1,743
Views
139
CrossRef citations to date
0
Altmetric
Reviews

The development of pyrrolobenzodiazepines as antitumour agents

Pages 733-744 | Published online: 04 Apr 2011

Bibliography

  • Leimgruber W, Stefanovic V, Shenker F, Isolation and characterization of anthramycin, a new antitumour antibiotic. J Am Chem Soc 1965;87:5791-3
  • Thurston DE. Advances in the study of pyrrolo[2,1-c][1,4]benzodiazepine (PBD) antitumour antibiotics. In: Neidle S, Waring MJ, editors, Molecular aspects of anticancer drug-DNA interactions. The Macmillan Press Ltd, London; 1993. p. 54-88
  • Hertzberg RP, Hecht SM, Reynolds VL, DNA sequence specificity of the pyrrolo[2,1-c][1,4]benzodiazepine antitumour antibiotics. Methidiumpropyl-EDTA-iron(II) footprinting analysis of DNA binding sites for anthramycin and related drugs. Biochemistry 1986;25:1249-58
  • Hurley LH, Reck T, Thurston DE, Pyrrolo[1,4]benzodiazepine antitumour antibiotics: relationship of DNA alkylation and sequence specificity to the biological activity of natural and synthetic compounds. Chem Res Toxicol 1988;1:258-68
  • Korman S, Tendler MD. Clinical investigations of cancer chemotherapeutic agents for neoplastic disease. J New Drugs 1965;5:275-85
  • Cargill C, Bachmann E, Zbinden G. Effects of daunomycin and anthramycin on electrocardiogram and mitochondrial metabolism of the rat heart. J Natl Cancer Inst 1974;53:481-6
  • Tsugaya M, Washida H, Hirao N, The treatment of bladder cancer by neothramycin. Hinyokika Kiyo 1986;32:1443-8
  • Antonow D, Thurston DE. Synthesis of DNA-interactive pyrrolo[2,1-c][1,4]benzodiazepines (PBDs). Chem Rev 2011. [Epub ahead of print]
  • Cooper N, Hagan DR, Tiberghien A, Synthesis of novel C2-aryl pyrrolobenzodiazepines (PBDs) as potential antitumour agents. Chem Commun 2002;16:1764-5
  • Antonow D, Kaliszczak M, Kang G-D, Structure-activity relationships of monomeric C2-aryl pyrrolo[2,1-c][1,4]benzodiazepines (PBD) antitumour agents. J Med Chem 2010;53:2927-41
  • Burger AM, Loadman PM, Thurston DE, Preclinical pharmacology of the pyrrolobenzodiazepine (PBD) monomer DRH-417 (NSC 709119). J Chemother 2007;19:66-78
  • Kamal A, Srinivas O, Ramulu P, Synthesis of novel C2 and C2-C8 linked pyrrolo[2,1-c][1,4]benzodiazepine-naphthalimide hybrids as DNA binding agents. Bioorganic Med Chem Lett 2003;13:3577-9
  • Kamal A, Ramu R, Tekumalla V, Synthesis, DNA binding and cytotoxicity studies of pyrrolo[2,1-c][1,4]benzodiazepine-anthraquinone conjugate. Bioorganic Med Chem 2007;15:6868-74
  • Kamal A, Srinivas O, Ramulu P, Synthesis of C8-linked pyrrolo[2,1-c][1,4]benzodiazepine-acridine hybrids as potential DNA binding agents. Bioorganic Med Chem Lett 2004;14:4107-9
  • Kamal A, Ramulu P, Srinivas O, Synthesis of C8-linked pyrrolo[2,1-c][1,4]benzodiazepine-benzimidazole conjugates with remarkable DNA binding affinity. Bioorganic Med Chem Lett 2004;14:4791-4
  • Baraldi PG, Balboni G, Cacciari B, Synthesis, in vitro antiproliferative activity and DNA binding properties of hybrid molecules containing pyrrolo[2,1-c][1,4]benzodiazepine and minor groove binding oligopyrrole carriers. J Med Chem 1999;42(25):5131-41
  • Kumar R, Lown JW. Synthesis and antitumour cytotoxicity evaluation of novel pyrrolo[2,1-c][1,4]benzodiazepine imidazole containing polyamide conjugates. Oncol Res 2003;13:221-6
  • Wells G, Martin CRH, Howard PW, Design, synthesis and biophysical evaluation of a series of pyrrolobenzodiazepine-poly(N-methylpyrrole) conjugates. J Med Chem 2006;49:5442-61
  • Cipolla L, Araujo AC, Airoldi C, Bini D. Pyrrolo[2,1-c][1,4]benzodiazepines as a scaffold for the design and synthesis of anti-tumor drugs. Anti Cancer Agents Med Chem 2009;9:1-31
  • Hu WP, Yu HS, Sung PJ, DC-81-indole conjugate agent induces mitochondria mediated apoptosis in human melanoma A375 cells. Chem Res Toxicol 2007;20(6):905-12
  • Lee C-H, Hu W-P, Hong C-H, Pyrrolo[2,1-c][1,4]benzodiazepines and indole conjugate (IN6CPBD) has better efficacy and superior safety than the mother compound DC-81 in suppressing the growth of established melanoma in vivo. Chem Biol Interact 2009;180:360-7
  • Zhou Q, Duan W, Simmons D, Design and synthesis of a novel DNA-DNA interstrand adenine-guanine cross-linking agent. J Am Chem Soc 2001;123:4865-6
  • Tercel M, Stribbling SM, Sheppard H, Unsymmetrical DNA cross-linking agents: combinations of the CBI and PBD pharmacophores. J Med Chem 2003;46:2132-51
  • Purnell B, Sato A, O'Kelley A, DNA interstrand crosslinking agents: synthesis, DNA interactions and cytotoxicity of dimeric achiral seco-amino-CBI and conjugates of achiral seco-amino-CBI with pyrrolobenzodiazepine (PBD). Bioorg Med Chem Lett 2006;16:5677-81
  • Farmer JD, Gustafson GR, Conti A, DNA binding properties of a new class of linked anthramycin analogs. Nucleic Acids Res 1991;19:899-905
  • Bose DS, Thompson AS, Ching J, Rational design of a highly efficient irreversible DNA interstrand cross-linking agent based on the pyrrolobenzodiazepine ring system. J Am Chem Soc 1992;114:4939-41
  • Smellie M, Kelland LR, Thurston DE, Cellular pharmacology of novel C8-linked anthramycin-based sequence-selective DNA minor-groove cross-linking agents. Br J Cancer 1994;70:48-53
  • Jenkins TC, Hurley LH, Neidle S, Thurston DE. Structure of a covalent DNA minor groove adduct with a pyrrolobenzodiazepine dimer: evidence for sequence specific interstrand cross-linking. J Med Chem 1994;37:4529-37
  • Smellie M, Bose DS, Thompson AS, Sequence selective recognition of duplex DNA through covalent interstrand crosslinking: kinetic and molecular modelling studies with pyrrolobenzodiazepine (PBD) dimers. Biochemistry 2003;42:8232-9
  • Hartley JA. Alkylating agents. In: Souhami RL, Tannock I, Hohenberger P, Horiot JC, editors, Oxford Textbook of Oncology. 2nd edition. Oxford University Press; 2001. p. 639-54
  • De Silva IU, McHugh PJ, Clingen PH, Hartley JA. Defining the roles of nucleotide excision repair and recombination in the repair of DNA interstrand cross-links in mammalian cells. Mol Cell Biol 2000;20:7980-90
  • McHugh PJ, Spanswick VJ, Hartley JA. Repair of DNA interstrand crosslinks: molecular mechanisms and clinical relevance. Lancet Oncol 2001;2:483-90
  • O'Connor PM, Kohn KW. Comparative pharmacokinetics of DNA lesion formation and removal following treatment of L1210 cells with nitrogen mustards. Cancer Commun 1990;2:387-94
  • Sunters A, Springer CJ, Bagshawe KD, The cytotoxicity, DNA crosslinking ability and DNA sequence selectivity of the aniline mustards melphalan, chlorambucil and 4-[bis(2-chloroethyl)amino]benzoic acid. Biochem Pharmacol 1992;44:59-64
  • Spanswick VJ, Craddock C, Sekhar M, Repair of DNA interstrand crosslinks as a mechanism of clinical resistance to melphalan in multiple myeloma. Blood 2002;100:224-9
  • Wynne P, Newton C, Ledermann JA, Enhanced repair of DNA interstrand crosslinking in ovarian cancer cells from patients following treatment with platinum-based chemotherapy. Br J Cancer 2007;97:927-33
  • Ledermann JA, Gabra H, Jayson GC, Carboplatin and gemcitabine in patients with ‘platinum-resistant’ ovarian cancer: demonstration of inhibition of carboplatin-induced DNA interstrand crosslink repair by gemcitabine. Clin Cancer Res 2010;16(19):4899-905
  • Lawley PD, Phillips DH. DNA adducts from chemotherapeutic agents. Mutat Res 1996;355:13-40
  • Rink SM, Hopkins PB. A mechlorethamine-induced DNA interstrand cross-link bends duplex DNA. Biochemistry 1995;34:1439-45
  • Brendel M, Ruhland A. Relationships between functionality and genetic toxicology of selected DNA-damaging agents. Mutat Res 1984;133:51-85
  • McCabe KM, Olson SB, Moses RE. DNA interstrand crosslink repair in mammalian cells. J Cell Physiol 2009;220:569-73
  • Niedernhofer LJ, Odijk H, Budzowska M, The structure-specific endonuclease Ercc1-Xpf is required to resolve DNA interstrand cross-link-induced double-strand breaks. Mol Cell Biol 2004;24:5776-87
  • McHugh PJ, Sarkar S. DNA interstrand cross-link repair in the cell cycle: a critical role for polymerase zeta in G1 phase. Cell Cycle 2006;5:1044-7
  • Bose DS, Thompson AS, Smellie M, Effect of linker length on DNA-binding affinity, cross-linking efficiency and cytotoxicity of C8-linked pyrrolobenzodiazepine dimers. J Chem Soc Chem Commun 1992;20:1518-20
  • Kumar R, Lown JW. Design, synthesis and in vitro cytotoxic studies of novel bis- pyrrolo[2,1-c][1,4]benzodiazepine-pyrrole and imidazole polyamide conjugates. Eur J Med Chem 2005;40:641-8
  • Tiberghien AC, Evans DA, Kiakos K, An asymmetric C8/C8'-tripyrrole-linked sequence selective pyrrolo[2,1-c][1,4]benzodiazepine (PBD) dimer DNA interstrand cross-linking agent spanning 11 DNA base pairs. Bioorg Med Chem Lett 2008;18:2073-7
  • Walton MI, Goddard P, Kelland LR, Preclinical pharmacology and antitumour activity of the novel sequence selective DNA minor groove cross-linking agent DSB-120. Cancer Chemother Pharmacol 1996;38(5):431-8
  • Gregson SJ, Howard PW, Hartley JA, Design synthesis and evaluation of a novel pyrrolobenzodiazepine DNA-interactive agent with highly efficient cross-linking ability and potent cytotoxicity. J Med Chem 2001;44:737-48
  • Morris SJ, Thurston DE, Nevell TG. Evaluation of the electrophilicity of DNA-binding pyrrolo[2,1-c][1,4]benzodiazepines by HPLC. J Antibiot (Tokyo) 1990;43(10):1286-92
  • Rahman KM, Thompson AS, James CH, The pyrrolobenzodaizepine dimer SJG-136 forms sequence-dependent intrastrand DNA cross-links and monoalkylated adducts in addition to interstrand cross-links. J Am Chem Soc 2009;131(38):13756-66
  • Hartley JA, Spanswick VJ, Brooks N, SJG-136 (NSC 694501), a novel rationally designed DNA minor groove interstrand cross-linking agent with potent and broad spectrum antitumour activity: Part 1: cellular pharmacology, in vitro and initial in vivo antitumour activity. Cancer Res 2004;64:6693-9
  • Alley MC, Hollingshead MG, Pacula-Cox CM, SJG-136 (NSC 694501), a novel rationally designed DNA minor groove interstrand cross-linking agent with potent and broad spectrum antitumour activity: Part 2: efficacy evaluations. Cancer Res 2004;64:6700-6
  • Reid JM, Buhrow SA, Kuffel MJ, Pharmacokinetic, pharmacodynamic and metabolism of the dimeric pyrrolobenzodiazepine SJG-136 in rats. Cancer Chemother Pharmacol 2011. [Epub ahead of print]
  • Wilkinson GP, Taylor JP, Shnyder S, Preliminary pharmacokinetic and bioanalytical studies of SJG-136 (NSC694501), a sequence selective pyrrolobenzodiazepine dimer DNA cross-linking agent. Invest New drugs 2004;22(3):231-40
  • Buhrow SA, Reid JM, Jia L, LC-MS/MS assay and dog pharmacokinetics of the dimeric pyrrolobenzodiazepine SJG-136 (NSC 694501). J Chromatogr B Analyt Technol Biomed Life Sci 2006;840(1):56-62
  • Hochhauser D, Meyer T, Spanswick VJ, Phase I study of sequence-selective minor groove DNA binding agent SJG-136 in patients with advanced solid tumors. Clinical Cancer Res 2009;15:2140-7
  • Janjigian YY, Lee W, Kris MG, A phase I trial of SJG-136 (NSC694501) in advanced solid tumors. Cancer Chemother Pharmacol 2010;65:833-8
  • Puzanov I, Lee W, Chen AP, Phase I, pharmacokinetic and pharmacodynamic study of SJG-136, a novel DNA sequence selective minor groove cross-linking agent, in advanced solid tumors. Clin Cancer Res 2011; In press
  • Pepper CJ, Hambly RM, Fegan CD, The novel sequence-specific DNA cross-linking agent SJG-136 (NSC 694501) has potent and selective in vitro cytotoxicity in human B-cell chronic lymphocytic leukemia cells with evidence of a p53-independent mechanism of cell kill. Cancer Res 2004;64:6750-5
  • Pepper C, Lowe H, Fegan C, Fludarabine-mediated suppression of the excision repair enzyme ERCC1 contributes to the cytotoxic synergy with the DNA minor groove cross-linking agent SJG-136 (NSC 694501) in chronic lymphocytic leukaemia cells. Br J Cancer 2007;97:253-9
  • Clingen PH, De Silva IU, McHugh PJ, The XPF-ERCC1 endonuclease and homologous recombination contribute to the repair of minor groove DNA interstrand crosslinks in mammalian cells produced by the pyrrolo[2,1-c][1,4]benzodiazepine dimer SJG-136. Nucleic Acids Res 2005;33:3283-91
  • Kadia TM, Faderl S, Estrov Z, Final results of a phase I and pharmacokinetic study of SJG-136 administered on a daily × 5 schedule. J Clin Oncol 2009;27(Suppl): abstract e13506
  • Gregson SJ, Howard PW, Gullick DR, Linker length modulates DNA cross-inking reactivity and cytotoxic potency for ether-linked C2-exo-unsaturated pyrrolo[2,1-c][1,4]benzodiazepine (PBD) dimers. J Med Chem 2004;47:1161-74
  • Hartley JA, Hamaguchi A, Suggitt M, DNA interstrand cross-linking and in vivo antitumour activity of the extended pyrrolo[2,1-c][1,4]benzodiazepine dimer SG2057. Invest New Drugs 2011; In press
  • Howard PH, Chen Z, Gregson SJ, Synthesis of a novel C2/C2'-aryl-substituted pyrrolo[2,1-c]-[1,4]benzodiazepine dimer prodrug with improved water solubility and reduced DNA reaction rate. Bioorganic Med Chem Lett 2009;19:6463-6
  • Hartley JA, Hamaguchi A, Coffils M, SG2285, a novel C2-aryl-substituted pyrrolobenzodiazepine dimer pro-drug that cross-links DNA and exerts highly potent antitumour activity. Cancer Res 2010;70:6849-58
  • Masterson LA, Spanswick VJ, Hartley JA, Synthesis and biological evaluation of novel pyrrolo[2,1-c][1,4]benzodiazepine (PBD) prodrugs for use in antibody-directed enzyme prodrug therapy (ADEPT). Bioorganic Med Chem Lett 2006;16:252-6
  • Kamal A, Tekumalla V, Raju P, Pyrrolo[2,1-c][1,4]benzodiazepine-b-glucuronide prodrugs with a potential for selective therapy of solid tumors by PMT and ADEPT strategies. Bioorganic Med Chem Lett 2008;18:3769-73
  • Alley SC, Okeley NM, Senter PD. Antibody-drug conjugates: targeted drug delivery for cancer. Curr Opin Chem Biol 2010;14:1-9
  • Dijoseph JF, Dougher MM, Armellino DC, CD20-specific antibodytargeted chemotherapy of non-Hodgkin's B-cell lymphoma using calicheamicin-conjugated rituximab. Cancer Immunol Immunother 2007;56:1107-17
  • Erickson HK, Park PU, Widdison WC, Antibodymaytansinoid conjugates are activated in targeted cancer cells by lysosomal degradation and linker-dependent intracellular processing. Cancer Res 2006;66:4426-33
  • Doronina SO, Toki BE, Torgov MY, Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat Biotechnol 2003;21:778-84

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.