551
Views
30
CrossRef citations to date
0
Altmetric
Review

Thinking small: towards microRNA-based therapeutics for anxiety disorders

, , , , &

Bibliography

  • Kessler RC, Aguilar-Gaxiola S, Alonso J, et al. The global burden of mental disorders: an update from the WHO World Mental Health (WMH) surveys. Epidemiol Psichiatr Soc 2009;18(1):23-33
  • Kessler RC, Berglund P, Demler O, et al. Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry 2005;62(6):593-602
  • Griebel G, Holmes A. 50 years of hurdles and hope in anxiolytic drug discovery. Nat Reviews Drug Discov 2013;12(9):667-87
  • American Psychiatric Association, American Psychiatric Association. DSM-5 Task Force. Diagnostic and statistical manual of mental disorders : DSM-5. 5th edition. American Psychiatric Association; Washington, DC: 2013
  • Cryan JF, Sweeney FF. The age of anxiety: role of animal models of anxiolytic action in drug discovery. Br J Pharmacol 2011;164(4):1129-61
  • Kessler RC, McLaughlin KA, Green JG, et al. Childhood adversities and adult psychopathology in the WHO World Mental Health Surveys. Br J Psychiatry 2010;197(5):378-85
  • Le-Niculescu H, Balaraman Y, Patel SD, et al. Convergent functional genomics of anxiety disorders: translational identification of genes, biomarkers, pathways and mechanisms. Transl Psychiatry 2011;1:e9
  • Hoge CW, Castro CA, Messer SC, et al. Combat duty in Iraq and Afghanistan, mental health problems, and barriers to care. N Engl J Med 2004;351(1):13-22
  • Yehuda R, Vermetten E, McFarlane AC, et al. PTSD in the military: special considerations for understanding prevalence, pathophysiology and treatment following deployment. Eur J Psychotraumatol 2014;5
  • Domschke K, Dannlowski U. Imaging genetics of anxiety disorders. Neuroimage 2010;53(3):822-31
  • Norrholm SD, Ressler KJ. Genetics of anxiety and trauma-related disorders. Neuroscience 2009;164(1):272-87
  • Erhardt A, Spoormaker VI. Translational approaches to anxiety: focus on genetics, fear extinction and brain imaging. Curr Psychiatry Rep 2013;15(12):417
  • Ono S, Domschke K, Deckert J. Genomic structural variation in affective, anxiety, and stress-related disorders. J Neural Transm 2014. [Epub ahead of print]
  • Combs H, Markman J. Anxiety disorders in primary care. Med Clin North Am 2014;98(5):1007-23
  • Bukalo O, Pinard CR, Holmes A. Mechanisms to medicines: elucidating neural and molecular substrates of fear extinction to identify novel treatments for anxiety disorders. Br J Pharmacol 2014;171(20):4690-718
  • Ravindran LN, Stein MB. The pharmacologic treatment of anxiety disorders: a review of progress. J Clin Psychiatry 2010;71(7):839-54
  • Mohler H. The GABA system in anxiety and depression and its therapeutic potential. Neuropharmacology 2012;62(1):42-53
  • Sinclair LI, Nutt DJ. Anxiolytics. Handb Clin Neurol 2012;106:669-79
  • Stewart AM, Kalueff AV. Anxiolytic drug discovery: what are the novel approaches and how can we improve them? Expert Opin Drug Discov 2014;9(1):15-26
  • O’Connor RM, Finger BC, Flor PJ, et al. Metabotropic glutamate receptor 7: at the interface of cognition and emotion. Eur J Pharmacol 2010;639(1-3):123-31
  • McGrath LM, Weill S, Robinson EB, et al. Bringing a developmental perspective to anxiety genetics. Dev Psychopathol 2012;24(4):1179-93
  • Donner NC, Montoya CD, Lukkes JL, et al. Chronic non-invasive corticosterone administration abolishes the diurnal pattern of tph2 expression. Psychoneuroendocrinology 2012;37(5):645-61
  • Tardito D, Mallei A, Popoli M. Lost in translation. New unexplored avenues for neuropsychopharmacology: epigenetics and microRNAs. Expert Opin Investig Drugs 2013;22(2):217-33
  • Narayan P, Dragunow M. Pharmacology of epigenetics in brain disorders. Br J Pharmacol 2010;159(2):285-303
  • Klengel T, Mehta D, Anacker C, et al. Allele-specific FKBP5 DNA demethylation mediates gene-childhood trauma interactions. Nat Neurosci 2013;16(1):33-41
  • Binder EB. The role of FKBP5, a co-chaperone of the glucocorticoid receptor in the pathogenesis and therapy of affective and anxiety disorders. Psychoneuroendocrinology 2009;34(Suppl 1)):S186-95
  • Almeida MI, Reis RM, Calin GA. MicroRNA history: discovery, recent applications, and next frontiers. Mutat Res 2011;717(1-2):1-8
  • Kong YW, Ferland-McCollough D, Jackson TJ, et al. microRNAs in cancer management. Lancet Oncol 2012;13(6):e249-58
  • Nana-Sinkam SP, Croce CM. Clinical applications for microRNAs in cancer. Clin Pharmacol Ther 2013;93(1):98-104
  • O’Connor RM, Dinan TG, Cryan JF. Little things on which happiness depends: microRNAs as novel therapeutic targets for the treatment of anxiety and depression. Mol Psychiatry 2012;17(4):359-76
  • O’Connor RM, Grenham S, Dinan TG, et al. microRNAs as novel antidepressant targets: converging effects of ketamine and electroconvulsive shock therapy in the rat hippocampus. Int J Neuropsychopharmacol 2013;16(8):1885-92
  • Vasudevan S. Posttranscriptional upregulation by microRNAs. Wiley Interdiscip Rev RNA 2012;3(3):311-30
  • Ceman S, Saugstad J. MicroRNAs: meta-controllers of gene expression in synaptic activity emerge as genetic and diagnostic markers of human disease. Pharmacol Ther 2011;130(1):26-37
  • Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009;136(2):215-33
  • Lee D, Shin C. MicroRNA-target interactions: new insights from genome-wide approaches. Ann N Y Acad Sci 2012;1271:118-28
  • He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 2004;5(7):522-31
  • Miller BH, Wahlestedt C. MicroRNA dysregulation in psychiatric disease. Brain Res 2010;1338:89-99
  • Broderick JA, Zamore PD. MicroRNA therapeutics. Gene Ther 2011;18(12):1104-10
  • Lim LP, Lau NC, Garrett-Engele P, et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 2005;433(7027):769-73
  • Pritchard CC, Cheng HH, Tewari M. MicroRNA profiling: approaches and considerations. Nat Rev Genet 2012;13(5):358-69
  • Reid G, Kirschner MB, van Zandwijk N. Circulating microRNAs: association with disease and potential use as biomarkers. Crit Rev Oncol Hematol 2011;80(2):193-208
  • McEwen BS, Getz L. Lifetime experiences, the brain and personalized medicine: an integrative perspective. Metabolism 2013;62(Suppl 1):S20-6
  • Chan AW, Kocerha J. The Path to microRNA therapeutics in psychiatric and neurodegenerative disorders. Front Genet 2012;3:82
  • Wu Y, Crawford M, Mao Y, et al. Therapeutic delivery of microRNA-29b by cationic lipoplexes for lung cancer. Mol Ther Nucleic Acids 2013;2:e84
  • Ling H, Fabbri M, Calin GA. MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat Rev Drug Discov 2013;12(11):847-65
  • Hu J, Xu Y, Hao J, et al. MiR-122 in hepatic function and liver diseases. Protein Cell 2012;3(5):364-71
  • van der Ree MH, van der Meer AJ, de Bruijne J, et al. Long-term safety and efficacy of microRNA-targeted therapy in chronic hepatitis C patients. Antiviral Res 2014;111:53-9
  • Rogaev EI. Small RNAs in human brain development and disorders. Biochemistry (Mosc) 2005;70(12):1404-7
  • Sonntag KC, Wahlestedt C. RNA mechanisms in CNS systems and disorders. Brain Res 2010;1338:1-2
  • Bocchio-Chiavetto L, Maffioletti E, Bettinsoli P, et al. Blood microRNA changes in depressed patients during antidepressant treatment. Eur Neuropsychopharmacol 2013;23(7):602-11
  • Kessler RC, Aguilar-Gaxiola S, Alonso J, et al. The WHO World Mental Health (WMH) Surveys. Psychiatrie 2009;6(1):5-9
  • Kolshus E, Dalton VS, Ryan KM, et al. When less is more--microRNAs and psychiatric disorders. Acta Psychiatr Scand 2014;129(4):241-56
  • Ojo JO, Greenberg MB, Leary P, et al. Neurobehavioral, neuropathological and biochemical profiles in a novel mouse model of co-morbid post-traumatic stress disorder and mild traumatic brain injury. Front Behav Neurosci 2014;8:213
  • Honda M, Kuwano Y, Katsuura-Kamano S, et al. Chronic academic stress increases a group of microRNAs in peripheral blood. PLoS One 2013;8(10):e75960
  • Katsuura S, Kuwano Y, Yamagishi N, et al. MicroRNAs miR-144/144* and miR-16 in peripheral blood are potential biomarkers for naturalistic stress in healthy Japanese medical students. Neurosci Lett 2012;516(1):79-84
  • Muinos-Gimeno M, Espinosa-Parrilla Y, Guidi M, et al. Human microRNAs miR-22, miR-138-2, miR-148a, and miR-488 are associated with panic disorder and regulate several anxiety candidate genes and related pathways. Biol Psychiatry 2011;69(6):526-33
  • Jin XF, Wu N, Wang L, et al. Circulating microRNAs: a novel class of potential biomarkers for diagnosing and prognosing central nervous system diseases. Cell Mol Neurobiol 2013;33(5):601-13
  • Liang H, Gong F, Zhang S, et al. The origin, function, and diagnostic potential of extracellular microRNAs in human body fluids. Wiley Interdiscip Rev RNA 2014;5(2):285-300
  • Liu R, Zhang C, Hu Z, et al. A five-microRNA signature identified from genome-wide serum microRNA expression profiling serves as a fingerprint for gastric cancer diagnosis. Eur J Cancer 2011;47(5):784-91
  • Patel RS, Jakymiw A, Yao B, et al. High resolution of microRNA signatures in human whole saliva. Arch Oral Biol 2011;56(12):1506-13
  • Chen X, Liang H, Zhang J, et al. Secreted microRNAs: a new form of intercellular communication. Trends Cell Biol 2012;22(3):125-32
  • Etheridge A, Lee I, Hood L, et al. Extracellular microRNA: a new source of biomarkers. Mutat Res 2011;717(1-2):85-90
  • Simpson RJ, Jensen SS, Lim JW. Proteomic profiling of exosomes: current perspectives. Proteomics 2008;8(19):4083-99
  • Pritchard CC, Kroh E, Wood B, et al. Blood cell origin of circulating microRNAs: a cautionary note for cancer biomarker studies. Cancer Prev Res (Phila) 2012;5(3):492-7
  • Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 2008;105(30):10513-18
  • Meza-Sosa KF, Valle-Garcia D, Pedraza-Alva G, et al. Role of microRNAs in central nervous system development and pathology. J Neurosci Res 2012;90(1):1-12
  • Rao P, Benito E, Fischer A. MicroRNAs as biomarkers for CNS disease. Front Mol Neurosci 2013;6:39
  • Haghikia A, Haghikia A, Hellwig K, et al. Regulated microRNAs in the CSF of patients with multiple sclerosis: a case-control study. Neurology 2012;79(22):2166-70
  • Kiko T, Nakagawa K, Tsuduki T, et al. MicroRNAs in plasma and cerebrospinal fluid as potential markers for Alzheimer’s disease. J Alzheimers Dis 2014;39(2):253-9
  • Liu CG, Song J, Zhang YQ, et al. MicroRNA-193b is a regulator of amyloid precursor protein in the blood and cerebrospinal fluid derived exosomal microRNA-193b is a biomarker of Alzheimer’s disease. Mol Med Rep 2014;10(5):2395-400
  • Sorensen SS, Nygaard AB, Nielsen MY, et al. miRNA expression profiles in cerebrospinal fluid and blood of patients with acute ischemic stroke. Transl Stroke Res 2014;5(6):711-18
  • Hirschfeld RM. The comorbidity of major depression and anxiety disorders: recognition and management in primary care. Prim Care Companion J Clin Psychiatry 2001;3(6):244-54
  • Kessler RC, Chiu WT, Demler O, et al. Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry 2005;62(6):617-27
  • Issler O, Haramati S, Paul ED, et al. MicroRNA 135 is essential for chronic stress resiliency, antidepressant efficacy, and intact serotonergic activity. Neuron 2014;83(2):344-60
  • Lopez JP, Lim R, Cruceanu C, et al. miR-1202 is a primate-specific and brain-enriched microRNA involved in major depression and antidepressant treatment. Nat Med 2014;20(7):764-8
  • Nestler EJ, Hyman SE. Animal models of neuropsychiatric disorders. Nat Neurosci 2010;13(10):1161-9
  • Blanchard RJ, McKittrick CR, Blanchard DC. Animal models of social stress: effects on behavior and brain neurochemical systems. Physiol Behav 2001;73(3):261-71
  • Neumann ID, Wegener G, Homberg JR, et al. Animal models of depression and anxiety: what do they tell us about human condition? Prog Neuropsychopharmacol Biol Psychiatry 2011;35(6):1357-75
  • Cryan JF, Holmes A. The ascent of mouse: advances in modelling human depression and anxiety. Nat Rev Drug Discov 2005;4(9):775-90
  • Schmidt U, Herrmann L, Hagl K, et al. Therapeutic action of fluoxetine is associated with a reduction in prefrontal cortical miR-1971 expression levels in a mouse model of posttraumatic stress disorder. Front Psychiatry 2013;4:66
  • Durairaj RV, Koilmani ER. Environmental enrichment modulates glucocorticoid receptor expression and reduces anxiety in Indian field male mouse Mus booduga through up-regulation of microRNA-124a. Gen Comp Endocrinol 2014;199:26-32
  • Mannironi C, Camon J, De Vito F, et al. Acute stress alters amygdala microRNA miR-135a and miR-124 expression: inferences for corticosteroid dependent stress response. PLoS One 2013;8(9):e73385
  • Meerson A, Cacheaux L, Goosens KA, et al. Changes in brain MicroRNAs contribute to cholinergic stress reactions. J Mol Neurosci 2010;40(1-2):47-55
  • Griggs EM, Young EJ, Rumbaugh G, et al. MicroRNA-182 regulates amygdala-dependent memory formation. J Neurosci 2013;33(4):1734-40
  • Lin Q, Wei W, Coelho CM, et al. The brain-specific microRNA miR-128b regulates the formation of fear-extinction memory. Nat Neurosci 2011;14(9):1115-17
  • Ragu Varman D, Marimuthu G, Rajan KE. Environmental enrichment upregulates micro-RNA-183 and alters acetylcholinesterase splice variants to reduce anxiety-like behavior in the little Indian field mouse (Mus booduga). J Neurosci Res 2013;91(3):426-35
  • Shaltiel G, Hanan M, Wolf Y, et al. Hippocampal microRNA-132 mediates stress-inducible cognitive deficits through its acetylcholinesterase target. Brain Struct Funct 2013;218(1):59-72
  • Zhou R, Yuan P, Wang Y, et al. Evidence for selective microRNAs and their effectors as common long-term targets for the actions of mood stabilizers. Neuropsychopharmacology 2009;34(6):1395-405
  • Zovoilis A, Agbemenyah HY, Agis-Balboa RC, et al. MicroRNA-34c is a novel target to treat dementias. EMBO J 2011;30(20):4299-308
  • Dias BG, Goodman JV, Ahluwalia R, et al. Amygdala-dependent fear memory consolidation via miR-34a and notch signaling. Neuron 2014;83(4):906-18
  • Savignac HM, Finger BC, Pizzo RC, et al. Increased sensitivity to the effects of chronic social defeat stress in an innately anxious mouse strain. Neuroscience 2011;192:524-36
  • Slattery DA, Uschold N, Magoni M, et al. Behavioural consequences of two chronic psychosocial stress paradigms: anxiety without depression. Psychoneuroendocrinology 2012;37(5):702-14
  • Hartmann J, Wagner KV, Liebl C, et al. The involvement of FK506-binding protein 51 (FKBP5) in the behavioral and neuroendocrine effects of chronic social defeat stress. Neuropharmacology 2012;62(1):332-9
  • Vialou V, Maze I, Renthal W, et al. Serum response factor promotes resilience to chronic social stress through the induction of DeltaFosB. J Neurosci 2010;30(43):14585-92
  • Haramati S, Navon I, Issler O, et al. MicroRNA as repressors of stress-induced anxiety: the case of amygdalar miR-34. J Neurosci 2011;31(40):14191-203
  • Parsons MJ, Grimm C, Paya-Cano JL, et al. Genetic variation in hippocampal microRNA expression differences in C57BL/6 J X DBA/2 J (BXD) recombinant inbred mouse strains. BMC Genomics 2012;13:476
  • Parsons MJ, Grimm CH, Paya-Cano JL, et al. Using hippocampal microRNA expression differences between mouse inbred strains to characterise miRNA function. Mamm Genome 2008;19(7-8):552-60
  • Uchida S, Hara K, Kobayashi A, et al. Early life stress enhances behavioral vulnerability to stress through the activation of REST4-mediated gene transcription in the medial prefrontal cortex of rodents. J Neurosci 2010;30(45):15007-18
  • Hamilton DE, Cooke CL, Carter BS, et al. Basal microRNA expression patterns in reward circuitry of selectively bred high-responder and low-responder rats vary by brain region and genotype. Physiol Genomics 2014;46(8):290-301
  • Rinaldi A, Vincenti S, De Vito F, et al. Stress induces region specific alterations in microRNAs expression in mice. Behav Brain Res 2010;208(1):265-9
  • Mehta N, Cheng HY. Micro-managing the circadian clock: the role of microRNAs in biological timekeeping. J Mol Biol 2013;425(19):3609-24
  • Mestdagh P, Hartmann N, Baeriswyl L, et al. Evaluation of quantitative miRNA expression platforms in the microRNA quality control (miRQC) study. Nat Methods 2014;11(8):809-15
  • Balakathiresan NS, Chandran R, Bhomia M, et al. Serum and amygdala microRNA signatures of posttraumatic stress: fear correlation and biomarker potential. J Psychiatr Res 2014;57:65-73
  • Jiang X, Du L, Wang L, et al. Serum microRNA expression signatures identified from genome-wide microRNA profiling serve as novel noninvasive biomarkers for diagnosis and recurrence of bladder cancer. Int J Cancer 2015;136(4):854-62
  • Yang C, Wang C, Chen X, et al. Identification of seven serum microRNAs from a genome-wide serum microRNA expression profile as potential noninvasive biomarkers for malignant astrocytomas. Int J Cancer 2013;132(1):116-27
  • Zhang Y, Wang Z, Gemeinhart RA. Progress in microRNA delivery. J Control Release 2013;172(3):962-74
  • Esteller M. Non-coding RNAs in human disease. Nat Rev Genet 2011;12(12):861-74
  • Lu Y, Xiao J, Lin H, et al. A single anti-microRNA antisense oligodeoxyribonucleotide (AMO) targeting multiple microRNAs offers an improved approach for microRNA interference. Nucleic Acids Res 2009;37(3):e24
  • Elmen J, Lindow M, Schutz S, et al. LNA-mediated microRNA silencing in non-human primates. Nature 2008;452(7189):896-9
  • Janssen HL, Reesink HW, Lawitz EJ, et al. Treatment of HCV infection by targeting microRNA. N Engl J Med 2013;368(18):1685-94
  • Yang B, Li S, Wang H, et al. Global CNS transduction of adult mice by intravenously delivered rAAVrh.8 and rAAVrh.10 and nonhuman primates by rAAVrh.10. Mol Ther 2014;22(7):1299-309
  • Iida A, Takino N, Miyauchi H, et al. Systemic delivery of tyrosine-mutant AAV vectors results in robust transduction of neurons in adult mice. Biomed Res Int 2013;2013:974819
  • Smalheiser NR, Lugli G, Rizavi HS, et al. MicroRNA expression in rat brain exposed to repeated inescapable shock: differential alterations in learned helplessness vs. non-learned helplessness. Int Journal of Neuropsychopharmacology 2011;14(10):1315-25

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.