhances the expression of non-steroidal anti-inflammatory drug-activated gene (NAG-1) by increasing the expression of p53. Carcinogenesis (2002) 23(3):425-434.
  • LI M, ZHANG Z, HILL DL et al.: Genistein, a dietary isoflavone, down-regulates the MDM2 oncogene at both transcriptional and posttranslational levels. Cancer Res. (2005) 65(18):8200-8208.
  • KUO PL, LIN CC: Green tea constituent (-)-epigallocatechin-3-gallate inhibits Hep G2 cell proliferation and induces apoptosis through p53-dependent and Fas-mediated pathways. J. Biomed. Sci. (2003) 10(2):219-227.
  • BERGERS G, BENJAMIN LE: Tumorigenesis and the angiogenic switch. Nat. Rev. Cancer (2003) 3(6):401-410.
  • YANCOPOULOS GD, DAVIS S, GALE NW et al.: Vascular-specific growth factors and blood vessel formation. Nature (2000) 407(6801):242-248.
  • FAN TP, YEH JC, LEUNG KW et al.: Angiogenesis: from plants to blood vessels. Trends Pharmacol. Sci. (2006) 27(6):297-309.
  • BRAKENHIELM E, CAO R, CAO Y: Suppression of angiogenesis, tumor growth, and wound healing by resveratrol, a natural compound in red wine and grapes. FASEB J. (2001) 15(10):1798-1800.
  • FUKUDA S, KAGA S, ZHAN L et al.: Resveratrol ameliorates myocardial damage by inducing vascular endothelial growth factor-angiogenesis and tyrosine kinase receptor Flk-1. Cell Biochem. Biophys. (2006) 44(1):43-49.
  • ARBISER JL, KLAUBER N, ROHAN R et al.: Curcumin is an in vivo inhibitor of angiogenesis. Mol. Med. (1998) 4(6):376-383.
  • BAE MK, KIM SH, JEONG JW et al.: Curcumin inhibits hypoxia-induced angiogenesis via down-regulation of HIF-1. Oncol. Rep. (2006) 15(6):1557-1562.
  • FOTSIS T, PEPPER M, ADLERCREUTZ H et al.: Genistein, a dietary ingested isoflavonoid, inhibits cell proliferation and in vitro angiogenesis. J. Nutr. (1995) 125(3 Suppl.):S790-S797.
  • BAGLI E, STEFANIOTOU M, MORBIDELLI L et al.: Luteolin inhibits vascular endothelial growth factor-induced angiogenesis; inhibition of endothelial cell survival and proliferation by targeting phosphatidylinositol 3′-kinase activity. Cancer Res. (2004) 64(21):7936-7946.
  • LAMY S, GINGRAS D, BELIVEAU R: Green tea catechins inhibit vascular endothelial growth factor receptor phosphorylation. Cancer Res. (2002) 62(2):381-385.
  • RODRIGUEZ SK, GUO W, LIU L et al.: Green tea catechin, epigallocatechin-3-gallate, inhibits vascular endothelial growth factor angiogenic signaling by disrupting the formation of a receptor complex. Int. J. Cancer (2006) 118(7):1635-1644.
  • CAO Y, CAO R: Angiogenesis inhibited by drinking tea. Nature (1999) 398(6726):381.
  • KIMURA Y, OKUDA H: Resveratrol isolated from polygonum cuspidatum root prevents tumor growth and metastasis to lung and tumor-induced neovascularization in Lewis lung carcinoma-bearing mice. J. Nutr. (2001) 131(6):1844-1849.
  • RAY S, CHATTOPADHYAY N, MITRA A et al.: Curcumin exhibits antimetastatic properties by modulating integrin receptors, collagenase activity, and expression of Nm23 and E-cadherin. J. Environ. Pathol. Toxicol. Oncol. (2003) 22(1):49-58.
  • GUPTA GP, MASSAGUE J: Cancer metastasis: building a framework. Cell (2006) 127(4):679-695.
  • ABE Y, HASHIMOTO S, HORIE T: Curcumin inhibition of inflammatory cytokine production by human peripheral blood monocytes and alveolar macrophages. Pharmacol. Res. (1999) 39(1):41-47.
  • GUPTA B, GHOSH B: Curcuma longa inhibits TNF-α induced expression of adhesion molecules on human umbilical vein endothelial cells. Int. J. Immunopharmacol. (1999) 21(11):745-757.
  • JAISWAL AS, MARLOW BP, GUPTA N et al.: β-catenin-mediated transactivation and cell-cell adhesion pathways are important in curcumin (diferuylmethane)-induced growth arrest and apoptosis in colon cancer cells. Oncogene (2002) 21(55):8414-8427.
  • CHEN HW, YU SL, CHEN JJ et al.: Anti-invasive gene expression profile of curcumin in lung adenocarcinoma based on a high throughput microarray analysis. Mol. Pharmacol. (2004) 65(1):99-110.
  • MENON LG, KUTTAN R, KUTTAN G: Anti-metastatic activity of curcumin and catechin. Cancer Lett. (1999) 141(1-2):159-165.
  • VANTYGHEM SA, WILSON SM, POSTENKA CO et al.: Dietary genistein reduces metastasis in a postsurgical orthotopic breast cancer model. Cancer Res. (2005) 65(8):3396-3403.
  • KOZUKI Y, MIURA Y, YAGASAKI K: Resveratrol suppresses hepatoma cell invasion independently of its anti-proliferative action. Cancer Lett. (2001) 167(2):151-156.
  • RODRIGUE CM, PORTEU F, NAVARRO N et al.: The cancer chemopreventive agent resveratrol induces tensin, a cell-matrix adhesion protein with signaling and antitumor activities. Oncogene (2005) 24(20):3274-3284.
  • GAGLIANO N, MOSCHENI C, TORRI C et al.: Effect of resveratrol on matrix metalloproteinase-2 (MMP-2) and secreted protein acidic and rich in cysteine (SPARC) on human cultured glioblastoma cells. Biomed. Pharmacother. (2005) 59(7):359-364.
  • GARG AK, BUCHHOLZ TA, AGGARWAL BB: Chemosensitization and radiosensitization of tumors by plant polyphenols. Antioxid. Redox Signal. (2005) 7(11-12):1630-1647.
  • LEI W, MAYOTTE JE, LEVITT ML: Enhancement of chemosensitivity and programmed cell death by tyrosine kinase inhibitors correlates with EGFR expression in non-small cell lung cancer cells. Anticancer Res. (1999) 19(1A):221-228.
  • EL-RAYES BF, ALI S, ALI IF et al.: Potentiation of the effect of erlotinib by genistein in pancreatic cancer: the role of Akt and NF-κB. Cancer Res. (2006) 66(21):10553-10559.
  • KUBOTA T, UEMURA Y, KOBAYASHI M et al.: Combined effects of resveratrol and paclitaxel on lung cancer cells. Anticancer Res. (2003) 23(5A):4039-4046.
  • SCHWARTZ GK, FARSI K, MASLAK P et al.: Potentiation of apoptosis by flavopiridol in mitomycin-C-treated gastric and breast cancer cells. Clin. Cancer Res. (1997) 3(9):1467-1472.
  • LI W, FAN J, BERTINO JR: Selective sensitization of retinoblastoma protein-deficient sarcoma cells to doxorubicin by flavopiridol-mediated inhibition of cyclin-dependent kinase 2 kinase activity. Cancer Res. (2001) 61(6):2579-2582.
  • HOUR TC, CHEN J, HUANG CY et al.: Curcumin enhances cytotoxicity of chemotherapeutic agents in prostate cancer cells by inducing p21(WAF1/CIP1) and C/EBPβ expressions and suppressing NF-κB activation. Prostate (2002) 51(3):211-218.
  • YI J, YANG J, HE R et al.: Emodin enhances arsenic trioxide-induced apoptosis via generation of reactive oxygen species and inhibition of survival signaling. Cancer Res. (2004) 64(1):108-116.
  • FENIG E, NORDENBERG J, BEERY E et al.: Combined effect of aloe-emodin and chemotherapeutic agents on the proliferation of an adherent variant cell line of Merkel cell carcinoma. Oncol. Rep. (2004) 11(1):213-217.
  • CRISWELL T, LESKOV K, MIYAMOTO S et al.: Transcription factors activated in mammalian cells after clinically relevant doses of ionizing radiation. Oncogene (2003) 22(37):5813-5827.
  • SARTOR CI: Mechanisms of disease: radiosensitization by epidermal growth factor receptor inhibitors. Nat. Clin. Pract. Oncol. (2004) 1(2):80-87.
  • HILLMAN GG, FORMAN JD, KUCUK O et al.: Genistein potentiates the radiation effect on prostate carcinoma cells. Clin. Cancer Res. (2001) 7(2):382-390.
  • HILLMAN GG, WANG Y, KUCUK O et al.: Genistein potentiates inhibition of tumor growth by radiation in a prostate cancer orthotopic model. Mol. Cancer Ther. (2004) 3(10):1271-1279.
  • RAFFOUL JJ, WANG Y, KUCUK O et al.: Genistein inhibits radiation-induced activation of NF-κB in prostate cancer cells promoting apoptosis and G2/M cell cycle arrest. BMC Cancer (2006) 6:107.
  • RAFFOUL JJ, BANERJEE S, SINGH-GUPTA V et al.: Down-regulation of apurinic/apyrimidinic endonuclease 1/redox factor-1 expression by soy isoflavones enhances prostate cancer radiotherapy in vitro and in vivo. Cancer Res. (2007) 67(5):2141-2149.
  • RAFFOUL JJ, BANERJEE S, CHE M et al.: Soy isoflavones enhance radiotherapy in a metastatic prostate cancer model. Int. J. Cancer (2007) 120(11):2491-2498.
  • CHENDIL D, RANGA RS, MEIGOONI D et al.: Curcumin confers radiosensitizing effect in prostate cancer cell line PC-3. Oncogene (2004) 23(8):1599-1607.
  • LI M, ZHANG Z, HILL DL et al.: Curcumin, a dietary component, has anticancer, chemosensitization, and radiosensitization effects by down-regulating the MDM2 oncogene through the PI3K/mTOR/ETS2 pathway. Cancer Res. (2007) 67(5):1988-1996.
  • SHAW RJ, CANTLEY LC: Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature (2006) 441(7092):424-430.
  • JUNG C, MOTWANI M, KORTMANSKY J et al.: The cyclin-dependent kinase inhibitor flavopiridol potentiates γ-irradiation-induced apoptosis in colon and gastric cancer cells. Clin. Cancer Res. (2003) 9(16 Part 1):6052-6061.
  • RAJU U, NAKATA E, MASON KA et al.: Flavopiridol, a cyclin-dependent kinase inhibitor, enhances radiosensitivity of ovarian carcinoma cells. Cancer Res. (2003) 63(12):3263-3267.
  • CAMPHAUSEN K, BRADY KJ, BURGAN WE et al.: Flavopiridol enhances human tumor cell radiosensitivity and prolongs expression of γH2AX foci. Mol. Cancer Ther. (2004) 3(4):409-416.
  • NEWCOMB EW, ALI MA, SCHNEE T et al.: Flavopiridol downregulates hypoxia-mediated hypoxia-inducible factor-1α expression in human glioma cells by a proteasome-independent pathway: implications for in vivo therapy. Neuro. Oncol. (2005) 7(3):225-235.
  • ZOBERI I, BRADBURY CM, CURRY HA et al.: Radiosensitizing and anti-proliferative effects of resveratrol in two human cervical tumor cell lines. Cancer Lett. (2002) 175(2):165-173.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.