343
Views
24
CrossRef citations to date
0
Altmetric
Reviews

Investigational anabolic therapies for osteoporosis

, &
Pages 995-1005 | Published online: 15 Jul 2010

Bibliography

  • Weitzmann MN, Pacifici R. Estrogen regulation of immune cell bone interactions. Ann N Y Acad Sci 2006;1068:256-74
  • Weitzmann MN, Pacifici R. Estrogen deficiency and bone loss: an inflammatory tale. J Clin Invest 2006;116:1186-94
  • Rahmani P, Morin S. Prevention of osteoporosis-related fractures among postmenopausal women and older men. CMAJ 2009;181:815-20
  • Raisz LG. Physiology and pathophysiology of bone remodeling. Clin Chem 1999;45:1353-8
  • Black DM, Cummings SR, Karpf DB, Randomised trial of effect of alendronate on risk of fracture in women with existing vertebral fractures. Fracture Intervention Trial Research Group. Lancet 1996;348:1535-41
  • Black DM, Bilezikian JP, Ensrud KE, One year of alendronate after one year of parathyroid hormone (1-84) for osteoporosis. N Engl J Med 2005;353:555-65
  • Holder KK, Kerley SS. Alendronate for fracture prevention in postmenopause. Am Fam Physician 2008;78:579-81
  • Hodsman AB, Bauer DC, Dempster DW, Parathyroid hormone and teriparatide for the treatment of osteoporosis: a review of the evidence and suggested guidelines for its use. Endocr Rev 2005;26:688-703
  • Masi L, Brandi ML. Molecular, biochemical and cellular biology of PTH anabolic action. J Endocrinol Invest 2005;28:37-40
  • Rubin MR, Bilezikian JP. New anabolic therapies in osteoporosis. Endocrinol Metab Clin North Am 2003;32:285-307
  • Trivedi R, Mithal A, Chattopadhyay N. Anabolics in osteoporosis: the emerging therapeutic tool. Curr Mol Med 2010;10:14-28
  • Chen Z, Xu P, Barbier JR, Solution structure of the osteogenic 1-31 fragment of the human parathyroid hormone. Biochemistry 2000;39:12766-77
  • Nemeth EF. ZT-031, a cyclized analog of parathyroid hormone(1-31) for the potential treatment of osteoporosis. IDrugs 2008;11:827-40
  • Martin TJ, Moseley JM, Williams ED. Parathyroid hormone-related protein: hormone and cytokine. J Endocrinol 1997;154(Suppl):S23-37
  • Miao D, He B, Jiang Y, Osteoblast-derived PTHrP is a potent endogenous bone anabolic agent that modifies the therapeutic efficacy of administered PTH 1-34. J Clin Invest 2005;115:2402-11
  • Amizuka N, Karaplis AC, Henderson JE, Haploinsufficiency of parathyroid hormone-related peptide (PTHrP) results in abnormal postnatal bone development. Dev Biol 1996;175:166-76
  • Kartsogiannis V, Moseley J, McKelvie B, Temporal expression of PTHrP during endochondral bone formation in mouse and intramembranous bone formation in an in vivo rabbit model. Bone 1997;21:385-92
  • Horwitz MJ, Tedesco MB, Garcia-Ocana A, Parathyroid hormone-related protein for the treatment of postmenopausal osteoporosis: defining the maximal tolerable dose. J Clin Endocrinol Metab 2010;95(3):1279-87
  • McCarthy TL, Centrella M, Canalis E. Insulin-like growth factor (IGF) and bone. Connect Tissue Res 1989;20:277-82
  • Canalis E, Centrella M, Burch W, McCarthy TL. Insulin-like growth factor I mediates selective anabolic effects of parathyroid hormone in bone cultures. J Clin Invest 1989;83:60-5
  • Giustina A, Veldhuis JD. Pathophysiology of the neuroregulation of growth hormone secretion in experimental animals and the human. Endocr Rev 1998;19:717-97
  • Miyakoshi N, Kasukawa Y, Linkhart TA, Evidence that anabolic effects of PTH on bone require IGF-I in growing mice. Endocrinology 2001;142:4349-56
  • Bagi CM, Brommage R, Deleon L, Benefit of systemically administered rhIGF-I and rhIGF-I/IGFBP-3 on cancellous bone in ovariectomized rats. J Bone Miner Res 1994;9:1301-12
  • Zhao G, Monier-Faugere MC, Langub MC, Targeted overexpression of insulin-like growth factor I to osteoblasts of transgenic mice: increased trabecular bone volume without increased osteoblast proliferation. Endocrinology 2000;141:2674-82
  • Ogata N, Chikazu D, Kubota N, Insulin receptor substrate-1 in osteoblast is indispensable for maintaining bone turnover. J Clin Invest 2000;105:935-43
  • Zhang M, Xuan S, Bouxsein ML, Osteoblast-specific knockout of the insulin-like growth factor (IGF) receptor gene reveals an essential role of IGF signaling in bone matrix mineralization. J Biol Chem 2002;277:44005-12
  • Jilka RL. Molecular and cellular mechanisms of the anabolic effect of intermittent PTH. Bone 2007;40:1434-46
  • Hoeflich A, Gotz W, Lichanska AM, Effects of insulin-like growth factor binding proteins in bone – a matter of cell and site. Arch Physiol Biochem 2007;113:142-53
  • Govoni KE, Wergedal JE, Florin L, Conditional deletion of insulin-like growth factor-I in collagen type 1alpha2-expressing cells results in postnatal lethality and a dramatic reduction in bone accretion. Endocrinology 2007;148:5706-15
  • Govoni KE, Lee SK, Chung YS, Disruption of insulin-like growth factor-I expression in type II alphaI collagen-expressing cells reduces bone length and width in mice. Physiol Genomics 2007;30:354-62
  • Juul A, Main K, Blum WF, The ratio between serum levels of insulin-like growth factor (IGF)-I and the IGF binding proteins (IGFBP-1, 2 and 3) decreases with age in healthy adults and is increased in acromegalic patients. Clin Endocrinol (Oxf) 1994;41:85-93
  • Adami S, Zivelonghi A, Braga V, Insulin-like growth factor-1 is associated with bone formation markers, PTH and bone mineral density in healthy premenopausal women. Bone 46:244-7
  • Geusens PP, Boonen S. Osteoporosis and the growth hormone-insulin-like growth factor axis. Horm Res 2002;58(Suppl 3):49-55
  • Nabipour I, Larijani B, Beigi S, Relationship among insulin-like growth factor I concentrations, bone mineral density, and biochemical markers of bone turnover in postmenopausal women: a population-based study. Menopause 2008;15:934-9
  • Gruodyte R, Jurimae J, Saar M, Jurimae T. The relationships among bone health, insulin-like growth factor-1 and sex hormones in adolescent female athletes. J Bone Miner Metab 2009;28(3):306-13
  • Drake WM, Kendler DL, Rosen CJ, Orwoll ES. An investigation of the predictors of bone mineral density and response to therapy with alendronate in osteoporotic men. J Clin Endocrinol Metab 2003;88:5759-65
  • Friedlander AL, Butterfield GE, Moynihan S, One year of insulin-like growth factor I treatment does not affect bone density, body composition, or psychological measures in postmenopausal women. J Clin Endocrinol Metab 2001;86:1496-503
  • Boonen S, Rosen C, Bouillon R, Musculoskeletal effects of the recombinant human IGF-I/IGF binding protein-3 complex in osteoporotic patients with proximal femoral fracture: a double-blind, placebo-controlled pilot study. J Clin Endocrinol Metab 2002;87:1593-9
  • Gowen M, Stroup GB, Dodds RA, Antagonizing the parathyroid calcium receptor stimulates parathyroid hormone secretion and bone formation in osteopenic rats. J Clin Invest 2000;105:1595-604
  • Trivedi R, Mithal A, Chattopadhyay N. Recent updates on the calcium-sensing receptor as a drug target. Curr Med Chem 2008;15:178-86
  • Nemeth EF, Delmar EG, Heaton WL, Calcilytic compounds: potent and selective Ca2+ receptor antagonists that stimulate secretion of parathyroid hormone. J Pharmacol Exp Ther 2001;299:323-31
  • Petrel C, Kessler A, Dauban P, Positive and negative allosteric modulators of the Ca2+-sensing receptor interact within overlapping but not identical binding sites in the transmembrane domain. J Biol Chem 2004;279:18990-7
  • Chang W, Tu C, Cheng Z, Complex formation with the type B gamma-aminobutyric acid receptor affects the expression and signal transduction of the extracellular calcium-sensing receptor. Studies with HEK-293 cells and neurons. J Biol Chem 2007;282:25030-40
  • Brauner-Osborne H, Wellendorph P, Jensen AA. Structure, pharmacology and therapeutic prospects of family C G-protein coupled receptors. Curr Drug Targets 2007;8:169-84
  • Kumar S, Matheny CJ, Hoffman SJ, An orally active calcium-sensing receptor antagonist that transiently increases plasma concentrations of PTH and stimulates bone formation. Bone 46:534-42
  • Balan G, Bauman J, Bhattacharya S, The discovery of novel calcium sensing receptor negative allosteric modulators. Bioorg Med Chem Lett 2009;19:3328-32
  • Westendorf JJ, Kahler RA, Schroeder TM. Wnt signaling in osteoblasts and bone diseases. Gene 2004;341:19-39
  • Gong Y, Slee RB, Fukai N, LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 2001;107:513-23
  • Ai M, Holmen SL, Van Hul W, Reduced affinity to and inhibition by DKK1 form a common mechanism by which high bone mass-associated missense mutations in LRP5 affect canonical Wnt signaling. Mol Cell Biol 2005;25:4946-55
  • Babij P, Zhao W, Small C, High bone mass in mice expressing a mutant LRP5 gene. J Bone Miner Res 2003;18:960-74
  • Van Wesenbeeck L, Cleiren E, Gram J, Six novel missense mutations in the LDL receptor-related protein 5 (LRP5) gene in different conditions with an increased bone density. Am J Hum Genet 2003;72:763-71
  • Glass DA II, Bialek P, Ahn JD, Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell 2005;8:751-64
  • Yadav VK, Ryu JH, Suda N, Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum. Cell 2008;135:825-37
  • Yaccoby S, Ling W, Zhan F, Antibody-based inhibition of DKK1 suppresses tumor-induced bone resorption and multiple myeloma growth in vivo. Blood 2007;109:2106-11
  • Li X, Zhang Y, Kang H, Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J Biol Chem 2005;280:19883-7
  • Sevetson B, Taylor S, Pan Y. Cbfa1/RUNX2 directs specific expression of the sclerosteosis gene (SOST). J Biol Chem 2004;279:13849-58
  • Kamiya N, Ye L, Kobayashi T, BMP signaling negatively regulates bone mass through sclerostin by inhibiting the canonical Wnt pathway. Development 2008;135:3801-11
  • Kim CA, Honjo R, Bertola D, A known SOST gene mutation causes sclerosteosis in a familial and an isolated case from Brazilian origin. Genet Test 2008;12:475-9
  • Balemans W, Ebeling M, Patel N, Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum Mol Genet 2001;10:537-43
  • Keller H, Kneissel M. SOST is a target gene for PTH in bone. Bone 2005;37:148-58
  • Bringhurst FR. PTH receptors and apoptosis in osteocytes. J Musculoskelet Neuronal Interact 2002;2:245-51
  • Ross SE, Hemati N, Longo KA, Inhibition of adipogenesis by Wnt signaling. Science 2000;289:950-3
  • Bennett CN, Ross SE, Longo KA, Regulation of Wnt signaling during adipogenesis. J Biol Chem 2002;277:30998-1004
  • Kanazawa A, Tsukada S, Kamiyama M, Wnt5b partially inhibits canonical Wnt/beta-catenin signaling pathway and promotes adipogenesis in 3T3-L1 preadipocytes. Biochem Biophys Res Commun 2005;330:505-10
  • Kanazawa A, Tsukada S, Sekine A, Association of the gene encoding wingless-type mammary tumor virus integration-site family member 5B (WNT5B) with type 2 diabetes. Am J Hum Genet 2004;75:832-43
  • Topol L, Jiang X, Choi H, Wnt-5a inhibits the canonical Wnt pathway by promoting GSK-3-independent beta-catenin degradation. J Cell Biol 2003;162:899-908
  • Hong JH, Hwang ES, McManus MT, TAZ, a transcriptional modulator of mesenchymal stem cell differentiation. Science 2005;309:1074-8
  • Kulkarni NH, Onyia JE, Zeng Q, Orally bioavailable GSK-3alpha/beta dual inhibitor increases markers of cellular differentiation in vitro and bone mass in vivo. J Bone Miner Res 2006;21:910-20
  • Clement-Lacroix P, Ai M, Morvan F, Lrp5-independent activation of Wnt signaling by lithium chloride increases bone formation and bone mass in mice. Proc Natl Acad Sci USA 2005;102:17406-11
  • Chan A, van Bezooijen RL, Lowik CW. A new paradigm in the treatment of osteoporosis: wnt pathway proteins and their antagonists. Curr Opin Investig Drugs 2007;8:293-8
  • Chen L, Wang K, Shao Y, Structural insight into the mechanisms of Wnt signaling antagonism by Dkk. J Biol Chem 2008;283:23364-70
  • Li X, Liu P, Liu W, Dkk2 has a role in terminal osteoblast differentiation and mineralized matrix formation. Nat Genet 2005;37:945-52
  • Li X, Ominsky MS, Warmington KS, Sclerostin antibody treatment increases bone formation, bone mass, and bone strength in a rat model of postmenopausal osteoporosis. J Bone Miner Res 2009;24:578-88
  • Cherruau M, Facchinetti P, Baroukh B, Saffar JL. Chemical sympathectomy impairs bone resorption in rats: a role for the sympathetic system on bone metabolism. Bone 1999;25:545-51
  • Yirmiya R, Goshen I, Bajayo A, Depression induces bone loss through stimulation of the sympathetic nervous system. Proc Natl Acad Sci USA 2006;103:16876-81
  • Aitken SJ, Landao-Bassonga E, Ralston SH, Idris AI. Beta2-adrenoreceptor ligands regulate osteoclast differentiation in vitro by direct and indirect mechanisms. Arch Biochem Biophys 2009;482:96-103
  • Huang HH, Brennan TC, Muir MM, Mason RS. Functional alpha1- and beta2-adrenergic receptors in human osteoblasts. J Cell Physiol 2009;220:267-75
  • Chen X, Song IH, Dennis JE, Greenfield EM. Endogenous PKI gamma limits the duration of the anti-apoptotic effects of PTH and beta-adrenergic agonists in osteoblasts. J Bone Miner Res 2007;22:656-64
  • Bonnet N, Benhamou CL, Malaval L, Low dose beta-blocker prevents ovariectomy-induced bone loss in rats without affecting heart functions. J Cell Physiol 2008;217:819-27
  • Bonnet N, Laroche N, Beaupied H, doping dose of salbutamol and exercise training: impact on the skeleton of ovariectomized rats. J Appl Physiol 2007;103:524-33
  • Taguchi M, Takeuchi Y. Anabolic effects of statin and beta-blocker on bone metabolism. Clin Calcium 2004;14:89-94
  • Reid IR. Effects of beta-blockers on fracture risk. J Musculoskelet Neuronal Interact 2008;8:105-10
  • Schlienger RG, Kraenzlin ME, Jick SS, Meier CR. Use of beta-blockers and risk of fractures. JAMA 2004;292:1326-32
  • de Vries F, Souverein PC, Cooper C, Use of beta-blockers and the risk of hip/femur fracture in the United Kingdom and The Netherlands. Calcif Tissue Int 2007;80:69-75
  • Hurwitz JM, Santoro N. Inhibins, activins, and follistatin in the aging female and male. Semin Reprod Med 2004;22:209-17
  • Prior JC. FSH and bone – important physiology or not? Trends Mol Med 2007;13:1-3
  • Reame NE, Lukacs JL, Olton P, Differential effects of aging on activin A and its binding protein, follistatin, across the menopause transition. Fertil Steril 2007;88:1003-5
  • Bilezikjian LM, Blount AL, Donaldson CJ, Vale WW. Pituitary actions of ligands of the TGF-beta family: activins and inhibins. Reproduction 2006;132:207-15
  • Mason AJ, Hayflick JS, Ling N, Complementary DNA sequences of ovarian follicular fluid inhibin show precursor structure and homology with transforming growth factor-beta. Nature 1985;318:659-63
  • Ogawa Y, Schmidt DK, Nathan RM, Bovine bone activin enhances bone morphogenetic protein-induced ectopic bone formation. J Biol Chem 1992;267:14233-7
  • Nicks KM, Perrien DS, Akel NS, Regulation of osteoblastogenesis and osteoclastogenesis by the other reproductive hormones, Activin and Inhibin. Mol Cell Endocrinol 2009;310:11-20
  • Vale W, Wiater E, Gray P, Activins and inhibins and their signaling. Ann N Y Acad Sci 2004;1038:142-7
  • Gaddy-Kurten D, Coker JK, Abe E, Inhibin suppresses and activin stimulates osteoblastogenesis and osteoclastogenesis in murine bone marrow cultures. Endocrinology 2002;143:74-83
  • Lotinun S, Pearsall RS, Davies MV, A soluble activin receptor Type IIA fusion protein (ACE-011) increases bone mass via a dual anabolic-antiresorptive effect in cynomolgus monkeys. Bone 2010;46(4):1082-8
  • Ruckle J, Jacobs M, Kramer W, Single-dose, randomized, double-blind, placebo-controlled study of ACE-011 (ActRIIA-IgG1) in postmenopausal women. J Bone Miner Res 2009;24:744-52
  • Kaji H, Sugimoto T. [Anabolic treatment for osteoporosis: PTH treatment]. Clin Calcium 2006;16:1480-5
  • Leone-Bay A, Sato M, Paton D, Oral delivery of biologically active parathyroid hormone. Pharm Res 2001;18:964-70
  • Clark RG. Recombinant human insulin-like growth factor I (IGF-I): risks and benefits of normalizing blood IGF-I concentrations. Horm Res 2004;62(Suppl 1):93-100
  • Yano S, Brown EM, Chattopadhyay N. Calcium-sensing receptor in the brain. Cell Calcium 2004;35:257-64
  • Hoeppner LH, Secreto FJ, Westendorf JJ. Wnt signaling as a therapeutic target for bone diseases. Expert Opin Ther Targets 2009;13:485-96
  • Takeda S, Elefteriou F, Levasseur R, Leptin regulates bone formation via the sympathetic nervous system. Cell 2002;111:305-17
  • Schmitt CP, Obry J, Feneberg R, Beta1-adrenergic blockade augments pulsatile PTH secretion in humans. J Am Soc Nephrol 2003;14:3245-50
  • Pearsall RS, Canalis E, Cornwall-Brady M, A soluble activin type IIA receptor induces bone formation and improves skeletal integrity. Proc Natl Acad Sci USA 2008;105:7082-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.