853
Views
47
CrossRef citations to date
0
Altmetric
Reviews

Novel C-C chemokine receptor 2 antagonists in metabolic disease: a review of recent developments

, MD, , MD, , MD & , MD
Pages 745-756 | Published online: 06 Apr 2011

Bibliography

  • Schall TJ, Bacon KB. Chemokines, leukocyte trafficking, and inflammation. Curr Opin Immunol 1994;6(6):865-73
  • Lukacs NW. Role of chemokines in the pathogenesis of asthma. Nat Rev Immunol 2001;1(2):108-16
  • Deshmane SL, Kremlev S, Amini S, Sawaya BE. Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res 2009;29(6):313-26
  • Charo IF, Myers SJ, Herman A, Molecular cloning and functional expression of two monocyte chemoattractant protein 1 receptors reveals alternative splicing of the carboxyl-terminal tails. Proc Natl Acad Sci USA 1994;91(7):2752-6
  • Cushing SD, Berliner JA, Valente AJ, Minimally modified low density lipoprotein induces monocyte chemotactic protein 1 in human endothelial cells and smooth muscle cells. Proc Natl Acad Sci USA 1990;87(13):5134-8
  • Carr MW, Roth SJ, Luther E, Monocyte chemoattractant protein 1 acts as a T-lymphocyte chemoattractant. Proc Natl Acad Sci USA 1994;91(9):3652-6
  • Yoshimura T, Yuhki N, Moore SK, Human monocyte chemoattractant protein-1 (MCP-1). Full-length cDNA cloning, expression in mitogen-stimulated blood mononuclear leukocytes, and sequence similarity to mouse competence gene JE. FEBS Lett 1989;244(2):487-93
  • Fiorentino DF, Bond MW, Mosmann TR. Two types of mouse T helper cell. IV. Th2 clones secrete a factor that inhibits cytokine production by Th1 clones. J Exp Med 1989;170(6):2081-95
  • Lodi PJ, Garrett DS, Kuszewski J, High-resolution solution structure of the beta chemokine hMIP-1 beta by multidimensional NMR. Science 1994;263(5154):1762-7
  • Murphy PM, Baggiolini M, Charo IF, International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol Rev 2000;52(1):145-76
  • Szekanecz Z, Szucs G, Szanto S, Koch AE. Chemokines in rheumatic diseases. Curr Drug Targets 2006;7(1):91-102
  • Charo IF, Ransohoff RM. The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med 2006;354(6):610-21
  • Matsuzawa Y. The metabolic syndrome and adipocytokines. FEBS Lett 2006;580(12):2917-21
  • Ferrante AW Jr. Obesity-induced inflammation: a metabolic dialogue in the language of inflammation. J Intern Med 2007;262(4):408-14
  • Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 1993;259(5091):87-91
  • Hotamisligil GS, Peraldi P, Budavari A, IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance. Science 1996;271(5249):665-8
  • Pixley FJ, Stanley ER. CSF-1 regulation of the wandering macrophage: complexity in action. Trends Cell Biol 2004;14(11):628-38
  • Schaffler A, Scholmerich J. Innate immunity and adipose tissue biology. Trends Immunol 2010;31(6):228-35
  • Majdalawieh A, Ro HS. Regulation of IkappaBalpha function and NF-kappaB signaling: AEBP1 is a novel proinflammatory mediator in macrophages. Mediators Inflamm 2010;2010:823821
  • Nishimura S, Manabe I, Nagasaki M, CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat Med 2009;15(8):914-20
  • Feuerer M, Herrero L, Cipolletta D, Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat Med 2009;15(8):930-9
  • Niu J, Kolattukudy PE. Role of MCP-1 in cardiovascular disease: molecular mechanisms and clinical implications. Clin Sci (Lond) 2009;117(3):95-109
  • Gunn MD, Nelken NA, Liao X, Williams LT. Monocyte chemoattractant protein-1 is sufficient for the chemotaxis of monocytes and lymphocytes in transgenic mice but requires an additional stimulus for inflammatory activation. J Immunol 1997;158(1):376-83
  • Ozcan U, Cao Q, Yilmaz E, Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 2004;306(5695):457-61
  • Kanda H, Tateya S, Tamori Y, MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest 2006;116(6):1494-505
  • Kamei N, Tobe K, Suzuki R, Overexpression of monocyte chemoattractant protein-1 in adipose tissues causes macrophage recruitment and insulin resistance. J Biol Chem 2006;281(36):26602-14
  • Inouye KE, Shi H, Howard JK, Absence of CC chemokine ligand 2 does not limit obesity-associated infiltration of macrophages into adipose tissue. Diabetes 2007;56(9):2242-50
  • Kirk EA, Sagawa ZK, McDonald TO, Monocyte chemoattractant protein deficiency fails to restrain macrophage infiltration into adipose tissue [corrected]. Diabetes 2008;57(5):1254-61
  • Sartipy P, Loskutoff DJ. Monocyte chemoattractant protein 1 in obesity and insulin resistance. Proc Natl Acad Sci USA 2003;100(12):7265-70
  • Tateya S, Tamori Y, Kawaguchi T, An increase in the circulating concentration of monocyte chemoattractant protein-1 elicits systemic insulin resistance irrespective of adipose tissue inflammation in mice. Endocrinology 2010;151(3):971-9
  • Weisberg SP, Hunter D, Huber R, CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J Clin Invest 2006;116(1):115-24
  • Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance. J Clin Invest 2006;116(7):1793-801
  • Cai D, Yuan M, Frantz DF, Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nat Med 2005;11(2):183-90
  • Gerhardt CC, Romero IA, Cancello R, Chemokines control fat accumulation and leptin secretion by cultured human adipocytes. Mol Cell Endocrinol 2001;175(1-2):81-92
  • Kang YS, Lee MH, Song HK, CCR2 antagonism improves insulin resistance, lipid metabolism, and diabetic nephropathy in type 2 diabetic mice. Kidney Int 2010;78(9):883-94
  • Tamura Y, Sugimoto M, Murayama T, C-C chemokine receptor 2 inhibitor improves diet-induced development of insulin resistance and hepatic steatosis in mice. J Atheroscler Thromb 2010;17(3):219-28
  • Tamura Y, Sugimoto M, Murayama T, Inhibition of CCR2 ameliorates insulin resistance and hepatic steatosis in db/db mice. Arterioscler Thromb Vasc Biol 2008;28(12):2195-201
  • Yang SJ, IglayReger HB, Kadouh HC, Bodary PF. Inhibition of the chemokine (C-C motif) ligand 2/chemokine (C-C motif) receptor 2 pathway attenuates hyperglycaemia and inflammation in a mouse model of hepatic steatosis and lipoatrophy. Diabetologia 2009;52(5):972-81
  • Lumeng CN, DelProposto JB, Westcott DJ, Saltiel AR. Phenotypic switching of adipose tissue macrophages with obesity is generated by spatiotemporal differences in macrophage subtypes. Diabetes 2008;57(12):3239-46
  • Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 2007;117(1):175-84
  • Wentworth JM, Naselli G, Brown WA, Pro-inflammatory CD11c+CD206+ adipose tissue macrophages are associated with insulin resistance in human obesity. Diabetes 2010;59(7):1648-56
  • Zeyda M, Gollinger K, Kriehuber E, Newly identified adipose tissue macrophage populations in obesity with distinct chemokine and chemokine receptor expression. Int J Obes (Lond) 2010;34:1684-94
  • Obstfeld AE, Sugaru E, Thearle M, C-C chemokine receptor 2 (CCR2) regulates the hepatic recruitment of myeloid cells that promote obesity-induced hepatic steatosis. Diabetes 2010;59(4):916-25
  • Ito A, Suganami T, Yamauchi A, Role of CC chemokine receptor 2 in bone marrow cells in the recruitment of macrophages into obese adipose tissue. J Biol Chem 2008;283(51):35715-23
  • Kim DH, Sandoval D, Reed JA, The role of GM-CSF in adipose tissue inflammation. Am J Physiol Endocrinol Metab 2008;295(5):E1038-1046
  • Reed JA, Clegg DJ, Smith KB, GM-CSF action in the CNS decreases food intake and body weight. J Clin Invest 2005;115(11):3035-44
  • Rubenstein AH, Mako ME, Horwitz DL. Insulin and the kidney. Nephron 1975;15(3-5):306-26
  • Stumvoll M, Meyer C, Mitrakou A, Renal glucose production and utilization: new aspects in humans. Diabetologia 1997;40(7):749-57
  • Drury DR, Wick AN, Mac KE, Formation of glucose by the kidney. Am J Physiol 1950;163(3):655-61
  • Schoolwerth AC, Smith BC, Culpepper RM. Renal gluconeogenesis. Miner Electrolyte Metab 1988;14(6):347-61
  • Viedt C, Vogel J, Athanasiou T, Monocyte chemoattractant protein-1 induces proliferation and interleukin-6 production in human smooth muscle cells by differential activation of nuclear factor-kappaB and activator protein-1. Arterioscler Thromb Vasc Biol 2002;22(6):914-20
  • Kato S, Luyckx VA, Ots M, Renin-angiotensin blockade lowers MCP-1 expression in diabetic rats. Kidney Int 1999;56(3):1037-48
  • Prodjosudjadi W, Gerritsma JS, van Es LA, Monocyte chemoattractant protein-1 in normal and diseased human kidneys: an immunohistochemical analysis. Clin Nephrol 1995;44(3):148-55
  • Hartner A, Veelken R, Wittmann M, Effects of diabetes and hypertension on macrophage infiltration and matrix expansion in the rat kidney. BMC Nephrol 2005;6(1):6
  • Chow FY, Nikolic-Paterson DJ, Ozols E, Monocyte chemoattractant protein-1 promotes the development of diabetic renal injury in streptozotocin-treated mice. Kidney Int 2006;69(1):73-80
  • Kanamori H, Matsubara T, Mima A, Inhibition of MCP-1/CCR2 pathway ameliorates the development of diabetic nephropathy. Biochem Biophys Res Commun 2007;360(4):772-7
  • Young BA, Johnson RJ, Alpers CE, Cellular events in the evolution of experimental diabetic nephropathy. Kidney Int 1995;47(3):935-44
  • Ihm CG, Park JK, Hong SP, A high glucose concentration stimulates the expression of monocyte chemotactic peptide 1 in human mesangial cells. Nephron 1998;79(1):33-7
  • Yamagishi S, Inagaki Y, Okamoto T, Advanced glycation end product-induced apoptosis and overexpression of vascular endothelial growth factor and monocyte chemoattractant protein-1 in human-cultured mesangial cells. J Biol Chem 2002;277(23):20309-15
  • Takahara N, Kashiwagi A, Nishio Y, Oxidized lipoproteins found in patients with NIDDM stimulate radical-induced monocyte chemoattractant protein-1 mRNA expression in cultured human endothelial cells. Diabetologia 1997;40(6):662-70
  • Ruiz-Ortega M, Bustos C, Hernandez-Presa MA, Angiotensin II participates in mononuclear cell recruitment in experimental immune complex nephritis through nuclear factor-kappa B activation and monocyte chemoattractant protein-1 synthesis. J Immunol 1998;161(1):430-9
  • Wada T, Yokoyama H, Matsushima K, Kobayashi K. Chemokines in renal diseases. Int Immunopharmacol 2001;1(4):637-45
  • Kitagawa K, Wada T, Furuichi K, Blockade of CCR2 ameliorates progressive fibrosis in kidney. Am J Pathol 2004;165(1):237-46
  • Huber TB, Reinhardt HC, Exner M, Expression of functional CCR and CXCR chemokine receptors in podocytes. J Immunol 2002;168(12):6244-52
  • Giunti S, Tesch GH, Pinach S, Monocyte chemoattractant protein-1 has prosclerotic effects both in a mouse model of experimental diabetes and in vitro in human mesangial cells. Diabetologia 2008;51(1):198-207
  • Park J, Ryu DR, Li JJ, MCP-1/CCR2 system is involved in high glucose-induced fibronectin and type IV collagen expression in cultured mesangial cells. Am J Physiol Renal Physiol 2008;295(3):F749-757
  • Tarabra E, Giunti S, Barutta F, Effect of the monocyte chemoattractant protein-1/CC chemokine receptor 2 system on nephrin expression in streptozotocin-treated mice and human cultured podocytes. Diabetes 2009;58(9):2109-18
  • Pease JE, Horuk R. Chemokine receptor antagonists: part 1. Expert Opin Ther Pat 2009;19(1):39-58
  • Carter PH, Tebben AJ. Chapter 12. The use of receptor homology modeling to facilitate the design of selective chemokine receptor antagonists. Methods Enzymol 2009;461:249-79
  • Shin N, Baribaud F, Wang K, Pharmacological characterization of INCB3344, a small molecule antagonist of human CCR2. Biochem Biophys Res Commun 2009;387(2):251-5
  • Brodmerkel CM, Huber R, Covington M, Discovery and pharmacological characterization of a novel rodent-active CCR2 antagonist, INCB3344. J Immunol 2005;175(8):5370-8
  • Aiello RJ, Perry BD, Bourassa PA, CCR2 receptor blockade alters blood monocyte subpopulations but does not affect atherosclerotic lesions in apoE(-/-) mice. Atherosclerosis 2010;208(2):370-5
  • Mirzadegan T, Diehl F, Ebi B, Identification of the binding site for a novel class of CCR2b chemokine receptor antagonists: binding to a common chemokine receptor motif within the helical bundle. J Biol Chem 2000;275(33):25562-71
  • Imai M, Shiota T, Kataoka K, Small molecule inhibitors of the CCR2b receptor. Part 1: Discovery and optimization of homopiperazine derivatives. Bioorg Med Chem Lett 2004;14(21):5407-11
  • Xue CB, Wang A, Meloni D, Discovery of INCB3344, a potent, selective and orally bioavailable antagonist of human and murine CCR2. Bioorg Med Chem Lett 2010;20(24):7473-8
  • Hirayama C, Suzuki H, Ito M, Propagermanium: a nonspecific immune modulator for chronic hepatitis B. J Gastroenterol 2003;38(6):525-32
  • Ishiwata Y, Yokochi S, Hashimoto H, Protection against concanavalin A-induced murine liver injury by the organic germanium compound, propagermanium. Scand J Immunol 1998;48(6):605-14
  • Yokochi S, Hashimoto H, Ishiwata Y, An anti-inflammatory drug, propagermanium, may target GPI-anchored proteins associated with an MCP-1 receptor, CCR2. J Interferon Cytokine Res 2001;21(6):389-98
  • Furuichi K, Wada T, Iwata Y, CCR2 signaling contributes to ischemia-reperfusion injury in kidney. J Am Soc Nephrol 2003;14(10):2503-15
  • Eto Y, Shimokawa H, Tanaka E, Long-term treatment with propagermanium suppresses atherosclerosis in WHHL rabbits. J Cardiovasc Pharmacol 2003;41(2):171-7
  • Shimokawa H, Eto Y, Miyata K, Propagermanium suppresses macrophage-mediated formation of coronary arteriosclerotic lesions in pigs in vivo. J Cardiovasc Pharmacol 2003;41(3):372-80
  • Yamashita T, Kawashima S, Ozaki M, Propagermanium reduces atherosclerosis in apolipoprotein E knockout mice via inhibition of macrophage infiltration. Arterioscler Thromb Vasc Biol 2002;22(6):969-74
  • Chen A, Mumick S, Zhang C, Diet induction of monocyte chemoattractant protein-1 and its impact on obesity. Obes Res 2005;13(8):1311-20
  • Xia M, Sui Z. Recent developments in CCR2 antagonists. Expert Opin Ther Pat 2009;19(3):295-303
  • Butora G, Morriello GJ, Kothandaraman S, 4-Amino-2-alkyl-butyramides as small molecule CCR2 antagonists with favorable pharmacokinetic properties. Bioorg Med Chem Lett 2006;16(18):4715-22
  • Pasternak A, Marino D, Vicario PP, Novel, orally bioavailable gamma-aminoamide CC chemokine receptor 2 (CCR2) antagonists. J Med Chem 2006;49(16):4801-4
  • Cherney RJ, Mo R, Meyer DT, Discovery of disubstituted cyclohexanes as a new class of CC chemokine receptor 2 antagonists. J Med Chem 2008;51(4):721-4
  • Carter PH, Brown GD, Friedrich SR, Capped diaminopropionamide-glycine dipeptides are inhibitors of CC chemokine receptor 2 (CCR2). Bioorg Med Chem Lett 2007;17(19):5455-61
  • Forbes IT, Cooper DG, Dodds EK, CCR2B receptor antagonists: conversion of a weak HTS hit to a potent lead compound. Bioorg Med Chem Lett 2000;10(16):1803-6
  • Witherington J, Bordas V, Cooper DG, Conformationally restricted indolopiperidine derivatives as potent CCR2B receptor antagonists. Bioorg Med Chem Lett 2001;11(16):2177-80
  • Berkhout TA, Blaney FE, Bridges AM, CCR2: characterization of the antagonist binding site from a combined receptor modeling/mutagenesis approach. J Med Chem 2003;46(19):4070-86
  • Moree WJ, Kataoka K, Ramirez-Weinhouse MM, Small molecule antagonists of the CCR2b receptor. Part 2: discovery process and initial structure-activity relationships of diamine derivatives. Bioorg Med Chem Lett 2004;14(21):5413-16
  • Moree WJ, Kataoka K, Ramirez-Weinhouse MM, Potent antagonists of the CCR2b receptor. Part 3: SAR of the (R)-3-aminopyrrolidine series. Bioorg Med Chem Lett 2008;18(6):1869-73

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.