1,304
Views
155
CrossRef citations to date
0
Altmetric
Reviews

Targeting Mcl-1 for the therapy of cancer

, , , , , , , , , , , , , , , , , , , & show all
Pages 1397-1411 | Published online: 19 Aug 2011

Bibliography

  • Mandelin A, Pope R. Myeloid cell leukemia-1 as a therapeutic target. Expert Opin Ther Targets 2007;11(10):363
  • Kang M, Reynolds CP. Bcl-2 inhibitors: Targeting mitochondrial apoptotic pathways in cancer therapy. Clin Cancer Res 2009;15(4):1126
  • Danial N. BCL-2 family proteins: critical checkpoints of apoptotic cell death. Clin Cancer Res 2007;13(24):7254
  • Kozopas KM, Yang T, Buchan HL, MCL1, a gene expressed in programmed myeloid cell differentiation, has sequence similarity to BCL2. Proc Natl Acad Sci USA 1993;90(8):3516
  • Reynolds JE, Yang T, Qian L, Mcl-1, a member of the bcl-2 family, delays apoptosis induced by c-myc overexpression in chinese hamster ovary cells. Cancer Res 1994;54(24):6348
  • Thomas L, Lam C, Edwards S. Mcl-1 the molecular regulation of protein function. FEBS Lett 2010;584(14):2981
  • Germain M, Duronio V. The N terminus of the anti-apoptotic BCL-2 homologue MCL-1 regulates its localization and function. J Biol Chem 2007;282(44):32233
  • Rechsteiner M, Rogers SW. PEST sequences and regulation by proteolysis. Trends Biochem Sci 1996;21(7):267
  • Day C, Chen L, Richardson S, Solution structure of prosurvival mcl-1 and characterization of its binding by proapoptotic BH3-only ligands. J Biol Chem 2005;280(6):4738
  • Akgul C. Mcl-1 is a potential therapeutic target in multiple types of cancer. Cell Mol Life Sci 2009;66(8):1326
  • Bingle CD, Craig RW, Swales BM, Exon skipping in mcl-1 results in a bcl-2 homology domain 3 only gene product that promotes cell death. J Biol Chem 2000;275(29):22136
  • Mott JL, Kobayashi S, Bronk SF, Gores GJ. Mir-29 regulates mcl-1 protein expression and apoptosis. Oncogene 2007;26(42):6133
  • Steele R, Mott J, Ray R. MBP-1 upregulates miR-29b that represses mcl-1, collagens, and matrix-metalloproteinase-2 in prostate cancer cells. Genes Cancer 2010;1(4):381
  • Xiong Y, Fang J, Yun J, Effects of microRNA-29 on apoptosis, tumorigenicity, and prognosis of hepatocellular carcinoma. Hepatology 2010;51(3):836
  • Domina A, Vrana J, Gregory M, MCL1 is phosphorylated in the PEST region and stabilized upon ERK activation in viable cells, and at additional sites with cytotoxic okadaic acid or taxol. Oncogene 2004;23(31):5301
  • Maurer U, Charvet C, Wagman A, Glycogen synthase kinase-3 regulates mitochondrial outer membrane permeabilization and apoptosis by destabilization of MCL-1. Mol Cell 2006;21(6):749
  • Zhong Q, Gao W, Du F, Wang X. Mule/ARF-BP1, a BH3-only E3 ubiquitin ligase, catalyzes the polyubiquitination of mcl-1 and regulates apoptosis. Cell 2005;121(7):1085
  • Inuzuka H, Shaik S, Onoyama I, SCF(FBW7) regulates cellular apoptosis by targeting MCL1 for ubiquitylation and destruction. Nature 2011;471(7336):104
  • Placzek WJ, Wei J, Kitada S, A survey of the anti-apoptotic bcl-2 subfamily expression in cancer types provides a platform to predict the efficacy of bcl-2 antagonists in cancer therapy. Cell Death Dis 2010;1(5):e40
  • Zhuang L, Lee CS, Scolyer R, Mcl-1, bcl-XL and Stat3 expression are associated with progression of melanoma whereas bcl-2, AP-2 and MITF levels decrease during progression of melanoma. Mod Pathol 2007;20(4):416
  • Selzer E, Schlagbauer-Wadl H, Okamoto I, Expression of bcl-2 family members in human melanocytes, in melanoma metastases and in melanoma cell lines. Melanoma Res 1998;8(3):197
  • Thallinger C, Wolschek M, Wacheck V, Mcl-1 antisense therapy chemosensitizes human melanoma in a SCID mouse xenotransplantation model. J Invest Dermatol 2003;120(6):1081
  • Hotz MA, Bosq J, Zbaeren P, Spontaneous apoptosis and the expression of p53 and bcl-2 family proteins in locally advanced head and neck cancer. Arch Otolaryngol Head Neck Surg 1999;125(4):417
  • Skoda C, Erovic B, Wachek V, Down-regulation of mcl-1 with antisense technology alters the effect of various cytotoxic agents used in treatment of squamous cell carcinoma of the head and neck. Oncol Rep 2008;19(6):1499
  • Sieghart W, Losert D, Strommer S, Mcl-1 overexpression in hepatocellular carcinoma: a potential target for antisense therapy. J Hepatol 2006;44(1):151
  • Derenne S, Monia B, Dean N, Antisense strategy shows that mcl-1 rather than bcl-2 or bcl-x(L) is an essential survival protein of human myeloma cells. Blood 2002;100(1):194
  • Wei S, Dong K, Lin F, Inducing apoptosis and enhancing chemosensitivity to gemcitabine via RNA interference targeting mcl-1 gene in pancreatic carcinoma cell. Cancer Chemother Pharmacol 2008;62(6):1055
  • Khoury J, Medeiros LJ, Rassidakis G, Expression of mcl-1 in mantle cell lymphoma is associated with high-grade morphology, a high proliferative state, and p53 overexpression. J Pathol 2003;199(1):90
  • Zhou P, Levy NB, Xie H, MCL1 transgenic mice exhibit a high incidence of B-cell lymphoma manifested as a spectrum of histologic subtypes. Blood 2001;97(12):3902
  • Hussain S, Cheney C, Johnson A, Mcl-1 is a relevant therapeutic target in acute and chronic lymphoid malignancies: down-regulation enhances rituximab-mediated apoptosis and complement-dependent cytotoxicity. Clin Cancer Res 2007;13(7):2144
  • Chen R, Keating M, Gandhi V, Plunkett W. Transcription inhibition by flavopiridol: Mechanism of chronic lymphocytic leukemia cell death. Blood 2005;106(7):2513
  • Bible K, Lensing J, Nelson S, Phase 1 trial of flavopiridol combined with cisplatin or carboplatin in patients with advanced malignancies with the assessment of pharmacokinetic and pharmacodynamic end points. Clin Cancer Res 2005;11(16):5935
  • Kitada S, Zapata JM, Andreeff M, Reed JC. Protein kinase inhibitors flavopiridol and 7-hydroxy-staurosporine down-regulate antiapoptosis proteins in B-cell chronic lymphocytic leukemia. Blood 2000;96(2):393
  • Byrd J, Lin T, Dalton J, Flavopiridol administered using a pharmacologically derived schedule is associated with marked clinical efficacy in refractory, genetically high-risk chronic lymphocytic leukemia. Blood 2007;109(2):399
  • Mitchell C, Yacoub A, Hossein H, Inhibition of MCL-1 in breast cancer cells promotes cell death in vitro and in vivo. Cancer Biol Ther 2010;10(9):903
  • Rosato R, Almenara J, Kolla S, Mechanism and functional role of XIAP and mcl-1 down-regulation in flavopiridol/vorinostat antileukemic interactions. Mol Cancer Ther 2007;6(2):692
  • Tan A, Yang X, Berman A, Phase I trial of the cyclin-dependent kinase inhibitor flavopiridol in combination with docetaxel in patients with metastatic breast cancer. Clin Cancer Res 2004;10(15):5038
  • Dai Y, Rahmani M, Grant S. Proteasome inhibitors potentiate leukemic cell apoptosis induced by the cyclin-dependent kinase inhibitor flavopiridol through a SAPK/JNK- and NF-kappaB-dependent process. Oncogene 2003;22(46):7108
  • Holkova B, Perkins EB, Ramakrishnan V, Phase I trial of bortezomib (PS-341 NSC 681239) and alvocidib (flavopiridol NSC 649890) in patients with recurrent or refractory B-cell neoplasms. Clin Cancer Res 2011;17(10):3388-97
  • Chen R, Wierda W, Chubb S, Mechanism of action of SNS-032, a novel cyclin-dependent kinase inhibitor, in chronic lymphocytic leukemia. Blood 2009;113(19):4637
  • Tong W, Chen R, Plunkett W, Phase I and pharmacologic study of SNS-032, a potent and selective Cdk2, 7, and 9 inhibitor, in patients with advanced chronic lymphocytic leukemia and multiple myeloma. J Clin Oncol 2010;28(18):3015
  • Rahmani M, Davis E, Bauer C, Apoptosis induced by the kinase inhibitor BAY 43-9006 in human leukemia cells involves down-regulation of mcl-1 through inhibition of translation. J Biol Chem 2005;280(42):35217
  • Yu C, Bruzek L, Meng X, The role of mcl-1 downregulation in the proapoptotic activity of the multikinase inhibitor BAY 43-9006. Oncogene 2005;24(46):6861
  • Rahmani M, Davis E, Crabtree T, The kinase inhibitor sorafenib induces cell death through a process involving induction of endoplasmic reticulum stress. Mol Cell Biol 2007;27(15):5499
  • Schwickart M, Huang X, Lill J, Deubiquitinase USP9X stabilizes MCL1 and promotes tumour cell survival. Nature 2010;463(7277):103
  • Sun H, Kapuria V, Peterson L, Bcr-abl ubiquitination and Usp9x inhibition block kinase signaling and promote CML cell apoptosis. Blood 2011;117(11):3151
  • Askari FK, McDonnell WM. Antisense-oligonucleotide therapy. N Engl J Med 1996;334(5):316
  • Muchmore SW, Sattler M, Liang H, X-ray and NMR structure of human bcl-xL, an inhibitor of programmed cell death. Nature 1996;381(6580):335
  • Oltersdorf T, Elmore S, Shoemaker A, An inhibitor of bcl-2 family proteins induces regression of solid tumours. Nature 2005;435(7042):677
  • Chauhan D, Velankar M, Brahmandam M, A novel bcl-2/Bcl-X(L)/Bcl-w inhibitor ABT-737 as therapy in multiple myeloma. Oncogene 2007;26(16):2374
  • Tagscherer KE, Fassl A, Campos B, Apoptosis-based treatment of glioblastomas with ABT-737, a novel small molecule inhibitor of bcl-2 family proteins. Oncogene 2008;27(52):6646
  • Hann C, Daniel V, Sugar E, Therapeutic efficacy of ABT-737, a selective inhibitor of BCL-2, in small cell lung cancer. Cancer Res 2008;68(7):2321
  • Mason K, Vandenberg C, Scott C, In vivo efficacy of the bcl-2 antagonist ABT-737 against aggressive myc-driven lymphomas. Proc Natl Acad Sci USA 2008;105(46):17961
  • Chonghaile TN, Letai A. Mimicking the BH3 domain to kill cancer cells. Oncogene 2008;27(Suppl 1):S149
  • van Delft M, Wei A, Mason K, The BH3 mimetic ABT-737 targets selective bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if mcl-1 is neutralized. Cancer Cell 2006;10(5):389
  • Okumura K, Huang S, Sinicrope F. Induction of noxa sensitizes human colorectal cancer cells expressing mcl-1 to the small-molecule bcl-2/Bcl-xL inhibitor, ABT-737. Clin Cancer Res 2008;14(24):8132
  • Keuling A, Felton KEA, Parker AAM, RNA silencing of mcl-1 enhances ABT-737-mediated apoptosis in melanoma: role for a caspase-8-dependent pathway. PLoS One 2009;4(8):e6651
  • Zall H, Weber A, Besch R, Chemotherapeutic drugs sensitize human renal cell carcinoma cells to ABT-737 by a mechanism involving the noxa-dependent inactivation of mcl-1 or A1. Mol Cancer 2010;9:164
  • Chen S, Dai Y, Harada H, Mcl-1 down-regulation potentiates ABT-737 lethality by cooperatively inducing bak activation and bax translocation. Cancer Res 2007;67(2):782
  • An ongoing phase 1/2a study of ABT-263; pharmacokinetics (PK), safety and anti-tumor activity in patients (pts) with relapsed or refractory chronic lymphocytic leukemia (CLL) [Internet]; 2009. Available from: http://ash.confex.com/ash/2009/webprogram/Paper20847.html
  • Gandhi L, Camidge DR, de Oliveira M, Phase I study of navitoclax (ABT-263), a novel bcl-2 family inhibitor, in patients with small-cell lung cancer and other solid tumors. J Clin Oncol 2011;29(7):909
  • Konopleva M, Watt J, Contractor R, Mechanisms of antileukemic activity of the novel bcl-2 homology domain-3 mimetic GX15-070 (obatoclax). Cancer Res 2008;68(9):3413
  • Li J, Viallet J, Haura E. A small molecule pan-bcl-2 family inhibitor, GX15-070, induces apoptosis and enhances cisplatin-induced apoptosis in non-small cell lung cancer cells. Cancer Chemother Pharmacol 2008;61(3):525
  • Pan J, Cheng C, Verstovsek S, The BH3-mimetic GX15-070 induces autophagy, potentiates the cytotoxicity of carboplatin and 5-fluorouracil in esophageal carcinoma cells. Cancer Lett 2010;293(2):167
  • Heidari N, Hicks MA, Harada H. GX15-070 (obatoclax) overcomes glucocorticoid resistance in acute lymphoblastic leukemia through induction of apoptosis and autophagy. Cell Death Dis 2010;1(9):e76
  • Nguyen M, Marcellus R, Roulston A, Small molecule obatoclax (GX15-070) antagonizes MCL-1 and overcomes MCL-1-mediated resistance to apoptosis. Proc Natl Acad Sci USA 2007;104(49):19512
  • Schimmer A, O'Brien S, Kantarjian H, A phase I study of the pan bcl-2 family inhibitor obatoclax mesylate in patients with advanced hematologic malignancies. Clin Cancer Res 2008;14(24):8295
  • Paik P, Rudin C, Brown A, A phase I study of obatoclax mesylate, a bcl-2 antagonist, plus topotecan in solid tumor malignancies. Cancer Chemother Pharmacol 2010;66(6):1079
  • Hwang J, Kuruvilla J, Mendelson D, Phase I dose finding studies of obatoclax (GX15-070), a small molecule pan-BCL-2 family antagonist, in patients with advanced solid tumors or lymphoma. Clin Cancer Res 2010;16(15):4038
  • Gilbert NE, O'Reilly JE, Chang CJ, Antiproliferative activity of gossypol and gossypolone on human breast cancer cells. Life Sci 1995;57(1):61
  • Wei J, Kitada S, Rega M, Apogossypol derivatives as antagonists of antiapoptotic bcl-2 family proteins. Mol Cancer Ther 2009;8(4):904
  • Meng Y, Tang W, Dai Y, Natural BH3 mimetic (-)-gossypol chemosensitizes human prostate cancer via bcl-xL inhibition accompanied by increase of puma and noxa. Mol Cancer Ther 2008;7(7):2192
  • Voss V, Senft C, Lang V, The pan-bcl-2 inhibitor (-)-gossypol triggers autophagic cell death in malignant glioma. Mol Cancer Res 2010;8(7):1002
  • Sung B, Ravindran J, Prasad S, Gossypol induces death receptor-5 through activation of the ROS-ERK-CHOP pathway and sensitizes colon cancer cells to TRAIL. J Biol Chem 2010;285(46):35418
  • Pang X, Wu Y, Wu Y, (-)-Gossypol, a natural BH3 mimetic, suppresses the growth of human prostate cancer xenografts via modulating VEGF signaling-mediated angiogenesis. Mol Cancer Ther 2011;10(05):795-805
  • Le Blanc M, Russo J, Kudelka A, Smith J. An in vitro study of inhibitory activity of gossypol, a cottonseed extract, in human carcinoma cell lines. Pharmacol Res 2002;46(6):551
  • Clinical trials with gossypol provided by: US national institutes of health, US national library of medicine, US department of health and human services [Internet]; 2011. Available from: http://clinicaltrials.gov/ct2/results?term=gossypol
  • Kitada S, Kress C, Krajewska M, Bcl-2 antagonist apogossypol (NSC736630) displays single-agent activity in bcl-2-transgenic mice and has superior efficacy with less toxicity compared with gossypol (NSC19048). Blood 2008;111(6):3211
  • Wei J, Stebbins J, Kitada S, BI-97C1, an optically pure apogossypol derivative as pan-active inhibitor of antiapoptotic B-cell lymphoma/leukemia-2 (bcl-2) family proteins. J Med Chem 2010;53(10):4166
  • Kazi A, Sun J, Doi K, The BH3 alpha-helical mimic BH3-M6 disrupts bcl-X(L), bcl-2, and MCL-1 protein-protein interactions with bax, bak, bad, or bim and induces apoptosis in a bax- and bim-dependent manner. J Biol Chem 2011;286(11):9382-92
  • Makin G, Hickman JA. Apoptosis and cancer chemotherapy. Cell Tissue Res 2000;301(1):143
  • Yecies D, Carlson N, Deng J, Letai A. Acquired resistance to ABT-737 in lymphoma cells that up-regulate MCL-1 and BFL-1. Blood 2010;115(16):3304
  • Zhang C, Cai T, Zhu H, Synergistic antitumor activity of gemcitabine and ABT-737 in vitro and in vivo through disrupting the interaction of USP9X and mcl-1. Mol Cancer Ther 2011;10(07):1264-75
  • Hikita H, Takehara T, Shimizu S, The bcl-xL inhibitor, ABT-737, efficiently induces apoptosis and suppresses growth of hepatoma cells in combination with sorafenib. Hepatology 2010;52(4):1310
  • Xu H, Krystal G. Actinomycin D decreases mcl-1 expression and acts synergistically with ABT-737 against small cell lung cancer cell lines. Clin Cancer Res 2010;16(17):4392
  • Pandit B, Gartel A. New potential anti-cancer agents synergize with bortezomib and ABT-737 against prostate cancer. Prostate 2010;70(8):825
  • Dash R, Azab B, Quinn BA, An apogossypol derivative BI-97C1 (sabutoclax) targeting mcl-1 sensitizes prostate cancer cells to mda-7/IL-24-mediated toxicity. Proc Natl Acad Sci USA 2011;108(21):8785
  • Jiang H, Lin JJ, Su ZZ, Subtraction hybridization identifies a novel melanoma differentiation associated gene, mda-7, modulated during human melanoma differentiation, growth and progression. Oncogene 1995;11(12):2477
  • Dash R, Bhutia S, Azab B, Mda-7/IL-24: A unique member of the IL-10 gene family promoting cancer-targeted toxicity. Cytokine Growth Factor Rev 2010;21(5):381
  • Emdad L, Lebedeva I, Su Z, Historical perspective and recent insights into our understanding of the molecular and biochemical basis of the antitumor properties of mda-7/IL-24. Cancer Biol Ther 2009;8(5):391
  • Cunningham CC, Chada S, Merritt J, Clinical and local biological effects of an intratumoral injection of mda-7 (IL24 INGN 241) in patients with advanced carcinoma: A phase I study. Mol Ther 2005;11(1):149
  • Su Z, Emdad L, Sauane M, Unique aspects of mda-7/IL-24 antitumor bystander activity: establishing a role for secretion of MDA-7/IL-24 protein by normal cells. Oncogene 2005;24(51):7552
  • Sauane M, Su Z, Gupta P, Autocrine regulation of mda-7/IL-24 mediates cancer-specific apoptosis. Proc Natl Acad Sci USA 2008;105(28):9763
  • Gupta P, Walter M, Su Z, BiP/GRP78 is an intracellular target for MDA-7/IL-24 induction of cancer-specific apoptosis. Cancer Res 2006;66(16):8182
  • Yacoub A, Liu R, Park M, Cisplatin enhances protein kinase R-like endoplasmic reticulum kinase- and CD95-dependent melanoma differentiation-associated gene-7/interleukin-24-induced killing in ovarian carcinoma cells. Mol Pharmacol 2010;77(2):298
  • Hamed H, Yacoub A, Park M, Inhibition of multiple protective signaling pathways and ad.5/3 delivery enhances mda-7/IL-24 therapy of malignant glioma. Mol Ther 2010;18(6):1130
  • Greco A, Di Benedetto A, Howard CM, Eradication of therapy-resistant human prostate tumors using an ultrasound-guided site-specific cancer terminator virus delivery approach. Mol Ther 2010;18(2):295
  • Dash R, Azab B, Shen XN, Developing an effective gene therapy for prostate cancer: new technologies with potential to translate from the laboratory into the clinic. Discov Med 2011;11(56):46
  • Lin Y, Fukuchi J, Hiipakka R, Up-regulation of bcl-2 is required for the progression of prostate cancer cells from an androgen-dependent to an androgen-independent growth stage. Cell Res 2007;17(6):531
  • Konopleva M, Contractor R, Tsao T, Mechanisms of apoptosis sensitivity and resistance to the BH3 mimetic ABT-737 in acute myeloid leukemia. Cancer Cell 2006;10(5):375

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.