590
Views
28
CrossRef citations to date
0
Altmetric
Reviews

The inhibitory GABA system as a therapeutic target for cognitive symptoms in schizophrenia: investigational agents in the pipeline

, , &
Pages 1217-1233 | Published online: 03 Sep 2010

Bibliography

  • McGuffin P, Owen MJ, Farmer AE. Genetic basis of schizophrenia. Lancet 1995;346(8976): 678-82
  • Hulshoff Pol HE, Kahn RS. What happens after the first episode? A review of progressive brain changes in chronically ill patients with schizophrenia. Schizophr Bull 2008;34(2):354-66
  • Cannon M, Caspi A, Moffitt TE, Evidence for early-childhood, pan-developmental impairment specific to schizophreniform disorder: results from a longitudinal birth cohort. Arch Gen Psychiatry 2002;59(5):449-56
  • Sitskoorn MM, Aleman A, Ebisch SJ, Cognitive deficits in relatives of patients with schizophrenia: a meta-analysis. Schizophr Res 2004;71(2-3):285-95
  • Green MF, Kern RS, Heaton RK. Longitudinal studies of cognition and functional outcome in schizophrenia: implications for MATRICS. Schizophr Res 2004;72(1):41-51
  • Davidson M, Galderisi S, Weiser M, Cognitive effects of antipsychotic drugs in first-episode schizophrenia and schizophreniform disorder: a randomized, open-label clinical trial (EUFEST). Am J Psychiatry 2009;166(6):675-82
  • Lieberman JA, Stroup TS, McEvoy JP, Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. N Engl J Med 2005;353(12):1209-23
  • Benes FM, Berretta S. GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology 2001;25(1):1-27
  • Lewis DA, Moghaddam B. Cognitive dysfunction in schizophrenia: convergence of gamma-aminobutyric acid and glutamate alterations. Arch Neurol 2006;63(10):1372-6
  • Benes FM, Todtenkopf MS, Logiotatos P, Williams M. Glutamate decarboxylase(65)-immunoreactive terminals in cingulate and prefrontal cortices of schizophrenic and bipolar brain. J Chem Neuroanat 2000;20(3-4):259-69
  • Schousboe A, Sarup A, Larsson OM, White HS. GABA transporters as drug targets for modulation of GABAergic activity. Biochem Pharmacol 2004;68(8):1557-63
  • McKernan RM, Whiting PJ. Which GABAA-receptor subtypes really occur in the brain? Trends Neurosci 1996;19(4):139-43
  • Russek SJ. Evolution of GABA(A) receptor diversity in the human genome. Gene 1999;227(2):213-22
  • Rudolph U, Mohler H. GABA-based therapeutic approaches: GABAA receptor subtype functions. Curr Opin Pharmacol 2006;6(1):18-23
  • Sieghart W, Sperk G. Subunit composition, distribution and function of GABA(A) receptor subtypes. Curr Top Med Chem 2002;2(8):795-816
  • Belelli D, Harrison NL, Maguire J, Extrasynaptic GABAA receptors: form, pharmacology, and function. J Neurosci 2009;29(41):12757-63
  • Sieghart W. Structure and pharmacology of gamma-aminobutyric acidA receptor subtypes. Pharmacol Rev 1995;47(2):181-234
  • Mohler H, Fritschy JM, Rudolph U. A new benzodiazepine pharmacology. J Pharmacol Exp Ther 2002;300(1):2-8
  • Rudolph U, Crestani F, Benke D, Benzodiazepine actions mediated by specific gamma-aminobutyric acid(A) receptor subtypes. Nature 1999;401(6755):796-800
  • Atack JR. Preclinical and clinical pharmacology of the GABAA receptor alpha5 subtype-selective inverse agonist alpha5IA. Pharmacol Ther 2010;125(1):11-26
  • Wafford KA, van Niel MB, Ma QP, Novel compounds selectively enhance delta subunit containing GABA A receptors and increase tonic currents in thalamus. Neuropharmacology 2009;56(1):182-9
  • Atack JR. GABA(A) receptor subtype-selective efficacy: TPA023, an alpha2/alpha3 selective non-sedating anxiolytic and alpha5IA, an alpha5 selective cognition enhancer. CNS Neurosci Ther 2008;14(1):25-35
  • Ator NA, Atack JR, Hargreaves RJ, Reducing abuse liability of GABAA/benzodiazepine ligands via selective partial agonist efficacy at alpha1 and alpha2/3 subtypes. J Pharmacol Exp Ther 2010;332(1):4-16
  • van Steveninck AL, Gieschke R, Schoemaker RC, Pharmacokinetic and pharmacodynamic interactions of bretazenil and diazepam with alcohol. Br J Clin Pharmacol 1996;41(6):565-73
  • Atack J, Hallett DJ, Tye S, Preclinical and clinical pharmacology of TPA023B, a GABAA receptor a2/a3 subtype-selective partial agonis. J Psychopharmacol 2010
  • Guidotti A, Auta J, Davis JM, GABAergic dysfunction in schizophrenia: new treatment strategies on the horizon. Psychopharmacology (Berl) 2005;180(2):191-205
  • Lewis DA, Hashimoto T, Volk DW. Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci 2005;6(4):312-24
  • Benes FM, Lim B, Matzilevich D, Regulation of the GABA cell phenotype in hippocampus of schizophrenics and bipolars. Proc Natl Acad Sci USA 2007;104(24):10164-9
  • Woo TU, Whitehead RE, Melchitzky DS, Lewis DA. A subclass of prefrontal gamma-aminobutyric acid axon terminals are selectively altered in schizophrenia. Proc Natl Acad Sci USA 1998;95(9):5341-6
  • Reynolds GP, Czudek C, Andrews HB. Deficit and hemispheric asymmetry of GABA uptake sites in the hippocampus in schizophrenia. Biol Psychiatry 1990;27(9):1038-44
  • Simpson MD, Slater P, Deakin JF, Reduced GABA uptake sites in the temporal lobe in schizophrenia. Neurosci Lett 1989;107(1-3):211-15
  • Benes FM, Vincent SL, Marie A, Khan Y. Up-regulation of GABAA receptor binding on neurons of the prefrontal cortex in schizophrenic subjects. Neuroscience 1996;75(4):1021-31
  • Volk DW, Lewis DA. Impaired prefrontal inhibition in schizophrenia: relevance for cognitive dysfunction. Physiol Behav 2002;77(4-5):501-5
  • Huntsman MM, Tran BV, Potkin SG, Altered ratios of alternatively spliced long and short gamma2 subunit mRNAs of the gamma-amino butyrate type A receptor in prefrontal cortex of schizophrenics. Proc Natl Acad Sci USA 1998;95(25):15066-71
  • Maldonado-Aviles JG, Curley AA, Hashimoto T, Altered markers of tonic inhibition in the dorsolateral prefrontal cortex of subjects with schizophrenia. Am J Psychiatry 2009;166(4):450-9
  • Vawter MP, Crook JM, Hyde TM, Microarray analysis of gene expression in the prefrontal cortex in schizophrenia: a preliminary study. Schizophr Res 2002;58(1):11-20
  • Busatto GF, Pilowsky LS, Costa DC, Correlation between reduced in vivo benzodiazepine receptor binding and severity of psychotic symptoms in schizophrenia. Am J Psychiatry 1997;154(1):56-63
  • Abi-Dargham A, Laruelle M, Krystal J, No evidence of altered in vivo benzodiazepine receptor binding in schizophrenia. Neuropsychopharmacology 1999;20(6):650-61
  • Ball S, Busatto GF, David AS, Cognitive functioning and GABAA/benzodiazepine receptor binding in schizophrenia: a 123I-iomazenil SPET study. Biol Psychiatry 1998;43(2):107-17
  • Verhoeff NP, Soares JC, D'Souza CD, [123I]Iomazenil SPECT benzodiazepine receptor imaging in schizophrenia. Psychiatry Res 1999;91(3):163-73
  • Asai Y, Takano A, Ito H, GABAA/Benzodiazepine receptor binding in patients with schizophrenia using [11C]Ro15-4513, a radioligand with relatively high affinity for alpha5 subunit. Schizophr Res 2008;99(1-3):333-40
  • Yoon JH, Maddock RJ, Rokem A, GABA concentration is reduced in visual cortex in schizophrenia and correlates with orientation-specific surround suppression. J Neurosci 2010;30(10):3777-81
  • Tayoshi S, Nakataki M, Sumitani S, GABA concentration in schizophrenia patients and the effects of antipsychotic medication: a proton magnetic resonance spectroscopy study. Schizophr Res 2010;117(1):83-91
  • Allen NC, Bagade S, McQueen MB, Systematic meta-analyses and field synopsis of genetic association studies in schizophrenia: the SzGene database. Nat Genet 2008;40(7):827-34
  • Zhao X, Qin S, Shi Y, Systematic study of association of four GABAergic genes: glutamic acid decarboxylase 1 gene, glutamic acid decarboxylase 2 gene, GABA(B) receptor 1 gene and GABA(A) receptor subunit beta2 gene, with schizophrenia using a universal DNA microarray. Schizophr Res 2007;93(1-3):374-84
  • Lo WS, Lau CF, Xuan Z, Association of SNPs and haplotypes in GABAA receptor beta2 gene with schizophrenia. Mol Psychiatry 2004;9(6):603-8
  • Ng SK, Lo WS, Pun FW, A Recombination hotspot in a schizophrenia-associated region of GABRB2. PLoS One 2010;5(3):e9547
  • Lundorf MD, Buttenschon HN, Foldager L, Mutational screening and association study of glutamate decarboxylase 1 as a candidate susceptibility gene for bipolar affective disorder and schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2005;135B(1):94-101
  • Straub RE, Lipska BK, Egan MF, Allelic variation in GAD1 (GAD67) is associated with schizophrenia and influences cortical function and gene expression. Mol Psychiatry 2007;12(9):854-69
  • Addington AM, Gornick M, Duckworth J, GAD1 (2q31.1), which encodes glutamic acid decarboxylase (GAD67), is associated with childhood-onset schizophrenia and cortical gray matter volume loss. Mol Psychiatry 2005;10(6):581-8
  • Petryshen TL, Middleton FA, Tahl AR, Genetic investigation of chromosome 5q GABAA receptor subunit genes in schizophrenia. Mol Psychiatry 2005;10(12):1074-88, 1057
  • Papadimitriou G, Dikeos D, Daskalopoulou E, Association between GABA-A receptor alpha 5 subunit gene locus and schizophrenia of a later age of onset. Neuropsychobiology 2001;43(3):141-4
  • Zai CC, Tiwari AK, King N, Association study of the gamma-aminobutyric acid type a receptor gamma2 subunit gene with schizophrenia. Schizophr Res 2009;114(1-3):33-8
  • Marder SR, Fenton W. Measurement and treatment research to improve cognition in schizophrenia: NIMH MATRICS initiative to support the development of agents for improving cognition in schizophrenia. Schizophr Res 2004;72(1):5-9
  • Barker MJ, Greenwood KM, Jackson M, Crowe SF. Cognitive effects of long-term benzodiazepine use: a meta-analysis. CNS Drugs 2004;18(1):37-48
  • Roy-Byrne PP, Uhde TW, Holcomb H, Effects of diazepam on cognitive processes in normal subjects. Psychopharmacology (Berl) 1987;91(1):30-3
  • Menzies L, Ooi C, Kamath S, Effects of gamma-aminobutyric acid-modulating drugs on working memory and brain function in patients with schizophrenia. Arch Gen Psychiatry 2007;64(2):156-67
  • Savic MM, Obradovic DI, Ugresic ND, Bokonjic DR. Memory effects of benzodiazepines: memory stages and types versus binding-site subtypes. Neural Plast 2005;12(4):289-98
  • Giersch A, Boucart M, Elliott M, Vidailhet P. Atypical behavioural effects of lorazepam: clues to the design of novel therapies? Pharmacol Ther 2010;126(1):94-108
  • Maubach K. GABA(A) receptor subtype selective cognition enhancers. Curr Drug Targets CNS Neurol Disord 2003;2(4):233-9
  • Evans AK, Lowry CA. Pharmacology of the beta-carboline FG-7,142, a partial inverse agonist at the benzodiazepine allosteric site of the GABA A receptor: neurochemical, neurophysiological, and behavioral effects. CNS Drug Rev 2007;13(4):475-501
  • Jensen LH, Stephens DN, Sarter M, Petersen EN. Bidirectional effects of beta-carbolines and benzodiazepines on cognitive processes. Brain Res Bull 1987;19(3):359-64
  • Venault P, Chapouthier G, de Carvalho LP, Benzodiazepine impairs and beta-carboline enhances performance in learning and memory tasks. Nature 1986;321(6073):864-6
  • Atack JR, Bayley PJ, Seabrook GR, L-655,708 enhances cognition in rats but is not proconvulsant at a dose selective for alpha5-containing GABAA receptors. Neuropharmacology 2006;51(6):1023-9
  • Dawson GR, Maubach KA, Collinson N, An inverse agonist selective for alpha5 subunit-containing GABAA receptors enhances cognition. J Pharmacol Exp Ther 2006;316(3):1335-45
  • Collinson N, Atack JR, Laughton P, An inverse agonist selective for alpha5 subunit-containing GABAA receptors improves encoding and recall but not consolidation in the Morris water maze. Psychopharmacology (Berl) 2006;188(4):619-28
  • Ballard TM, Knoflach F, Prinssen E, RO4938581, a novel cognitive enhancer acting at GABAA alpha5 subunit-containing receptors. Psychopharmacology (Berl) 2009;202(1-3):207-23
  • Knust H, Achermann G, Ballard T, The discovery and unique pharmacological profile of RO4938581 and RO4882224 as potent and selective GABAA alpha5 inverse agonists for the treatment of cognitive dysfunction. Bioorg Med Chem Lett 2009;19(20):5940-4
  • Chambers MS, Atack JR, Broughton HB, Identification of a novel, selective GABA(A) alpha5 receptor inverse agonist which enhances cognition. J Med Chem 2003;46(11):2227-40
  • Atack JR, Maubach KA, Wafford KA, In vitro and in vivo properties of 3-tert-butyl-7-(5-methylisoxazol-3-yl)-2-(1-methyl-1H-1,2,4-triazol-5-ylme thoxy)-pyrazolo[1,5-d]-[1,2,4]triazine (MRK-016), a GABAA receptor alpha5 subtype-selective inverse agonist. J Pharmacol Exp Ther 2009;331(2):470-84
  • Chambers MS, Atack JR, Carling RW, An orally bioavailable, functionally selective inverse agonist at the benzodiazepine site of GABAA alpha5 receptors with cognition enhancing properties. J Med Chem 2004;47(24):5829-32
  • Savic MM, Clayton T, Furtmuller R, PWZ-029, a compound with moderate inverse agonist functional selectivity at GABA(A) receptors containing alpha5 subunits, improves passive, but not active, avoidance learning in rats. Brain Res 2008;1208:150-9
  • Savic MM, Huang S, Furtmuller R, Are GABAA receptors containing alpha5 subunits contributing to the sedative properties of benzodiazepine site agonists? Neuropsychopharmacology 2008;33(2):332-9
  • Nutt DJ, Besson M, Wilson SJ, Blockade of alcohol's amnestic activity in humans by an alpha5 subtype benzodiazepine receptor inverse agonist. Neuropharmacology 2007;53(7):810-20
  • Mirza NR, Larsen JS, Mathiasen C, NS11394 [3′-[5-(1-hydroxy-1-methyl-ethyl)-benzoimidazol-1-yl]-biphenyl-2-carbonitr ile], a unique subtype-selective GABAA receptor positive allosteric modulator: in vitro actions, pharmacokinetic properties and in vivo anxiolytic efficacy. J Pharmacol Exp Ther 2008;327(3):954-68
  • Tremolizzo L, Doueiri MS, Dong E, Valproate corrects the schizophrenia-like epigenetic behavioral modifications induced by methionine in mice. Biol Psychiatry 2005;57(5):500-9
  • Castner SA, Arriza JL, Roberts JC, Reversal of ketamine-induced working memory impairments by the GABAAalpha2/3 agonist TPA023. Biol Psychiatry 2010;67(10):998-1001
  • Yee BK, Keist R, von Boehmer L, A schizophrenia-related sensorimotor deficit links alpha 3-containing GABAA receptors to a dopamine hyperfunction. Proc Natl Acad Sci USA 2005;102(47):17154-9
  • Lewis DA, Cho RY, Carter CS, Subunit-selective modulation of GABA type A receptor neurotransmission and cognition in schizophrenia. Am J Psychiatry 2008;165(12):1585-93
  • Buchanan R, Barch D, Csernansky J, MK-0777 for the treatment of cognitive impairments in people with schizophrenia [abstract]. Schizophrenia International Research Society Congress; 2010
  • Aikia M, Jutila L, Salmenpera T, Long-term effects of tiagabine monotherapy on cognition and mood in adult patients with chronic partial epilepsy. Epilepsy Behav 2006;8(4):750-5
  • Ritsner MS, Gibel A, Ratner Y, Improvement of sustained attention and visual and movement skills, but not clinical symptoms, after dehydroepiandrosterone augmentation in schizophrenia: a randomized, double-blind, placebo-controlled, crossover trial. J Clin Psychopharmacol 2006;26(5):495-9
  • Strous RD, Stryjer R, Maayan R, Analysis of clinical symptomatology, extrapyramidal symptoms and neurocognitive dysfunction following dehydroepiandrosterone (DHEA) administration in olanzapine treated schizophrenia patients: a randomized, double-blind placebo controlled trial. Psychoneuroendocrinology 2007;32(2):96-105
  • Kellendonk C, Simpson EH, Kandel ER. Modeling cognitive endophenotypes of schizophrenia in mice. Trends Neurosci 2009;32(6):347-58
  • Cobb SR, Buhl EH, Halasy K, Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons. Nature 1995;378(6552):75-8
  • Buzsaki G, Draguhn A. Neuronal oscillations in cortical networks. Science 2004;304(5679):1926-9
  • Klausberger T, Somogyi P. Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science 2008;321(5885):53-7
  • Edin F, Klingberg T, Johansson P, Mechanism for top-down control of working memory capacity. Proc Natl Acad Sci USA 2009;106(16):6802-7
  • Rao SG, Williams GV, Goldman-Rakic PS. Destruction and creation of spatial tuning by disinhibition: GABA(A) blockade of prefrontal cortical neurons engaged by working memory. J Neurosci 2000;20(1):485-94
  • Gonzalez-Burgos G, Lewis DA. GABA neurons and the mechanisms of network oscillations: implications for understanding cortical dysfunction in schizophrenia. Schizophr Bull 2008;34(5):944-61
  • Uhlhaas PJ, Singer W. Abnormal neural oscillations and synchrony in schizophrenia. Nat Rev Neurosci 2010;11(2):100-13
  • Haenschel C, Bittner RA, Waltz J, Cortical oscillatory activity is critical for working memory as revealed by deficits in early-onset schizophrenia. J Neurosci 2009;29(30):9481-9
  • Lewis DA, Pierri JN, Volk DW, Altered GABA neurotransmission and prefrontal cortical dysfunction in schizophrenia. Biol Psychiatry 1999;46(5):616-26
  • Hashimoto T, Nguyen QL, Rotaru D, Protracted developmental trajectories of GABAA receptor alpha1 and alpha2 subunit expression in primate prefrontal cortex. Biol Psychiatry 2009;65(12):1015-23
  • Dickinson D, Ragland JD, Gold JM, Gur RC. General and specific cognitive deficits in schizophrenia: Goliath defeats David? Biol Psychiatry 2008;64(9):823-7
  • Williams LM, Whitford TJ, Flynn G, General and social cognition in first episode schizophrenia: identification of separable factors and prediction of functional outcome using the IntegNeuro test battery. Schizophr Res 2008;99(1-3):182-91
  • Barnett JH, Robbins TW, Leeson VC, Assessing cognitive function in clinical trials of schizophrenia. Neurosci Biobehav Rev 2010;34(8):1161-77
  • Nuechterlein KH, Green MF, Kern RS, The MATRICS consensus cognitive battery, part 1: test selection, reliability, and validity. Am J Psychiatry 2008;165(2):203-13
  • Young JW, Powell SB, Risbrough V, Using the MATRICS to guide development of a preclinical cognitive test battery for research in schizophrenia. Pharmacol Ther 2009;122(2):150-202
  • Howes OD, Kapur S. The dopamine hypothesis of schizophrenia: version III–the final common pathway. Schizophr Bull 2009;35(3):549-62
  • Javitt DC. Glutamate and schizophrenia: phencyclidine, N-methyl-D-aspartate receptors, and dopamine-glutamate interactions. Int Rev Neurobiol 2007;78:69-108
  • Bullock WM, Bolognani F, Botta P, Schizophrenia-like GABAergic gene expression deficits in cerebellar Golgi cells from rats chronically exposed to low-dose phencyclidine. Neurochem Int 2009;55(8):775-82
  • Sesack SR, Hawrylak VA, Melchitzky DS, Lewis DA. Dopamine innervation of a subclass of local circuit neurons in monkey prefrontal cortex: ultrastructural analysis of tyrosine hydroxylase and parvalbumin immunoreactive structures. Cereb Cortex 1998;8(7):614-22
  • Lewis DA, Gonzalez-Burgos G. Pathophysiologically based treatment interventions in schizophrenia. Nat Med 2006;12(9):1016-22
  • Liu F, Wan Q, Pristupa ZB, Direct protein-protein coupling enables cross-talk between dopamine D5 and gamma-aminobutyric acid A receptors. Nature 2000;403(6767):274-80
  • Sanna E, Busonero F, Talani G, Comparison of the effects of zaleplon, zolpidem, and triazolam at various GABA(A) receptor subtypes. Eur J Pharmacol 2002;451(2):103-10
  • Petroski RE, Pomeroy JE, Das R, Indiplon is a high-affinity positive allosteric modulator with selectivity for alpha1 subunit-containing GABAA receptors. J Pharmacol Exp Ther 2006;317(1):369-77
  • Huang Q, He X, Ma C, Pharmacophore/receptor models for GABA(A)/BzR subtypes (alpha1beta3gamma2, alpha5beta3gamma2, and alpha6beta3gamma2) via a comprehensive ligand-mapping approach. J Med Chem 2000;43(1):71-95
  • Atack J, Wafford KA, Street LJ, MRK-409 (MK-0343), a GABAA receptor subtype-selective partial agonist, is a non-sedating anxiolytic in preclinical species but causes sedation in humans. J Psychopharmacol 2010
  • Dias R, Sheppard WF, Fradley RL, Evidence for a significant role of alpha 3-containing GABAA receptors in mediating the anxiolytic effects of benzodiazepines. J Neurosci 2005;25(46):10682-8
  • McKernan RM, Rosahl TW, Reynolds DS, Sedative but not anxiolytic properties of benzodiazepines are mediated by the GABA(A) receptor alpha1 subtype. Nat Neurosci 2000;3(6):587-92
  • Rabe H, Kronbach C, Rundfeldt C, Luddens H. The novel anxiolytic ELB139 displays selectivity to recombinant GABA(A) receptors different from diazepam. Neuropharmacology 2007;52(3):796-801
  • Lippa A, Czobor P, Stark J, Selective anxiolysis produced by ocinaplon, a GABA(A) receptor modulator. Proc Natl Acad Sci USA 2005;102(20):7380-5
  • Griebel G, Perrault G, Simiand J, SL651498: an anxioselective compound with functional selectivity for alpha2- and alpha3-containing gamma-aminobutyric acid(A) (GABA(A)) receptors. J Pharmacol Exp Ther 2001;298(2):753-68
  • Atack JR, Hutson PH, Collinson N, Anxiogenic properties of an inverse agonist selective for alpha3 subunit-containing GABA A receptors. Br J Pharmacol 2005;144(3):357-66
  • Sternfeld F, Carling RW, Jelley RA, Selective, orally active gamma-aminobutyric acidA alpha5 receptor inverse agonists as cognition enhancers. J Med Chem 2004;47(9):2176-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.