219
Views
2
CrossRef citations to date
0
Altmetric
Reviews

Targetable molecular pathways in classical Hodgkin's lymphoma

, , &
Pages 141-151 | Published online: 04 Jan 2011

Bibliography

  • Caporaso NE, Goldin LR, Anderson WF, Current insight on trends, causes, and mechanisms of Hodgkin's lymphoma. Cancer J 2009;15:117-23
  • Diehl V, Engert A, Re D. New strategies for the treatment of advanced-stage Hodgkin's lymphoma. Hematol Oncol Clin North Am 2007;21:897-914
  • Klimm B, Schnell R, Diehl V, Current treatment and immunotherapy of Hodgkin's lymphoma. Haematologica 2005;90:1680-92
  • Bartlett NL. Modern treatment of Hodgkin lymphoma. Curr Opin Hematol 2008;15:408-14
  • Bonfante G, Viviani V, Di Russo S, ABVD plus subtotal nodal versus involved-field radiotherapy in early-stage Hodgkin's disease: long-term results. J Clin Oncol 2004;22:2835-41
  • Engert A, Schiller P, Josting A, Involved-field radiotherapy is equally effective and less toxic compared with extended-field radiotherapy after four cycles of chemotherapy in patients with early-stage unfavorable Hodgkin's lymphoma: results of the HD8 trial of the German Hodgkin's Lymphoma Study Group. J Clin Oncol 2003;21:3601-8
  • Meyer R, Gospodarowicz M, Connors J, Randomized comparison of ABVD chemotherapy with a strategy that includes radiation therapy in patients with limited-stage Hodgkin's lymphoma: National Cancer Institute of Canada Clinical Trials Group and the Eastern Cooperative Oncology Group. J Clin Oncol 2005;23:4634-42
  • Canellos G, Anderson J, Propert K, Chemotherapy of advanced Hodgkin's disease with MOPP, ABVD, or MOPP alternating with ABVD. N Engl J Med 1993;327:1478-84
  • Gobbi P, Levis A, Chisesi T, ABVD versus modified Stanford V versus MOPPEBVCAD with optional and limited radiotherapy in intermediate- and advanced-stage Hodgkin's lymphoma: final results of a multicenter randomized trial by the Intergruppo Italiano Linfomi. J Clin Oncol 2005;23:9198-207
  • Diehl V, Franklin J, Pfreundschuh M, Standard and increased-dose BEACOPP chemotherapy compared with COPP-ABVD for advanced Hodgkin's disease. N Engl J Med 2003;348:2386-95
  • David KA, Mauro L, Evens AM. Relapsed and refractory Hodgkin lymphoma: transplantation strategies and novel therapeutic options. Curr Treat Options Oncol 2007;8:352-74
  • Klimm B, Diehl V, Engert A. Hodgkin's lymphoma in the elderly: a different disease in patients over 60. Oncology (Williston Park) 2007;21:982-90
  • Aleman BM, van den Belt-Dusebout AW, Klokman WJ, Long-term cause-specific mortality of patients treated for Hodgkin's disease. J Clin Oncol 2003;15:3431-9
  • Adams H, Campidelli C, Dirnhofer S, Clinical, phenotypic and genetic similarities and disparities between post-transplant and classical Hodgkin lymphomas with respect to therapeutic targets. Expert Opin Ther Targets 2009;13:1137-45
  • Schwering I, Brauninger A, Klein U, Blood 2003;101:1505-12
  • Kuppers R, Rajewsky K, Zhao M, Hodgkin disease: Hodgkin and Reed-Sternberg cells picked from histological sections show clonal immunoglobulin gene rearrangements and appear to be derived from B cells at various stages of development. Proc Natl Acad Sci USA 1994;91:10962-6
  • Kanzler H, Kuppers R, Hansmann ML, Hodgkin and Reed-Sternberg cells in Hodgkin's disease represent the outgrowth of a dominant tumor clone derived from (crippled) germinal center B cells. J Exp Med 1996;184:1495-505
  • Marafioti T, Hummel M, Foss HD, Hodgkin and Reed-Sternberg cells represent an expansion of a single clone originating from a germinal center B-cell with functional immunoglobulin gene rearrangements but defective immunoglobulin transcription. Blood 2000;95:1443-50
  • Tzankov A, Zimpfer A, Pehrs AC, Expression of B-cell markers in classical Hodgkin lymphoma: a tissue microarray analysis of 330 cases. Mod Pathol 2003;16:1141-7
  • Stern M, Herrmann R, Rochlitz C, A case of post-transplant lymphoproliferative disease presenting as CD20-expressing, Epstein-Barr-virus positive Hodgkin lymphoma. Eur J Haematol 2005;74:267-70
  • Dharnidharka V, Douglas V, Hunger S, Hodgkin's lymphoma after post-transplant lymphoproliferative disease in a renal transplant recipient. Pediatr Transplant 2004;8:87-90
  • Moessner E, Bruenker P, Moser S, Increasing the efficacy of CD20 antibody therapy through the engineering of a new type II anti-CD20 antibody with enhanced direct- and immune effector cell-mediated B-cell cytotoxicity. Blood 2010;115:4393-402
  • Chetaille B, Bertucci F, Finetti P, Molecular profiling of classical Hodgkin lymphoma tissues uncovers variations in the tumor microenvironment and correlations with EBV infection and outcome. Blood 2009;113:2765-75
  • Younes A, Romaguera J, Hagemeister F, A pilot study of rituximab in patients with recurrent, classic Hodgkin disease. Cancer 2003;98:310-14
  • Oki Y, Pro B, Fayad LE, Phase 2 study of gemcitabine in combination with rituximab in patients with recurrent or refractory Hodgkin lymphoma. Cancer 2008;112:831-6
  • Cashen AF, Bartlett NL. Therapy of relapsed Hodgkin lymphoma. Blood Rev 2007;21:233-43
  • Oki Y, Younes A. Does rituximab have a place in treating classic Hodgkin lymphoma? Curr Hematol Malig Rep 2010;5:135-9
  • Jones RJ, Gocke CD, Kasamon YL, Circulating clonotypic B cells in classic Hodgkin lymphoma. Blood 2009;113:5920-6
  • Bargou RC, Emmerich F, Krappmann D, Constitutive nuclear factor-kappaB-RelA activation is required for proliferation and survival of Hodgkin's disease tumor cells. J Clin Invest 1997;100:2961-9
  • Packham G. The role of NF-κB in lymphoid malignancies. Br J Haematol 2008;143:3-15
  • Schmitz R, Hansmann ML, Bohle V, TNFAIP3 (A20) is a tumor suppressor gene in Hodgkin lymphoma and primary mediastinal B cell lymphoma. J Exp Med 2009;206:981-9
  • Hinz M, Loser P, Mathas S, Constitutive NF-kappaB maintains high expression of a characteristic gene network, including CD40, CD86, and a set of antiapoptotic genes in Hodgkin/Reed-Sternberg cells. Blood 2001;97:2798-807
  • Barth TF, Martin-Subero JI, Joos S, Gains of 2p involving the REL locus correlate with nuclear c-Rel protein accumulation in neoplastic cells of classical Hodgkin lymphoma. Blood 2003;101:3681-6
  • Izban KF, Ergin M, Huang Q, Characterization of NF-κB expression in Hodgkin's disease: inhibition of constitutively expressed NF-kappaB results in spontaneous caspase-independent apoptosis in Hodgkin and Reed-Sternberg cells. Mod Pathol 2001;14:297-310
  • Zheng B, Georgakis GV, Li Y, Induction of cell cycle arrest and apoptosis by the proteasome inhibitor PS-341 in Hodgkin disease cell lines is independent of inhibitor of nuclear factor-kappaB mutations or activation of the CD30, CD40, and RANK receptors. Clin Cancer Res 2004;10:3207-15
  • Younes A, Pro B, Fayad L. Experience with bortezomib for the treatment of patients with relapsed classical Hodgkin lymphoma. Blood 2006;107:1731-2
  • Blum KA, Johnson JL, Niedzwiecki D, Single agent bortezomib in the treatment of relapsed and refractory Hodgkin lymphoma: cancer and leukemia Group B protocol 50206. Leuk Lymphoma 2007;48:1313-19
  • Trelle S, Sezer O, Naumann R, Bortezomib in combination with dexamethasone for patients with relapsed Hodgkin's lymphoma: results of a prematurely closed phase II study (NCT00148018). Haematologica 2007;92:568-9
  • Mendler JH, Kelly J, Voci S, Bortezomib and gemcitabine in relapsed or refractory Hodgkin's lymphoma. Ann Oncol 2008;19:1759-64
  • Fanale M, Luis E, Pro B, A phase I study of bortezomib in combination with ICE (BICE) in patients with relapsed/refractory classical Hodgkin lymphoma [abstract]. Blood 2008;112:3048
  • Zhao X, Qiu W, Kung J, Bortezomib induces caspase-dependent apoptosis in Hodgkin lymphoma cell lines and is associated with reduced c-FLIP expression: a gene expression profiling study with implications for potential combination therapies. Leuk Res 2008;32:275-85
  • Wildes TM, Bartlett NL. Drug development for recurrent and refractory classical Hodgkin lymphoma. Leuk Lymphoma 2009;50:529-40
  • Cerveny CG, Law CL, McCormick RS, Signaling via the anti-CD30 mAb SGN-30 sensitizes Hodgkin's disease cells to conventional chemotherapeutics. Leukemia 2005;19:1648-55
  • Bartlett NL, Younes A, Carabasi MH, A phase 1 multidose study of SGN-30 immunotherapy in patients with refractory or recurrent CD30+ hematologic malignancies. Blood 2008;111:1848-54
  • Forero-Torres A, Leonard JP, Younes A, A Phase II study of SGN-30 (anti-CD30 mAb) in Hodgkin lymphoma or systemic anaplastic large cell lymphoma. Br J Haematol 2009;146:171-9
  • Blum KA, Jung SH, Johnson JL, Serious pulmonary toxicity in patients with Hodgkin's lymphoma with SGN-30, gemcitabine, vinorelbine, and liposomal doxorubicin is associated with an FcgammaRIIIa-158 V/F polymorphism. Ann Oncol 2010;21:2246-54
  • Borchmann P, Treml JF, Hansen H, The human anti-CD30 antibody 5F11 shows in vitro and in vivo activity against malignant lymphoma. Blood 2003;102:3737-42
  • Ansell SM, Horwitz SM, Engert A, Phase I/II study of an anti-CD30 monoclonal antibody (MDX-060) in Hodgkin's lymphoma and anaplastic large-cell lymphoma. J Clin Oncol 2007;25:2764-9
  • Oflazoglu E, Kissler KM, Sievers EL, Combination of the anti-CD30-auristatin-E antibody-drug conjugate (SGN-35) with chemotherapy improves antitumour activity in Hodgkin lymphoma. Br J Haematol 2008;142:69-73
  • Younes A, Forero-Torres A, Bartlett NL, Multiple complete responses in a phase 1 dose-escalation study of the antibody-drug conjugate SGN-35 in patients with relapsed or refractory CD30-positive lymphomas [abstract]. Blood 2008;112:1006
  • Bartlett N, Forero-Torres A, Rosenblatt J, Complete remissions with weekly dosing of SGN-35, a novel antibody-drug conjugate (ADC) targeting CD30, in a phase I dose-escalation study in patients with relapsed or refractory Hodgkin lymphoma (HL) or systemic anaplastic large cell lymphoma (sALCL) [abstract]. Proc ASCO 2009;27:8500
  • Horn-Lohrens O, Tiemann M, Lange H, Shedding of the soluble form of CD30 from the Hodgkin-analogous cell line L540 is strongly inhibited by a new CD30-specific antibody (Ki-4). Int J Cancer 1995;60:539-44
  • Hansen HP, Matthey B, Barth S, Inhibition of metalloproteinases enhances the internalization of anti-CD30 antibody Ki-3 and the cytotoxic activity of Ki-3 immunotoxin. Int J Cancer 2002;98:210-15
  • Matthey B, Borchmann P, Schnell R, Metalloproteinase inhibition augments antitumor efficacy of the anti-CD30 immunotoxin Ki-3(scFv)-ETA' against human lymphomas in vivo. Int J Cancer 2004;111:568-74
  • Hansen HP, Recke A, Reineke U, The ectodomain shedding of CD30 is specifically regulated by peptide motifs in its cysteine-rich domains 2 and 5. FASEB J 2004;18:893-5
  • Luqman M, Klabunde S, Lin K, The antileukemia activity of a human anti-CD40 antagonist antibody, HCD122, on human chronic lymphocytic leukemia cells. Blood 2008;112:711-20
  • Advani R, Forero-Torres A, Furman RR, Phase I study of the humanized anti-CD40 monoclonal antibody dacetuzumab in refractory or recurrent non-Hodgkin's lymphoma. J Clin Oncol 2009;27:4371-7
  • Nozawa Y, Wakasa H, Abe M. Costimulatory molecules (CD80 and CD86) on Reed-Sternberg cells are associated with the proliferation of background T cells in Hodgkin's disease. Pathol Int 1998;48:10-4
  • Skinnider BF, Mak TW. The role of cytokines in classical Hodgkin lymphoma. Blood 2002;99:4283-97
  • Joos S, Granzow M, Holtgreve-Grez H, Hodgkin's lymphoma cell lines are characterized by frequent aberrations on chromosomes 2p and 9p including REL and JAK2. Int J Cancer 2003;103:489-95
  • Joos S, Kupper M, Ohl S, Genomic imbalances including amplification of the tyrosine kinase gene JAK2 in CD30+ Hodgkin cells. Cancer Res 2000;60:549-52
  • Meier C, Hoeller S, Bourgau C, Recurrent numerical aberrations of JAK2 and deregulation of the JAK2-STAT cascade in lymphomas. Mod Pathol 2009;22:476-87
  • Weniger MA, Melzner I, Menz CK, Mutations of the tumor suppressor gene SOCS-1 in classical Hodgkin lymphoma are frequent and associated with nuclear phospho-STAT5 accumulation. Oncogene 2006;25:2679-84
  • Scheeren FA, Diehl SA, Smit LA, IL-21 is expressed in Hodgkin lymphoma and activates STAT5: evidence that activated STAT5 is required for Hodgkin lymphomagenesis. Blood 2008;111:4706-15
  • Lamprecht B, Kreher S, Anagnostopoulos I, Aberrant expression of the Th2 cytokine IL-21 in Hodgkin lymphoma cells regulates STAT3 signaling and attracts Treg cells via regulation of MIP-3alpha. Blood 2008;112:3339-47
  • Kube D, Holtick U, Vockerodt, STAT3 is constitutively activated in Hodgkin cell lines. Blood 2001;98:762-70
  • Holtick U, Vockerodt M, Pinkert D, STAT3 is essential for Hodgkin lymphoma cell proliferation and is a target of tyrphostin AG17 which confers sensitization for apoptosis. Leukemia 2005;19:936-44
  • Trieu Y, Wen X, Skinnider B, Soluble interleukin-13Ralpha2 decoy receptor inhibits Hodgkin's lymphoma growth in vitro and in vivo. Cancer Res 2004;64:3271-5
  • Schoof N, von Bonin F, Trumper L, HSP90 is essential for Jak-STAT signaling in classical Hodgkin lymphoma cells. Cell Commun Signal 2009;7:17
  • Younes A, Copeland A, Romaguera J, Clinical and biologic activity of the heat shock protein-90 (HSP-90) inhibitor 17-AAG in patients with relapsed lymphoma [abstract]. Blood 2009;114:3744
  • Dutton A, Reynolds GM, Dawson CW, Constitutive activation of phosphatidyl-inositide 3 kinase contributes to the survival of Hodgkin's lymphoma cells through a mechanism involving Akt kinase and mTOR. J Pathol 2005;205:498-506
  • Renne C, Willenbrock K, Martin-Subero JI, High expression of several tyrosine kinases and activation of the PI3K/AKT pathway in mediastinal large B cell lymphoma reveals further similarities to Hodgkin lymphoma. Leukemia 2007;21:780-7
  • Jundt F, Raetzel N, Muller C, A rapamycin derivative (everolimus) controls proliferation through down-regulation of truncated CCAAT enhancer binding protein beta and NF-kappaB activity in Hodgkin and anaplastic large cell lymphomas. Blood 2005;106:1801-7
  • Johnston PB, Inwards DJ, Colgan JP, A Phase II trial of the oral mTOR inhibitor everolimus in relapsed Hodgkin lymphoma. Am J Hematol 2010;85:320-4
  • Bhatt A, Bhende P, Sin S, Dual inhibition of PI3K and mTOR inhibits autocrine and paracrine proliferative loops in PI3K/Akt/mTOR-addicted lymphomas. Blood 2010;115:4455-63
  • Georgakis GV, Li Y, Rassidakis GZ, Inhibition of the phosphatidylinositol-3 kinase/Akt promotes G1 cell cycle arrest and apoptosis in Hodgkin lymphoma. Br J Haematol 2005;132:503-11
  • Huang S, Houghton P. Targeting mTOR signaling for cancer therapy. Curr Opin Pharmacol 2003;3:371-7
  • Flavell K, Murray P. Hodgkin's disease and the Epstein-Barr virus. Mol Pathol 2000;53:262-9
  • Weiss L, Strickler J, Warnke R, Epstein-Barr viral DNA in tissues of Hodgkin's disease. Am J Pathol 1987;129:86-91
  • Gandhi MK, Tellam JT, Khanna R, Epstein-Barr virus-associated Hodgkin's lymphoma. Br J Haematol 2004;125:276-81
  • Savoldo B, Rooney CM, Di Stasi A, Epstein-Barr virus specific cytotoxic T lymphocytes expressing the anti-CD30(zeta) artificial chimeric T-cell receptor for immunotherapy of Hodgkin disease. Blood 2007;110:2620-30
  • Lee S, Constandinou C, Thomas W, Antigen presenting phenotype of Hodgkin Reed-Sternberg cells: analysis of the HLA class I processing pathway and the effects of interleukin-10 on Epstein-Barr virus-specific cytotoxic T-cell recognition. Blood 1998;92:1020-30
  • Roskrow M, Suzuki N, Gan Y, Epstein-Barr virus (EBV)-specific cytotoxic T lymphocytes for the treatment of patients with EBV-positive relapsed Hodgkin's disease. Blood 1998;91:2925-34
  • Rossig C, Bollard C, Nuchtern J, Epstein-Barr virus-specific human T lymphocytes expressing antitumor chimeric T-cell receptors: potential for improved immunotherapy. Blood 2002;99:2009-16
  • Bollard C, Huls M, Buza E, Administration of latent membrane protein 2-specific cytotoxic T lymphocytes to patients with relapsed Epstein-Barr virus-positive lymphoma. Clin Lymphoma Myeloma 2006;6:342-7
  • Bollard C, Aguilar L, Straathof K, Cytotoxic T lymphocyte therapy for Epstein-Barr virus+ Hodgkin's disease. J Exp Med 2004;200:1623-33
  • Prince HM, Bishton MJ, Harrison SJ. Clinical studies of histone deacetylase inhibitors. Clin Cancer Res 2009;12:3958-69
  • Adams H, Fritzsche FR, Dirnhofer S, Class I histone deacetylases 1, 2 and 3 are highly expressed in classical Hodgkin's lymphoma. Expert Opin Ther Targets 2010;14:577-84
  • O'Connor OA, Heaney ML, Schwartz L, Clinical experience with intravenous and oral formulations of the novel histone deacetylase inhibitor suberoylanilide hydroxamic acid in patients with advanced hematologic malignancies. J Clin Oncol 2006;24:166-73
  • Younes A, Pro B, Fanale M, Isotype-selective HDAC inhibitor MGCD0103 decreases serum TARC concentrations and produces clinical responses in heavily pretreated patients with relapsed classical Hodgkin lymphoma (HL) [abstract]. Blood 2007;110:2566
  • Dickinson M, Ritchie D, DeAngelo DJ, Preliminary evidence of disease response to the pan deacetylase inhibitor panobinostat (LBH589) in refractory Hodgkin Lymphoma. Br J Haematol 2009;1:97-101
  • Younes A, Ong T, Ribrag V, Efficacy of panobinostat in phase II study in patients with relapsed/refractory Hodgkin lymphoma (HL) after high-dose chemotherapy with autologous stem cell transplant [abstract]. Blood 2009;114:923
  • Doussis-Anagnostopoulou IA, Talks KL, Turley H, Vascular endothelial growth factor (VEGF) is expressed by neoplastic Hodgkin-Reed-Sternberg cells in Hodgkin's disease. J Pathol 2002;197:677-83
  • Mainou-Fowler T, Angus B, Miller S, Micro-vessel density and the expression of vascular endothelial growth factor (VEGF) and platelet-derived endothelial cell growth factor (PdEGF) in classical Hodgkin lymphoma (HL). Leuk Lymphoma 2006;47:223-30
  • Reiners K, Gossmann A, von Strandmann E, Effects of the anti-VEGF monoclonal antibody bevacizumab in a preclinical model and in patients with refractory and multiple relapsed Hodgkin lymphoma. J Immunother 2009;32:508-12
  • Muenst S, Hoeller S, Dirnhofer S, Increased programmed death-1+ tumor-infiltrating lymphocytes in classical Hodgkin lymphoma substantiate reduced overall survival. Hum Pathol 2009;40:1715-22
  • Tzankov A, Meier C, Hirschmann P, Correlation of high numbers of intratumoral FOXP3+ regulatory T cells with improved survival in germinal center-like diffuse large B-cell lymphoma, follicular lymphoma and classical Hodgkin's lymphoma. Haematologica 2008;93:193-200
  • ten Berge R, Oudejans J, Dukers D, Percentage of activated cytotoxic T-lymphocytes in anaplastic large cell lymphoma and Hodgkin's disease: an independent biological prognostic marker. Leukemia 2001;15:458-64
  • Alvaro T, Lejeune M, Salvado M, Outcome in Hodgkin's lymphoma can be predicted from the presence of accompanying cytotoxic and regulatory T cells. Clin Cancer Res 2005;11:1467-73
  • Bosch Princep R, Lejeune M, Salvado Usach M, Decreased number of granzyme B+ activated CD8+ cytotoxic T lymphocytes in the inflammatory background of HIV-associated Hodgkin's lymphoma. Ann Hematol 2005;84:661-6
  • Kuruvilla J, Song K, Mollee P, A phase II study of thalidomide and vinblastine for palliative patients with Hodgkin's lymphoma. Hematology 2006;11:25-9
  • Boll B, Borchmann P, Topp M, Lenalidomide in patients with refractory or multiple relapsed Hodgkin lymphoma. Br J Haematol 2010;148:480-2
  • Fehniger T, Larson S, Trinkaus K, A phase II multicenter study of lenalidomide in patients with relapsed or refractory classical Hodgkin lymphoma (cHL): preliminary results [abstract]. Blood 2008;112:2595
  • Kuruvilla J, Taylor D, Wang L, Phase II trial of lenalidomide in patients with relapsed or refractory Hodgkin lymphoma [abstract]. Blood 2008;112:3052
  • Koenecke C, Ukena S, Ganser A, Regulatory T cells as therapeutic target in Hodgkin's lymphoma. Expert Opin Ther Targets 2008;12:769-82
  • Franzke A, Koenecke C, Geffers R, Classical Hodgkin's lymphoma: molecular evidence for specific alterations in circulating T lymphocytes. Tumour Biol 2006;27:329-33
  • Curiel TJ. Tregs and rethinking cancer immunotherapy. J Clin Invest 2007;117:1167-74
  • Shimizu J, Yamazaki S, Sakaguchi S. Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity. J Immunol 1999;163:5211-18
  • Tanaka H, Tanaka J, Kjaergaard J, Depletion of CD4+ CD25+ regulatory cells augments the generation of specific immune T cells in tumor-draining lymph nodes. J Immunother 2002;25:207-17
  • Marshall N, Christie L, Munro L, Immunosuppressive regulatory T cells are abundant in the reactive lymphocytes of Hodgkin lymphoma. Blood 2004;103:1755-62
  • Waldmann TA. Daclizumab (anti-Tac, Zenapax) in the treatment of leukemia/lymphoma. Oncogene 2007;26:3699-703
  • Tesch H, Gunther A, Abts H, Expression of interleukin-2Ralpha and interleukin-2Rbeta in Hodgkin's disease. Am J Pathol 1993;142:1714-20
  • O'Mahony D, Janik J, Carrasquillo J, Yttrium-90 radiolabeled humanized anti-CD25 monoclonal antibody, Daclizumab, provides effective therapy for refractory and relapsed Hodgkin's lymphoma [abstract]. Haematologica 2007;92:5
  • Sanchez-Espiridion B, Montalban C, Lopez A, A molecular risk score based on 4 functional pathways for advanced classical Hodgkin lymphoma. Blood 2010;116:e12-17
  • Steidl C, Lee T, Shah SP, Tumor-associated macrophages and survival in classic Hodgkin's lymphoma. N Engl J Med 2010;362:875-85
  • Tzankov A, Matter MS, Dirnhofer S. Refined prognostic role of CD68-positive tumor macrophages in the context of the cellular micromilieu of classical Hodgkin lymphoma. Pathobiology 2011; doi: 10.1159/000321567
  • Engert A, Plutschow A, Eich H, Reduced treatment intensity in patients with early-stage Hodgkin's lymphoma. N Engl J Med 2010;363:640-52

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.