598
Views
61
CrossRef citations to date
0
Altmetric
Reviews

New inhibitors of the mammalian target of rapamycin signaling pathway for cancer

, , , , &
Pages 919-930 | Published online: 23 Jun 2010

Bibliography

  • Faivre S, Djelloul S, Raymond E. New paradigms in anticancer therapy: targeting multiple signaling pathways with kinase inhibitors. Semin Oncol 2006;33(4):407-20
  • Faivre S, Kroemer G, Raymond E. Current development of mTOR inhibitors as anticancer agents. Nat Rev Drug Discov 2006;5(8):671-88
  • Vezina C, Kudelski A, Sehgal SN. Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot (Tokyo) 1975;28(10):721-6
  • Flanagan WM, Crabtree GR. Rapamycin inhibits p34cdc2 expression and arrests T lymphocyte proliferation at the G1/S transition. Ann NY Acad Sci 1993;696:31-7
  • Faivre S, Raymond E. Mechanism of action of rapalogues: the antiangiogenic hypothesis. Expert Opin Investig Drugs 2008;17(11):1619-21
  • Le Tourneau C, Faivre S, Serova M, Raymond E. mTORC1 inhibitors: is temsirolimus in renal cancer telling us how they really work? Br J Cancer 2008;99(8):1197-203
  • Hay N, Sonenberg N. Upstream and downstream of mTOR. Genes Dev 2004;18(16):1926-45
  • Engelman JA. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer 2009;9(8):550-62
  • Strimpakos AS, Karapanagiotou EM, Saif MW, Syrigos KN. The role of mTOR in the management of solid tumors: an overview. Cancer Treat Rev 2009;35(2):148-59
  • Guertin DA, Sabatini DM. Defining the role of mTOR in cancer. Cancer Cell 2007;12(1):9-22
  • Sarbassov DD, Ali SM, Kim DH, Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 2004;14(14):1296-302
  • Cully M, You H, Levine AJ, Mak TW. Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nat Rev Cancer 2006;6(3):184-92
  • Besson A, Robbins SM, Yong VW. PTEN/MMAC1/TEP1 in signal transduction and tumorigenesis. Eur J Biochem 1999;263(3):605-11
  • Inoki K, Li Y, Xu T, Guan KL. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev 2003;17(15):1829-34
  • Zhang Y, Gao X, Saucedo LJ, Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nat Cell Biol 2003;5(6):578-81
  • Crino PB, Nathanson KL, Henske EP. The tuberous sclerosis complex. N Engl J Med 2006;355(13):1345-56
  • Kim E, Goraksha-Hicks P, Li L, Regulation of TORC1 by Rag GTPases in nutrient response. Nat Cell Biol 2008;10(8):935-45
  • Zhang F, Beharry ZM, Harris TE, PIM1 protein kinase regulates PRAS40 phosphorylation and mTOR activity in FDCP1 cells. Cancer Biol Ther 2009;8(9):846-53
  • Motzer RJ, Escudier B, Oudard S, Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet 2008;372(9637):449-56
  • Hudes G, Carducci M, Tomczak P, Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N Engl J Med 2007;356(22):2271-81
  • Hess G, Herbrecht R, Romaguera J, Phase III study to evaluate temsirolimus compared with investigator's choice therapy for the treatment of relapsed or refractory mantle cell lymphoma. J Clin Oncol 2009;27(23):3822-9
  • Carracedo A, Ma L, Teruya-Feldstein J, Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J Clin Invest 2008;118(9):3065-74
  • Mordant P, Loriot Y, Leteur C, Dependence on phosphoinositide 3-kinase and RAS-RAF pathways drive the activity of RAF265, a novel RAF/VEGFR2 inhibitor, and RAD001 (Everolimus) in combination. Mol Cancer Ther 2010;9(2):358-68
  • Gupta M, Ansell SM, Novak AJ, Inhibition of histone deacetylase overcomes rapamycin-mediated resistance in diffuse large B-cell lymphoma by inhibiting Akt signaling through mTORC2. Blood 2009;114(14):2926-35
  • Inoki K, Corradetti MN, Guan KL. Dysregulation of the TSC-mTOR pathway in human disease. Nat Genet 2005;37(1):19-24
  • Rendtorff ND, Bjerregaard B, Frodin M, Analysis of 65 tuberous sclerosis complex (TSC) patients by TSC2 DGGE, TSC1/TSC2 MLPA, and TSC1 long-range PCR sequencing, and report of 28 novel mutations. Hum Mutat 2005;26(4):374-83
  • Huang J, Dibble CC, Matsuzaki M, Manning BD. The TSC1-TSC2 complex is required for proper activation of mTOR complex 2. Mol Cell Biol 2008;28(12):4104-15
  • Huang J, Wu S, Wu CL, Manning BD. Signaling events downstream of mammalian target of rapamycin complex 2 are attenuated in cells and tumors deficient for the tuberous sclerosis complex tumor suppressors. Cancer Res 2009;69(15):6107-14
  • Masri J, Bernath A, Martin J, mTORC2 activity is elevated in gliomas and promotes growth and cell motility via overexpression of rictor. Cancer Res 2007;67(24):11712-20
  • Hietakangas V, Cohen SM. TOR complex 2 is needed for cell cycle progression and anchorage-independent growth of MCF7 and PC3 tumor cells. BMC Cancer 2008;8:282
  • Guertin DA, Stevens DM, Saitoh M, mTOR complex 2 is required for the development of prostate cancer induced by Pten loss in mice. Cancer Cell 2009;15(2):148-59
  • Sun SY, Rosenberg LM, Wang X, Activation of Akt and eIF4E survival pathways by rapamycin-mediated mammalian target of rapamycin inhibition. Cancer Res 2005;65(16):7052-8
  • O'Reilly KE, Rojo F, She QB, mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res 2006;66(3):1500-8
  • Sarbassov DD, Ali SM, Sengupta S, Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 2006;22(2):159-68
  • Zeng Z, Sarbassov dos D, Samudio IJ, Rapamycin derivatives reduce mTORC2 signaling and inhibit AKT activation in AML. Blood 2007;109(8):3509-12
  • Gulati N, Karsy M, Albert L, Involvement of mTORC1 and mTORC2 in regulation of glioblastoma multiforme growth and motility. Int J Oncol 2009;35(4):731-40
  • Wang X, Yue P, Kim YA, Enhancing mammalian target of rapamycin (mTOR)-targeted cancer therapy by preventing mTOR/raptor inhibition-initiated, mTOR/rictor-independent Akt activation. Cancer Res 2008;68(18):7409-18
  • Lopez-Fauqued M, Gil R, Grueso J, The dual PI3K/mTOR inhibitor PI-103 promotes immunosuppression, in vivo tumor growth and increases survival of sorafenib-treated melanoma cells. Int J Cancer 2010;126(7):1549-61
  • Jia S, Liu Z, Zhang S, Essential roles of PI(3)K-p110beta in cell growth, metabolism and tumorigenesis. Nature 2008;454(7205):776-9
  • Torbett NE, Luna-Moran A, Knight ZA, A chemical screen in diverse breast cancer cell lines reveals genetic enhancers and suppressors of sensitivity to PI3K isoform-selective inhibition. Biochem J 2008;415(1):97-110
  • Maira SM, Stauffer F, Brueggen J, Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. Mol Cancer Ther 2008;7(7):1851-63
  • Serra V, Markman B, Scaltriti M, NVP-BEZ235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and inhibits the growth of cancer cells with activating PI3K mutations. Cancer Res 2008;68(19):8022-30
  • Brachmann SM, Hofmann I, Schnell C, Specific apoptosis induction by the dual PI3K/mTor inhibitor NVP-BEZ235 in HER2 amplified and PIK3CA mutant breast cancer cells. Proc Natl Acad Sci USA 2009;106(52):22299-304
  • Liu TJ, Koul D, LaFortune T, NVP-BEZ235, a novel dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor, elicits multifaceted antitumor activities in human gliomas. Mol Cancer Ther 2009;8(8):2204-10
  • Cao P, Maira SM, Garcia-Echeverria C, Hedley DW. Activity of a novel, dual PI3-kinase/mTor inhibitor NVP-BEZ235 against primary human pancreatic cancers grown as orthotopic xenografts. Br J Cancer 2009;100(8):1267-76
  • Garlich JR, De P, Dey N, A vascular targeted pan phosphoinositide 3-kinase inhibitor prodrug, SF1126, with antitumor and antiangiogenic activity. Cancer Res 2008;68(1):206-15
  • Lannutti B, Kashishian A, Meadows S, CAL-120, a novel dual p110beta/p110delta phosphatidylinositol-3-kinase (PI3K) inhibitor, attenuates PI3K signaling and demonstrates potent in vivo antitumor activity against solid tumors [abstract 208]. AACR-NCI-EORTC International conference meeting; 15 – 19 November 2009; Boston, Massachusetts, USA
  • Knight S, Adams N, Burgess J, Identification of GSK2126458, a highly potent inhibitor pf phosphoinositide 3-kinase (PI3K) and the mammalian target of rapamycin (mTOR) [abstract 271]. AACR-NCI-EORTC International conference meeting; 15 – 19 November 2009; Boston, Massachusetts, USA
  • Hardwicke M, Lu H, Luo L, Biological characterization of GSK2126458, a novel and potent inhibitor of phosphoinositide 3-kinase and the mammalian targer of rapamycin (mTOR) [abstract]. AACR-NCI-EORTC International conference meeting; 15 – 19 November 2009; Boston, Massachusetts, USA
  • Greshock J, Hardwicke M, Conway T, In vitro sensitivity profiling identifies selectively responsive tumor types and molecular subtypes to the PI3K inhibitor GSK2126458 [abstract 210]. AACR-NCI-EORTC International conference meeting; 15 – 19 November 2009; Boston, Massachusetts, USA
  • Friedman L, Belvin M, Berry L, A novel potent and selective inhibitor of PI3K/mTOR, GDC-0980, currently in phase I clinical trials [abstract]. AACR-NCI-EORTC International conference meeting; 15 – 19 November 2009; Boston, Massachusetts, USA
  • Hart S, Williams M, Chen D, SB2312, a novel and potent dual inhibitor of mTOR and PI3K with high target inhibition and antitumor efficacy [abstract 209]. AACR-NCI-EORTC International conference meeting; 15 – 19 November 2009; Boston, Massachusetts, USA
  • Mallon R, Holland I, Feldberg L, PKI-402, a dual PI3K/mTOR inhibitor [abstract 211]. AACR-NCI-EORTC International conference meeting; 15 – 19 November 2009; Boston, Massachusetts, USA
  • Dehnhardt CM, Venkatesan AM, Delos Santos E, Lead optimization of N-3-Substituted 7-morpholinotriazolopyrimidines as dual phosphoinositide 3-kinase/mammalian target of rapamycin inhibitors: discovery of PKI-402. J Med Chem 2010;53(2):798-810
  • Chresta CM, Davies BR, Hickson I, AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity. Cancer Res 2010;70(1):288-98
  • Serova M, Koumaravel J, Bieche I, Effects of AZD8055, a novel mTOR kinase inhibitor, in human cancer cells developing resistance to rapamycin [abstract 210]. AACR-NCI-EORTC International conference meeting; 15 – 19 November 2009; Boston, Massachusetts, USA
  • Chresta CM, Davies BR, Hickson I, AZD8055 Is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity. Cancer Res 2010;70(1):288-98
  • Houghton P, Maris J, Courtright J, Pediatric Preclinical Testing Program (PPTP) stage 1 evaluation of AZD8055 an inhibitor Kinase [abstract 270]. AACR-NCI-EORTC International conference meeting; 15 – 19 November 2009; Boston, Massachusetts, USA
  • Wallace E, Xu R, Josey J, AR-mTOR-1: a potent, selective mTORC1/2 kinase inhibitor for the treatment of malignancy [abstract 250]. AACR-NCI-EORTC International conference meeting; 15 – 19 November 2009; Boston, Massachusetts, USA
  • Jessen K, Wang S, Kessler L, INK128 is a potent and selective TORC1/2 inhibitor with broad oral antitumor activity [abstract 212]. AACR-NCI-EORTC International conference meeting; 15 – 19 November 2009; Boston, Massachusetts, USA
  • Miller N. XL388: a novel, selective, orally bioavailable mTORC1 and mTORC2 inhibitor that demonstrates pharmacodynamic and atitumor activity in multiple human cancer xenograft models [abstract 212]. AACR-NCI-EORTC International conference meeting; 15 – 19 November 2009; Boston, Massachusetts, USA
  • Feldman ME, Apsel B, Uotila A, Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol 2009;7(2):e38
  • Kondapaka SB, Singh SS, Dasmahapatra GP, Perifosine, a novel alkylphospholipid, inhibits protein kinase B activation. Mol Cancer Ther 2003;2(11):1093-103
  • Hideshima T, Catley L, Yasui H, Perifosine, an oral bioactive novel alkylphospholipid, inhibits Akt and induces in vitro and in vivo cytotoxicity in human multiple myeloma cells. Blood 2006;107(10):4053-62
  • Fu L, Kim YA, Wang X, Perifosine inhibits mammalian target of rapamycin signaling through facilitating degradation of major components in the mTOR axis and induces autophagy. Cancer Res 2009;69(23):8967-76
  • Elrod HA, Lin YD, Yue P, The alkylphospholipid perifosine induces apoptosis of human lung cancer cells requiring inhibition of Akt and activation of the extrinsic apoptotic pathway. Mol Cancer Ther 2007;6(7):2029-38
  • Chiarini F, Del Sole M, Mongiorgi S, The novel Akt inhibitor, perifosine, induces caspase-dependent apoptosis and downregulates P-glycoprotein expression in multidrug-resistant human T-acute leukemia cells by a JNK-dependent mechanism. Leukemia 2008;22(6):1106-16
  • Gills JJ, Dennis PA. Perifosine: update on a novel Akt inhibitor. Curr Oncol Rep 2009;11(2):102-10
  • Chee KG, Longmate J, Quinn DI, The AKT inhibitor perifosine in biochemically recurrent prostate cancer: a phase II California/Pittsburgh cancer consortium trial. Clin Genitourin Cancer 2007;5(7):433-7
  • Heerding DA, Rhodes N, Leber JD, Identification of 4-(2-(4-amino-1,2,5-oxadiazol-3-yl)-1-ethyl-7-{[(3S)-3-piperidinylmethyl]o xy}-1H-imidazo[4,5-c]pyridin-4-yl)-2-methyl-3-butyn-2-ol (GSK690693), a novel inhibitor of AKT kinase. J Med Chem 2008;51(18):5663-79
  • Rhodes N, Heerding DA, Duckett DR, Characterization of an Akt kinase inhibitor with potent pharmacodynamic and antitumor activity. Cancer Res 2008;68(7):2366-74
  • Levy DS, Kahana JA, Kumar R. AKT inhibitor, GSK690693, induces growth inhibition and apoptosis in acute lymphoblastic leukemia cell lines. Blood 2009;113(8):1723-9
  • Davies B, Dudley P, Cosulich S, CCT129254 (AT11854) is a well tolerated, orally bioavailable inhibitor of AKT/PKB with pharmacodynamic and antitumor activity in a range of xenograft models [abstract 317]. AACR-NCI-EORTC International conference meeting; 15 – 19 November 2009; Boston, Massachusetts, USA
  • Tolcher AW, Yap TA, Fearen I, A phase I study of MK-2206, an oral potent allosteric Akt inhibitor (Akti), in patients (pts) with advanced solid tumor (ST). ASCO Annual Meeting Proceedings. J Clin Oncol 2009;27(15S):3503
  • Ryan CW, Vuky J, Chan JS, A phase II study of everolimus in combination with imatinib for previously treated advanced renal carcinoma. Invest New Drugs 2009. [Epub ahead of print]
  • Yao JC, Lombard-Bohas C, Baudin E, Daily oral everolimus activity in patients with metastatic pancreatic neuroendocrine tumors after failure of cytotoxic chemotherapy: a phase II trial. J Clin Oncol 2010;28(1):69-76
  • Ellard SL, Clemons M, Gelmon KA, Randomized phase II study comparing two schedules of everolimus in patients with recurrent/metastatic breast cancer: NCIC Clinical Trials Group IND.163. J Clin Oncol 2009;27(27):4536-41
  • Baselga J, Semiglazov V, van Dam P, Phase II randomized study of neoadjuvant everolimus plus letrozole compared with placebo plus letrozole in patients with estrogen receptor-positive breast cancer. J Clin Oncol 2009;27(16):2630-7
  • Amato RJ, Jac J, Giessinger S, A phase 2 study with a daily regimen of the oral mTOR inhibitor RAD001 (everolimus) in patients with metastatic clear cell renal cell cancer. Cancer 2009;115(11):2438-46
  • Gridelli C, Rossi A, Morgillo F, A randomized phase II study of pemetrexed or RAD001 as second-line treatment of advanced non-small-cell lung cancer in elderly patients: treatment rationale and protocol dynamics. Clin Lung Cancer 2007;8(9):568-71
  • Galanis E, Buckner JC, Maurer MJ, Phase II trial of temsirolimus (CCI-779) in recurrent glioblastoma multiforme: a North Central Cancer Treatment Group Study. J Clin Oncol 2005;23(23):5294-304
  • Witzig TE, Geyer SM, Ghobrial I, Phase II trial of single-agent temsirolimus (CCI-779) for relapsed mantle cell lymphoma. J Clin Oncol 2005;23(23):5347-56
  • Atkins MB, Hidalgo M, Stadler WM, Randomized phase II study of multiple dose levels of CCI-779, a novel mammalian target of rapamycin kinase inhibitor, in patients with advanced refractory renal cell carcinoma. J Clin Oncol 2004;22(5):909-18
  • Rizzieri DA, Feldman E, Dipersio JF, A phase 2 clinical trial of deforolimus (AP23573, MK-8669), a novel mammalian target of rapamycin inhibitor, in patients with relapsed or refractory hematologic malignancies. Clin Cancer Res 2008;14(9):2756-62
  • Han EK, Leverson JD, McGonigal T, Akt inhibitor A-443654 induces rapid Akt Ser-473 phosphorylation independent of mTORC1 inhibition. Oncogene 2007;26(38):5655-61
  • Fala F, Blalock WL, Tazzari PL, Proapoptotic activity and chemosensitizing effect of the novel Akt inhibitor (2S)-1-(1H-Indol-3-yl)-3-[5-(3-methyl-2H-indazol-5-yl)pyridin-3-yl]oxyprop an2-amine (A443654) in T-cell acute lymphoblastic leukemia. Mol Pharmacol 2008;74(3):884-95
  • Luo Y, Shoemaker AR, Liu X, Potent and selective inhibitors of Akt kinases slow the progress of tumors in vivo. Mol Cancer Ther 2005;4(6):977-86
  • Folkes AJ, Ahmadi K, Alderton WK, The identification of 2-(1H-indazol-4-yl)-6-(4-methanesulfonyl-piperazin-1-ylmethyl)-4-morpholin-4-yl-thieno[3,2-d]pyrimidine (GDC-0941) as a potent, selective, orally bioavailable inhibitor of class I PI3 kinase for the treatment of cancer. J Med Chem 2008;51(18):5522-32
  • Raynaud FI, Eccles SA, Patel S, Biological properties of potent inhibitors of class I phosphatidylinositide 3-kinases: from PI-103 through PI-540, PI-620 to the oral agent GDC-0941. Mol Cancer Ther 2009;8(7):1725-38
  • Shapiro G, Kwak E, Baselga J, Phase I dose-escalation study of XL147, a PI3K inhibitor administered orally to patients with solid tumors. ASCO Annual Meeting Proceedings. J Clin Oncol 2009;27(15S):3500
  • Flinn IW, Byrd JC, Furman RR, Preliminary evidence of clinical activity in a phase I study of CAL-101, a selective inhibitor of the p1108 isoform of phosphatidylinositol 3-kinase (P13K), in patients with select hematologic malignancies. ASCO Annual Meeting Proceedings. J Clin Oncol 2009;27(15S):3543
  • Papadopoulos KP, Markman B, Tabernero J, Phase I dose-escalation study of the safety, pharmacokinetics (PK), and pharmacodynamics (PD) of a novel PI3K inhibitor, XL765, administered orally to patients (pts) with advanced solid tumors. ASCO Annual Meeting Proceedings. J Clin Oncol 2008;26(15S):3515

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.