603
Views
15
CrossRef citations to date
0
Altmetric
Reviews

Epigenetic regulation in myelodysplastic syndromes: implications for therapy

, , , , , , , , , , , , , , , & show all
Pages 465-493 | Published online: 08 Mar 2011

Bibliography

  • Nimer SD. Myelodysplastic syndromes. Blood 2008;111:4841-51
  • Bennett JM, Catovsky D, Daniel MT, Proposals for the classification of the myelodysplastic syndromes. Br J Haematol 1982;51:189-99
  • Greenberg P, Cox C, LeBeau MM, International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood 1997;89:2079-88
  • Malcovati L, Germing U, Kuendgen A, Time-dependent prognostic scoring system for predicting survival and leukemic evolution in myelodysplastic syndromes. J Clin Oncol 2007;25:3503-10
  • Li X, Bryant CE, Deeg HJ. Simultaneous demonstration of clonal chromosome abnormalities and apoptosis in individual marrow cells in myelodysplastic syndrome. Int J Hematol 2004;80:140-5
  • Bianchi E, Rogge L. Dissecting oncogenes and tyrosine kinases in AML cells. MedGenMed 2003;5:10
  • Grewal SI, Moazed D. Heterochromatin and epigenetic control of gene expression. Science 2003;301:798-802
  • Esteller M. Epigenetics in cancer. N Engl J Med 2008;358:1148-59
  • Jones PA, Baylin SB. The epigenomics of cancer. Cell 2007;128:683-92
  • Meshorer E, Misteli T. Chromatin in pluripotent embryonic stem cells and differentiation. Nat Rev Mol Cell Biol 2006;7:540-6
  • Reik W. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 2007;447:425-32
  • Wu SC, Zhang Y. Active DNA demethylation: many roads lead to Rome. Nat Rev Mol Cell Biol 2010;11:607-20
  • Rice KL, Hormaeche I, Licht JD. Epigenetic regulation of normal and malignant hematopoiesis. Oncogene 2007;26:6697-714
  • Rush LJ, Plass C. Alterations of DNA methylation in hematologic malignancies. Cancer Lett 2002;185:1-12
  • Ji H, Ehrlich LI, Seita J, Comprehensive methylome map of lineage commitment from haematopoietic progenitors. Nature 2010;467:338-42
  • Rodenhiser D, Mann M. Epigenetics and human disease: translating basic biology into clinical applications. CMAJ 2006;174:341-8
  • Biancotto C, Frige G, Minucci S. Histone modification therapy of cancer. Adv Genet 2010;70:341-86
  • Strahl BD, Allis CD. The language of covalent histone modifications. Nature 2000;403:41-5
  • Cedar H, Bergman Y. Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet 2009;10:295-304
  • Zhan M. Genomic studies to explore self-renewal and differentiation properties of embryonic stem cells. Front Biosci 2008;13:276-83
  • Cheng LC, Tavazoie M, Doetsch F. Stem cells: from epigenetics to microRNAs. Neuron 2005;46:363-7
  • Knudson AG. Hereditary cancer: two hits revisited. J Cancer Res Clin Oncol 1996;122:135-40
  • Haase D, Germing U, Schanz J, New insights into the prognostic impact of the karyotype in MDS and correlation with subtypes: evidence from a core dataset of 2124 patients. Blood 2007;110:4385-95
  • Jiang Y, Dunbar A, Gondek LP, Aberrant DNA methylation is a dominant mechanism in MDS progression to AML. Blood 2009;113:1315-25
  • Hopfer O, Komor M, Koehler IS, DNA methylation profiling of myelodysplastic syndrome hematopoietic progenitor cells during in vitro lineage-specific differentiation. Exp Hematol 2007;35:712-23
  • Aggerholm A, Holm MS, Guldberg P, Promoter hypermethylation of p15INK4B, HIC1, CDH1, and ER is frequent in myelodysplastic syndrome and predicts poor prognosis in early-stage patients. Eur J Haematol 2006;76:23-32
  • Grovdal M, Khan R, Aggerholm A, Negative effect of DNA hypermethylation on the outcome of intensive chemotherapy in older patients with high-risk myelodysplastic syndromes and acute myeloid leukemia following myelodysplastic syndrome. Clin Cancer Res 2007;13:7107-12
  • Fandy TE, Herman JG, Kerns P, Early epigenetic changes and DNA damage do not predict clinical response in an overlapping schedule of 5-azacytidine and entinostat in patients with myeloid malignancies. Blood 2009;114:2764-73
  • Figueroa ME, Melnick A, Greally JM. Genome-wide determination of DNA methylation by Hpa II tiny fragment enrichment by ligation-mediated PCR (HELP) for the study of acute leukemias. Methods Mol Biol 2009;538:395-407
  • Figueroa ME, Skrabanek L, Li Y, MDS and secondary AML display unique patterns and abundance of aberrant DNA methylation. Blood 2009;114:3448-58
  • Boultwood J, Wainscoat JS. Gene silencing by DNA methylation in haematological malignancies. Br J Haematol 2007;138:3-11
  • Hess CJ, Errami A, Berkhof J, Concurrent methylation of promoters from tumor associated genes predicts outcome in acute myeloid leukemia. Leuk Lymphoma 2008;49:1132-41
  • Whitman SP, Hackanson B, Liyanarachchi S, DNA hypermethylation and epigenetic silencing of the tumor suppressor gene, SLC5A8, in acute myeloid leukemia with the MLL partial tandem duplication. Blood 2008;112:2013-16
  • Agrawal S, Hofmann WK, Tidow N, The C/EBPdelta tumor suppressor is silenced by hypermethylation in acute myeloid leukemia. Blood 2007;109:3895-905
  • Shimamoto T, Ohyashiki JH, Ohyashiki K. Methylation of p15(INK4b) and E-cadherin genes is independently correlated with poor prognosis in acute myeloid leukemia. Leuk Res 2005;29:653-9
  • Benetatos L, Hatzimichael E, Dasoula A, CpG methylation analysis of the MEG3 and SNRPN imprinted genes in acute myeloid leukemia and myelodysplastic syndromes. Leuk Res 2010;34:148-53
  • Silverman LR, Demakos EP, Peterson BL, Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. J Clin Oncol 2002;20:2429-40
  • Daskalakis M, Nguyen TT, Nguyen C, Demethylation of a hypermethylated P15/INK4B gene in patients with myelodysplastic syndrome by 5-Aza-2′-deoxycytidine (decitabine) treatment. Blood 2002;100:2957-64
  • Fenrick R, Hiebert SW. Role of histone deacetylases in acute leukemia. J Cell Biochem Suppl 1998;30-31:194-202
  • Kuendgen A, Knipp S, Fox F, Results of a phase 2 study of valproic acid alone or in combination with all-trans retinoic acid in 75 patients with myelodysplastic syndrome and relapsed or refractory acute myeloid leukemia. Ann Hematol 2005;84(Suppl 1):61-6
  • Kuendgen A, Strupp C, Aivado M, Treatment of myelodysplastic syndromes with valproic acid alone or in combination with all-trans retinoic acid. Blood 2004;104:1266-9
  • Blum W, Klisovic RB, Hackanson B, Phase I study of decitabine alone or in combination with valproic acid in acute myeloid leukemia. J Clin Oncol 2007;25:3884-91
  • Garcia-Manero G, Kantarjian HM, Sanchez-Gonzalez B, Phase 1/2 study of the combination of 5-aza-2′-deoxycytidine with valproic acid in patients with leukemia. Blood 2006;108:3271-9
  • Negrini M, Nicoloso MS, Calin GA. MicroRNAs and cancer-new paradigms in molecular oncology. Curr Opin Cell Biol 2009;21:470-9
  • Starczynowski DT, Kuchenbauer F, Argiropoulos B, Identification of miR-145 and miR-146a as mediators of the 5q- syndrome phenotype. Nat Med 2010;16:49-58
  • Hussein K, Theophile K, Busche G, Significant inverse correlation of microRNA-150/MYB and microRNA-222/p27 in myelodysplastic syndrome. Leuk Res 2010;34:328-34
  • Kota J, Chivukula RR, O'Donnell KA, Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 2009;137:1005-17
  • Krutzfeldt J, Rajewsky N, Braich R, Silencing of microRNAs in vivo with 'antagomirs'. Nature 2005;438:685-9
  • Elmen J, Lindow M, Schutz S, LNA-mediated microRNA silencing in non-human primates. Nature 2008;452:896-9
  • Saito Y, Liang G, Egger G, Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 2006;9:435-43
  • Saito Y, Friedman JM, Chihara Y, Epigenetic therapy upregulates the tumor suppressor microRNA-126 and its host gene EGFL7 in human cancer cells. Biochem Biophys Res Commun 2009;379:726-31
  • Lujambio A, Ropero S, Ballestar E, Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res 2007;67:1424-9
  • Qiu X, Hother C, Ralfkiaer UM, Equitoxic doses of 5-azacytidine and 5-aza-2′deoxycytidine induce diverse immediate and overlapping heritable changes in the transcriptome. PLoS One 2010;5: published online 29 September 2010, doi:10.1371/journal.pone.0012994
  • Saito Y, Jones PA. Epigenetic activation of tumor suppressor microRNAs in human cancer cells. Cell Cycle 2006;5:2220-2
  • Sekeres MA, Stone RM, Zahrieh D, Decision-making and quality of life in older adults with acute myeloid leukemia or advanced myelodysplastic syndrome. Leukemia 2004;18:809-16
  • Estey EH. Treatment of acute myelogenous leukemia and myelodysplastic syndromes. Semin Hematol 1995;32:132-51
  • Estey EH. Therapeutic options for acute myelogenous leukemia. Cancer 2001;92:1059-73
  • Runde V, de Witte T, Arnold R, Bone marrow transplantation from HLA-identical siblings as first-line treatment in patients with myelodysplastic syndromes: early transplantation is associated with improved outcome. Chronic leukemia working party of the European group for blood and marrow transplantation. Bone Marrow Transplant 1998;21:255-61
  • Ho AY, Pagliuca A, Kenyon M, Reduced-intensity allogeneic hematopoietic stem cell transplantation for myelodysplastic syndrome and acute myeloid leukemia with multilineage dysplasia using fludarabine, busulphan, and alemtuzumab (FBC) conditioning. Blood 2004;104:1616-23
  • Kroger N, Schetelig J, Zabelina T, A fludarabine-based dose-reduced conditioning regimen followed by allogeneic stem cell transplantation from related or unrelated donors in patients with myelodysplastic syndrome. Bone Marrow Transplant 2001;28:643-7
  • Broliden PA, Dahl IM, Hast R, Antithymocyte globulin and cyclosporine A as combination therapy for low-risk non-sideroblastic myelodysplastic syndromes. Haematologica 2006;91:667-70
  • Lim ZY, Killick S, Germing U, Low IPSS score and bone marrow hypocellularity in MDS patients predict hematological responses to antithymocyte globulin. Leukemia 2007;21:1436-41
  • Anargyrou K, Vassilakopoulos TP, Angelopoulou MK, Terpos E. Incorporating novel agents in the treatment of myelodysplastic syndromes. Leuk Res 2010;34:6-17
  • Oki Y, Aoki E, Issa JP. Decitabine-bedside to bench. Crit Rev Oncol Hematol 2007;61:140-52
  • Sorm F, Piskala A, Cihak A, Vesely J. 5-Azacytidine, a new, highly effective cancerostatic. Experientia 1964;20:202-3
  • Jones PA, Taylor SM. Cellular differentiation, cytidine analogs and DNA methylation. Cell 1980;20:85-93
  • Cihak A. Biological effects of 5-azacytidine in eukaryotes. Oncology 1974;30:405-22
  • Jones PA, Taylor SM, Wilson VL. Inhibition of DNA methylation by 5-azacytidine. Recent Results Cancer Res 1983;84:202-11
  • Friedman S. The inhibition of DNA(cytosine-5)methylases by 5-azacytidine. The effect of azacytosine-containing DNA. Mol Pharmacol 1981;19:314-20
  • Juttermann R, Li E, Jaenisch R. Toxicity of 5-aza-2′-deoxycytidine to mammalian cells is mediated primarily by covalent trapping of DNA methyltransferase rather than DNA demethylation. Proc Natl Acad Sci USA 1994;91:11797-801
  • Saiki JH, Bodey GP, Hewlett JS, Effect of schedule on activity and toxicity of 5-azacytidine in acute leukemia: a Southwest Oncology group study. Cancer 1981;47:1739-42
  • Momparler RL, Rivard GE, Gyger M. Clinical trial on 5-aza-2′-deoxycytidine in patients with acute leukemia. Pharmacol Ther 1985;30:277-86
  • Silverman LR, Holland JF, Weinberg RS, Effects of treatment with 5-azacytidine on the in vivo and in vitro hematopoiesis in patients with myelodysplastic syndromes. Leukemia 1993;7(Suppl 1):21-9
  • Silverman LR, McKenzie DR, Peterson BL, Further analysis of trials with azacitidine in patients with myelodysplastic syndrome: studies 8421, 8921, and 9221 by the Cancer and Leukemia Group B. J Clin Oncol 2006;24:3895-903
  • Fenaux P, Mufti GJ, Hellstrom-Lindberg E, Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol 2009;10:223-32
  • Fenaux P, Mufti GJ, Hellstrom-Lindberg E, Azacitidine prolongs overall survival compared with conventional care regimens in elderly patients with low bone marrow blast count acute myeloid leukemia. J Clin Oncol 2010;28:562-9
  • Richel DJ, Colly LP, Kluin-Nelemans JC, Willemze R. The antileukaemic activity of 5-Aza-2 deoxycytidine (Aza-dC) in patients with relapsed and resistant leukaemia. Br J Cancer 1991;64:144-8
  • Rivard GE, Momparler RL, Demers J, Phase I study on 5-aza-2′-deoxycytidine in children with acute leukemia. Leuk Res 1981;5:453-62
  • de Lima M, Ravandi F, Shahjahan M, Long-term follow-up of a Phase I study of high-dose decitabine, busulfan, and cyclophosphamide plus allogeneic transplantation for the treatment of patients with leukemias. Cancer 2003;97:1242-7
  • Kantarjian HM, O'Brien SM, Keating M, Results of decitabine therapy in the accelerated and blastic phases of chronic myelogenous leukemia. Leukemia 1997;11:1617-20
  • Petti MC, Mandelli F, Zagonel V, Pilot study of 5-aza-2′-deoxycytidine (Decitabine) in the treatment of poor prognosis acute myelogenous leukemia patients: preliminary results. Leukemia 1993;7(Suppl 1):36-41
  • Pinto A, Zagonel V. 5-Aza-2′-deoxycytidine (Decitabine) and 5-azacytidine in the treatment of acute myeloid leukemias and myelodysplastic syndromes: past, present and future trends. Leukemia 1993;7(Suppl 1):51-60
  • Wijermans PW, Krulder JW, Huijgens PC, Neve P. Continuous infusion of low-dose 5-Aza-2′-deoxycytidine in elderly patients with high-risk myelodysplastic syndrome. Leukemia 1997;11(Suppl 1):S19-23
  • Wijermans P, Lubbert M, Verhoef G, Low-dose 5-aza-2′-deoxycytidine, a DNA hypomethylating agent, for the treatment of high-risk myelodysplastic syndrome: a multicenter phase II study in elderly patients. J Clin Oncol 2000;18:956-62
  • Lubbert M, Wijermans P, Kunzmann R, Cytogenetic responses in high-risk myelodysplastic syndrome following low-dose treatment with the DNA methylation inhibitor 5-aza-2′-deoxycytidine. Br J Haematol 2001;114:349-57
  • Sigalotti L, Altomonte M, Colizzi F, 5-Aza-2′-deoxycytidine (decitabine) treatment of hematopoietic malignancies: a multimechanism therapeutic approach? Blood 2003;101:4644-6; discussion 4645-6
  • Kantarjian H, Issa JP, Rosenfeld CS, Decitabine improves patient outcomes in myelodysplastic syndromes: results of a Phase III randomized study. Cancer 2006;106:1794-803
  • Kantarjian H, Beran M, Cortes J, Long-term follow-up results of the combination of topotecan and cytarabine and other intensive chemotherapy regimens in myelodysplastic syndrome. Cancer 2006;106:1099-109
  • Kantarjian HM, O'Brien S, Huang X, Survival advantage with decitabine versus intensive chemotherapy in patients with higher risk myelodysplastic syndrome: comparison with historical experience. Cancer 2007;109:1133-7
  • Wijermans P, Suciu S, Baila L, Low dose decitabine versus best supportive care in elderly patients with Intermediate or high risk MDS not eligible for intensive chemotherapy: final results of the randomized phase III study (06011) of the EORTC leukaemia and German MDS study groups. Blood (ASH Annual Meeting Abstracts):2008;112
  • Kantarjian H, Oki Y, Garcia-Manero G, Results of a randomized study of 3 schedules of low-dose decitabine in higher-risk myelodysplastic syndrome and chronic myelomonocytic leukemia. Blood 2007;109:52-7
  • Garcia-Manero G, Yang H, Bueso-Ramos C, Phase 1 study of the histone deacetylase inhibitor vorinostat (suberoylanilide hydroxamic acid [SAHA]) in patients with advanced leukemias and myelodysplastic syndromes. Blood 2008;111:1060-6
  • Garcia-Manero G, Assouline S, Cortes J, Phase 1 study of the oral isotype specific histone deacetylase inhibitor MGCD0103 in leukemia. Blood 2008;112:981-9
  • Rosato RR, Grant S. Histone deacetylase inhibitors: insights into mechanisms of lethality. Expert Opin Ther Targets 2005;9:809-24
  • Detich N, Bovenzi V, Szyf M. Valproate induces replication-independent active DNA demethylation. J Biol Chem 2003;278:27586-92
  • Milutinovic S, D'Alessio AC, Detich N, Szyf M. Valproate induces widespread epigenetic reprogramming which involves demethylation of specific genes. Carcinogenesis 2007;28:560-71
  • Pilatrino C, Cilloni D, Messa E, Increase in platelet count in older, poor-risk patients with acute myeloid leukemia or myelodysplastic syndrome treated with valproic acid and all-trans retinoic acid. Cancer 2005;104:101-9
  • Kouraklis G, Theocharis S. Histone deacetylase inhibitors and anticancer therapy. Curr Med Chem Anticancer Agents 2002;2:477-84
  • Hess-Stumpp H, Bracker TU, Henderson D, Politz O. MS-275, a potent orally available inhibitor of histone deacetylases – the development of an anticancer agent. Int J Biochem Cell Biol 2007;39:1388-405
  • Ryan QC, Headlee D, Acharya M, Phase I and pharmacokinetic study of MS-275, a histone deacetylase inhibitor, in patients with advanced and refractory solid tumors or lymphoma. J Clin Oncol 2005;23:3912-22
  • Gojo I, Jiemjit A, Trepel JB, Phase 1 and pharmacologic study of MS-275, a histone deacetylase inhibitor, in adults with refractory and relapsed acute leukemias. Blood 2007;109:2781-90
  • Nakajima H, Kim YB, Terano H, FR901228, a potent antitumor antibiotic, is a novel histone deacetylase inhibitor. Exp Cell Res 1998;241:126-33
  • Byrd JC, Marcucci G, Parthun MR, A phase 1 and pharmacodynamic study of depsipeptide (FK228) in chronic lymphocytic leukemia and acute myeloid leukemia. Blood 2005;105:959-67
  • Klimek VM, Fircanis S, Maslak P, Tolerability, pharmacodynamics, and pharmacokinetics studies of depsipeptide (romidepsin) in patients with acute myelogenous leukemia or advanced myelodysplastic syndromes. Clin Cancer Res 2008;14:826-32
  • Siegel D, Hussein M, Belani C, Vorinostat in solid and hematologic malignancies. J Hematol Oncol 2009;2:3
  • George P, Bali P, Annavarapu S, Combination of the histone deacetylase inhibitor LBH589 and the hsp90 inhibitor 17-AAG is highly active against human CML-BC cells and AML cells with activating mutation of FLT-3. Blood 2005;105:1768-76
  • Giles F, Fischer T, Cortes J, A Phase I study of intravenous LBH589, a novel cinnamic hydroxamic acid analogue histone deacetylase inhibitor, in patients with refractory hematologic malignancies. Clin Cancer Res 2006;12:4628-35
  • Ottmann OG, Spencer A, Prince HM, Phase IA/II Study of Oral Panobinostat (LBH589), a Novel Pan- Deacetylase Inhibitor (DACi) Demonstrating Efficacy in Patients with Advanced Hematologic Malignancies. ASH Annual Meeting Abstracts. Blood 2008;112:958
  • Cameron EE, Bachman KE, Myohanen S, Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet 1999;21:103-7
  • Nan X, Ng HH, Johnson CA, Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 1998;393:386-9
  • Gore SD, Hermes-DeSantis ER. Future directions in myelodysplastic syndrome: newer agents and the role of combination approaches. Cancer Control 2008;15(Suppl):40-9
  • Gore SD, Baylin S, Sugar E, Combined DNA methyltransferase and histone deacetylase inhibition in the treatment of myeloid neoplasms. Cancer Res 2006;66:6361-9
  • Silverman LR, Verma A, Odchimar-Reissig R, A Phase I Trial of the Epigenetic Modulators Vorinostat, in Combination with Azacitidine (azaC) in Patients with the Myelodysplastic Syndrome (MDS) and Acute Myeloid Leukemia (AML): A Study of the New York Cancer Consortium. ASH Annual Meeting Abstracts. Blood 2008;112:3656
  • Kuendgen A, Bug G, Ottmann OG, Treatment of Poor Risk Myelodysplastic Syndromes and Acute Myeloid Leukemia with a Combination of 5-Azacytidine and Valproic Acid. ASH Annual Meeting Abstracts. Blood 2008;112:3639
  • Issa J-P, Castoro R, Ravandi-Kashani F, Randomized Phase II study of combined epigenetic therapy: Decitabine Vs. Decitabine and Valproic Acid in MDS and AML. ASH Annual Meeting Abstracts. Blood 2008;112:228
  • Garcia-Manero G, Yang AS, Klimek V, Phase I/II Study of MGCD0103, an Oral Isotype-Selective Histone Deacetylase (HDAC) Inhibitor, in Combination with 5-Azacitidine in Higher-Risk Myelodysplastic Syndrome (MDS) and Acute Myelogenous Leukemia (AML). ASH Annual Meeting Abstracts. Blood 2007;110:444
  • Ravandi F, Faderl S, Thomas D, Phase I Study of Suberoylanilide Hydroxamic Acid (SAHA) and Decitabine in Patients with Relapsed, Refractory or Poor Prognosis Leukemia. ASH Annual Meeting Abstracts. Blood 2007;110:897
  • Gao S, Mobley A, Miller C, Potentiation of reactive oxygen species is a marker for synergistic cytotoxicity of MS-275 and 5-azacytidine in leukemic cells. Leuk Res 2008;32:771-80
  • Gore SD, Jiemjit A, Silverman LB, Combined Methyltransferase/Histone Deacetylase Inhibition with 5-Azacitidine and MS-275 in Patients with MDS, CMMoL and AML: clinical response, histone acetylation and DNA damage. ASH Annual Meeting Abstracts. Blood 2006;108:517
  • Candelaria M, Herrera A, Labardini J, Hydralazine and magnesium valproate as epigenetic treatment for myelodysplastic syndrome. Preliminary results of a phase-II trial. Ann Hematol 2010: published online 5 October 2010, doi: 10.1007/s00277-010-1090-
  • Raffoux E, de Labarthe A, Cras A, Epigenetic Therapy with 5-Azacitidine, Valproic Acid, and ATRA in Patients with High-Risk AML or MDS: Results of the French VIVEDEP Phase II Study. ASH Annual Meeting Abstracts. Blood 2008;112:763
  • Voso MT, Santini V, Finelli C, Valproic acid at therapeutic plasma levels may increase 5-azacytidine efficacy in higher risk myelodysplastic syndromes. Clin Cancer Res 2009;15:5002-50077
  • Kawaguchi Y, Kovacs JJ, McLaurin A, The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell 2003;115:727-38
  • Badros A, Burger AM, Philip S, Phase I study of vorinostat in combination with bortezomib for relapsed and refractory multiple myeloma. Clin Cancer Res 2009;15:5250-7
  • National Cancer Institute, Bortezomib and Vorinostat in Treating Patients With High-Risk Myelodysplastic Syndrome or Acute Myeloid Leukemia (NCT00818649) Bethesda, MD: clinicaltrials.gov, 2009. Available from: http://clinicaltrials.gov/ct2/show/NCT00818649?term=NCT00818649&rank=1 [Last accessed 7 February 1011]
  • Balaian L, Ball ED. Cytotoxic activity of gemtuzumab ozogamicin (Mylotarg) in acute myeloid leukemia correlates with the expression of protein kinase Syk. Leukemia 2006;20:2093-101
  • Nand S, Godwin J, Smith S, Hydroxyurea, azacitidine and gemtuzumab ozogamicin therapy in patients with previously untreated non-M3 acute myeloid leukemia and high-risk myelodysplastic syndromes in the elderly: results from a pilot trial. Leuk Lymphoma 2008;49:2141-7
  • Borthakur G, Estrov Z, Garcia-Manero G, Decitabine and Gemtuzumab Ozogamicin in Acute Myelogenous Leukemia and High-Risk Myelodysplastic Syndrome. ASH Annual Meeting Abstracts. Blood 2008;112:2985
  • Raza A, Mehdi M, Mumtaz M, Combination of 5-azacytidine and thalidomide for the treatment of myelodysplastic syndromes and acute myeloid leukemia. Cancer 2008;113:1596-604
  • Sekeres MA, List AF, Cuthbertson D, Phase I combination trial of lenalidomide and azacitidine in patients with higher-risk myelodysplastic syndromes. J Clin Oncol 2010;28:2253-8
  • Cheng JC, Matsen CB, Gonzales FA, Inhibition of DNA methylation and reactivation of silenced genes by zebularine. J Natl Cancer Inst 2003;95:399-409
  • Flotho C, Claus R, Batz C, The DNA methyltransferase inhibitors azacitidine, decitabine and zebularine exert differential effects on cancer gene expression in acute myeloid leukemia cells. Leukemia 2009;23:1019-28
  • Cornacchia E, Golbus J, Maybaum J, Hydralazine and procainamide inhibit T cell DNA methylation and induce autoreactivity. J Immunol 1988;140:2197-200
  • Deng C, Lu Q, Zhang Z, Hydralazine may induce autoimmunity by inhibiting extracellular signal-regulated kinase pathway signaling. Arthritis Rheum 2003;48:746-56
  • Singh N, Duenas-Gonzalez A, Lyko F, Medina-Franco JL. Molecular modeling and molecular dynamics studies of hydralazine with human DNA methyltransferase 1. ChemMedChem 2009;4:792-9
  • Lavelle D, Saunthararajah Y, Vaitkus K, S110, a novel decitabine dinucleotide, increases fetal hemoglobin levels in baboons (P. anubis). J Transl Med 2010;8:92
  • Chuang JC, Warner SL, Vollmer D, S110, a 5-Aza-2′-deoxycytidine-containing dinucleotide, is an effective DNA methylation inhibitor in vivo and can reduce tumor growth. Mol Cancer Ther 2010;9:1443-50
  • Scholl J, Joshi-Hangal R, Inloes R, SGI-110, a Novel Second Generation Potent DNA Methylation Inhibitor, In Development for the Treatment of MDS and AML. Preclinical Safety, Pharmacokinetics, and DNA Methylation Results of a Low Volume Subcutaneous (SC) Formulation. ASH Annual Meeting Abstracts. Blood 2010;116:1872
  • Brueckner B, Garcia Boy R, Siedlecki P, Epigenetic reactivation of tumor suppressor genes by a novel small-molecule inhibitor of human DNA methyltransferases. Cancer Res 2005;65:6305-11
  • Metivier R, Gallais R, Tiffoche C, Cyclical DNA methylation of a transcriptionally active promoter. Nature 2008;452:45-50
  • Siedlecki P, Zielenkiewicz P. Mammalian DNA methyltransferases. Acta Biochim Pol 2006;53:245-56
  • Schirrmacher E, Beck C, Brueckner B, Synthesis and in vitro evaluation of biotinylated RG108: a high affinity compound for studying binding interactions with human DNA methyltransferases. Bioconjug Chem 2006;17:261-6
  • Suzuki T, Tanaka R, Hamada S, Design, synthesis, inhibitory activity, and binding mode study of novel DNA methyltransferase 1 inhibitors. Bioorg Med Chem Lett 2010;20:1124-7
  • Klisovic RB, Stock W, Cataland S, A Phase I biological study of MG98, an oligodeoxynucleotide antisense to DNA methyltransferase 1, in patients with high-risk myelodysplasia and acute myeloid leukemia. Clin Cancer Res 2008;14:2444-9
  • Gore SD. In vitro basis for treatment with hypomethylating agents and histone deacetylase inhibitors: can epigenetic changes be used to monitor treatment? Leuk Res 2009;33(Suppl 2):S2-6
  • Das PM, Singal R. DNA methylation and cancer. J Clin Oncol 2004;22:4632-42
  • Schmelz K, Wagner M, Dorken B, Tamm I. 5-Aza-2′-deoxycytidine induces p21WAF expression by demethylation of p73 leading to p53-independent apoptosis in myeloid leukemia. Int J Cancer 2005;114:683-95
  • Giachelia M, D'Alo F, Fabiani E, Gene expression profiling of myelodysplastic CD34+ hematopoietic stem cells treated in vitro with decitabine. Leuk Res: published online 23 September 2010, doi:10.1016/j.leukres.2010.07.022
  • Scott SA, Pearson DS, Bainbridge MN, cDNA Microarray Analysis of genes up-regulated by treatment with 5-AZA-2′-Deoxycytidine in combination with trichostatin a identifies aberrant metallothionein 1h promoter methylation at a high frequency iin human AML. ASH Annual Meeting Abstracts. Blood 2009;104:2036
  • Weber B, Kimhi S, Howard G, Demethylation of a LINE-1 antisense promoter in the cMet locus impairs Met signalling through induction of illegitimate transcription. Oncogene 2010;29:5775-84
  • Saito Y, Suzuki H, Tsugawa H, Chromatin remodeling at Alu repeats by epigenetic treatment activates silenced microRNA-512-5p with downregulation of Mcl-1 in human gastric cancer cells. Oncogene 2009;28:2738-44
  • Bueno MJ, Perez de Castro I, Gomez de Cedron M, Genetic and epigenetic silencing of microRNA-203 enhances ABL1 and BCR-ABL1 oncogene expression. Cancer Cell 2008;13:496-506
  • Cheng AM, Byrom MW, Shelton J, Ford LP. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res 2005;33:1290-7
  • Grovdal M, Karimi M, Khan R, Maintenance treatment with azacytidine for patients with high-risk myelodysplastic syndromes (MDS) or acute myeloid leukaemia following MDS in complete remission after induction chemotherapy. Br J Haematol 2010;150:293-302
  • Ettou S, Humbrecht C, Benet B, FAS Gene expression is epigenetically regulated and predicts the responsiveness to azacitidine in high-risk myelodysplastic syndromes. ASH Annual Meeting Abstracts. Blood 2010;116:232
  • Follo MY, Mongiorgi S, Clissa C, Epigenetic regulation of lipid signalling pathways in low-risk mds patients during azacitidine treatment. ASH Annual Meeting Abstracts. Blood 2010;116:233
  • Langemeijer SM, Kuiper RP, Berends M, Acquired mutations in TET2 are common in myelodysplastic syndromes. Nat Genet 2009;41:838-42
  • Abdel-Wahab O, Mullally A, Hedvat C, Genetic characterization of TET1, TET2, and TET3 alterations in myeloid malignancies. Blood 2009;114:144-7
  • Delhommeau F, Dupont S, Della Valle V, Mutation in TET2 in myeloid cancers. N Engl J Med 2009;360:2289-301
  • Jankowska AM, Szpurka H, Tiu RV, Loss of heterozygosity 4q24 and TET2 mutations associated with myelodysplastic/myeloproliferative neoplasms. Blood 2009;113:6403-10
  • Mohamedali AM, Smith AE, Gaken J, Novel TET2 mutations associated with UPD4q24 in myelodysplastic syndrome. J Clin Oncol 2009;27:4002-6
  • Kosmider O, Gelsi-Boyer V, Cheok M, TET2 mutation is an independent favorable prognostic factor in myelodysplastic syndromes (MDSs). Blood 2009;114:3285-91
  • Kosmider O, Gelsi-Boyer V, Ciudad M, TET2 gene mutation is a frequent and adverse event in chronic myelomonocytic leukemia. Haematologica 2009;94:1676-81
  • Tefferi A. Novel mutations and their functional and clinical relevance in myeloproliferative neoplasms: JAK2, MPL, TET2, ASXL1, CBL, IDH and IKZF1. Leukemia 2010;24:1128-38
  • Lorsbach RB, Moore J, Mathew S, TET1, a member of a novel protein family, is fused to MLL in acute myeloid leukemia containing the t(10;11)(q22;q23). Leukemia 2003;17:637-41
  • Tahiliani M, Koh KP, Shen Y, Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 2009;324:930-5
  • Ito S, D'Alessio AC, Taranova OV, Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 2010;466:1129-33
  • Pollyea DA, Raval A, Kusler B, Impact of TET2 mutations on mRNA expression and clinical outcomes in MDS patients treated with DNA methyltransferase inhibitors. Hematol Oncol 2010; published online 27 October 2010, doi: 10.1002/hon.976
  • Richardson B. DNA methylation and autoimmune disease. Clin Immunol 2003;109:72-9
  • Qin T, Jelinek J, Si J, Mechanisms of resistance to 5-aza-2′-deoxycytidine in human cancer cell lines. Blood 2009;113:659-67
  • Hollenbach PW, Nguyen AN, Brady H, A comparison of azacitidine and decitabine activities in acute myeloid leukemia cell lines. PLoS One 2010;5:e9001: published online 2 February 2010, doi:10.1371/journal.pone.0009001
  • Musto P, Maurillo L, Spagnoli A, Azacitidine for the treatment of lower risk myelodysplastic syndromes : a retrospective study of 74 patients enrolled in an Italian named patient program. Cancer. 2010;116:1485-94
  • Silverman LR, Fenaux P, Mufti GJ, Continued azacitidine therapy beyond time of first response improves quality of response in patients with higher-risk myelodysplastic syndromes. Cancer. 2011: published online 10 January 2011, doi:10.1002/cncr.25774

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.