11
Views
16
CrossRef citations to date
0
Altmetric
Research Article

Section Review—Cardiovascular & Renal: Emerging Therapies in Atherosclerosis

, &
Pages 353-387 | Published online: 03 Mar 2008

References

  • ENDO A: The HMGCoA reductase story. 1n Cellular Metabolism of the Arterial Wall and Central Nervous System. Selected Aspects. Schettler G, Greten H, Habenicht AJR (Eds.). Springer-Verlag, Heidelberg (1993).
  • ALBERTS AW: Discovery, biochemistry and biology of lovastatin. Am. J. Cardiol. (1988) 62:10J–15J.
  • SCANDINAVIAN SIMVASTATIN SURVIVAL STUDY GROUP: Randomised trial of cholesterol lowering in 12R14patients with coronary heart disease: the Scandinavian Sitnvastatin Survival Study (4S). Lancet (1994) 344:1383-1389. Significant benefit with regards to mortality makes it difficult to argue that cholesterol lowering is harmful.
  • GYLLING H, VANHANEN H, MIETTINEN TA: Lowering of IDL-cholesterol by inhibition of cholesterol absorption and synthesis in hypercholesterolemic type 11 diabetes. Atherosclerosis (1994) 109:121.
  • KOLOVOU GD, FOSTINIS YP, BILIANOU HL, COKKINOS DV: Response of high-density lipoproteins to hy-polipidemic drugs according to their initial level Am. J. Cardiol. (1995) 75:293–295.
  • GRUNDY S.M: HMGCoA reductase inhibitors for the treatment of hypercholesterolemia. New Engl. J Med. (1988) 319:24–32.
  • ENDO A: The discovery and development of HMGCoA reductase inhibitors. J. Lipid Res. (1992) 33:1569–1582.
  • BROWN WV: A symposium. Hydroxymethylglutaryl co- enzyme A reductasefluvastatin, a clinicalinvestigator's update. Am. J. Cardiol. (1994) 73:1D–50D.
  • BILHEIMER DW: Longterm clinical tolerance of lovas-tatin and sirnvastatin. Cardiology (1990) 77:58–65.
  • PIERCE LR, WYSOWKI DK, GROSS TP: Myopathy and rhalbdomyolysis associated with lovastatin-gemfibrozil combination therapy. JAMA (1990) 264:71–75.
  • FOLKERS K, LANGSJOAN P, WILLIS R, ET AL.: Lovastatin decreases coenzyme Q levels in humans. Proc. Natl. Acad. Sci. (1990) 87:8931–8934.
  • BLACK D: Atorvastatin: a step ahead for IIMGCoA reduc-tase inhibitors. Atherosclerosis (1994) 109:88 (Abstract).
  • POPJAK G: Inhibition of cholesterol biosynthesis byfarnesoic add and its analogues. Lancet (1960) 1:1270–1273.
  • ORTIZDEMONTELLANO PR, WEI JS, CASTILLO R, HSU CK,BOPARAI A: Inhibition of squalene synthase by farnesyl pyrophosphate analogues. J. Med. Chem. (1977) 20:243–249.
  • BILLER SA, SOFIA MJ, DELANGE B, ET AL.: The first potent inhibitor of squalene synthase: a profound contribu-tion of an ether oxygen to inhibitor-enzyme interac-tion. J. Amer. Chem. Soc. (1991) 113:8522–8524.
  • AMIN D, CORNELL SA, GUSTAFSON JK: Bisphosphonates used for the treatment of bone disorders inhibited squalene synthase and cholesterol biosynthesis./ Lipid Res. (1992) 33:1657–1663.
  • CIOSEK CP, MAGNIN DR, HARRITY TW, ET AL.: Lipophilic1,1-bisphosphonates are squalene synthase inhibitors and orally active cholesterol lowering agents. J. Biol. Chem. (1993) 268:24832–24837.
  • DAWSON MJ, FARTHING JE, MARSHALL PS, ET AL.: The squalestatins, novel inhibitors of squalene synthase produced by a species ofPbonsa. L Taxonomy, fermen-tation, isolation, physicochemical properties and bio-logical activity. J Antibiot. (1992) 45:639–647.
  • BAXTER A, FITZGERALD BJ, HUTSON JL, ET AL.: Squales-tatin 1, a potent inhibitor of squalene synthase which lowers serum cholesterol in vivo. J. Biol. Chem. (1992) 267:11705–11708.
  • BERGSTROM JD, KURTZ MM, REW DJ, ET AL.: Zaragozicadds: a family of fungal metabolites that are picomolar competitive inhibitors of squalene synthase. Proc. Natl. Acad. Sci. (1993) 90:80–84.
  • DUGRENSE C, WILSON ICE, SING SB: Zaragozic acids I) and 1)2: potent inhibitors of squalene synthase and of ras farnesyl-protein transferase. J. Natl. Prod. (1993) 56:1923–1929.
  • CHIANG YCP, BIFTU T, DOSS GA, ET AL.: Diesters of zaragozic acid A: synthesis and biological activity. Bioorg. Med. Chem. Lett. (1993) 3,2029–2034.
  • LAUGHLIN RC, CAREY TF: Cataracts in patients treated with triparanoL JAMA (1962) 181:339–340.
  • AVIGAN J, STEINBERG D, THOMPSON MJ, MOSSETTIG E: Mechanism of action of MER129, an inhibitor of cho-lesterol biosynthesis. Biochem. Biophys. Res. Commun. (1960) 2:63–65.
  • YOSHIDA Y, AOYAMA Y: Stero114-ademethylase and its Inhibition of yeast. Structural considerations, on the Interaction of azole antifungal agents with lanosterol 14-ademethylase (P-45014m). Biochem. Soc. Trans. (1991) 19:778–787.
  • SONINO N: The use of ketoconazole as an inhibitor of steroid production. New Engl. J. Med. (1987) 317:812–818.
  • KEMPEN HJ, VANSON K, COHEN LH, GRIFFIOEN M, VER-BOOM H, HAVEKES L: Effect of ketoconzaole on choles-terol synthesis and on HMGCoA reductase and LDL-receptor activities in HepG2 cells. Biochem. Phar-macol. (1987) 36:1245–1249.
  • WALKER KAM, KERTESZ DJ, ROTSTEIN DM: Selective Inhibition of mammalian lanosterol 14-ademethylase: a possible strategy for cholesterol lowering. J. Med. Chem. (1993) 36:2235–2237.
  • WILSON MD, RUDEL LL: Review of cholesterol absorp-tion with emphasis on dietary and binary cholesterol I Lipid Res. (1994) 35:943–955.
  • MIET1INTEN TA, KESANIEMI YA: Cholesterol absorption regulates cholesterol metabolism and within-popula-tion variation of serum cholesterol In: Hyperlipidaemia and Atherosclerosis. Suckling ICE, Groot PHE (Eds.). Aca-demic Press, London (1988).
  • HAINER JW, TERRY JG, CONNELL JM, ZYRUK H, JENKINS RM, SHAND DL, GILLIES PJ, LIVAK KJ, HUNT TL, CROUSE JR: Effect of the acyl-CoA:cholesterol acyhransferase inhibitor DuP 128 on cholesterol absorption and serum cholesterol in humans. Clin. Pharmacol. 7ber. (1994) 56:65–74.
  • SCHAEFER EJ: Lipid lowering agents other than anion exchange resins which affect the gastrointestinal sys-tem. In: Pharmacological Control of Hyperlipidemia. Fears R, Levy EL, Shepherd J, Packard CJ, Miller NE (Eds.). JR Prous SA, Barcelona (1986).
  • STEDRONSKY ER: Interaction of bile acids and choles-terol with nonsystemic agents having hypo-cholesterolemic properties. Biochim Biophys. Acta (1994) 1210:255–287.
  • MCCARTHY PA, DENINNO MP, MOREHOUSE LA, CHAN-DLER CE, BEYER TA, BANGERTER FW, COSGROVE PG, DUPLANTIS K, ETIENNE JB, FOWLER MA, WILENS RW, ZACCARO LM, ZAWISTOSKI MP: The discovery of CP148,623, a potent cholesterol absorption inhibitor in hamsters. Atherosclerosis (1994) 109:309 (Abstract). 47.
  • ••
  • BENSON GM, HAYNES C, GEE A, JACKSON B, GLEN A,ROBERTS M, ALSTON DR, HICKEY DMB, BOND B, SUCK-LING KE: SK&F 9742SA: a more potent bile add segues-trant and hypocholesterolemic agent than cholestyramine in the hamster. 9th International Sympo-sium on Atherosclerosis. Rosemont, IL, USA (1991)181.
  • NORUM KR, LILLJEQVIST AC, HELGERUD P, NORMANN ER,MO A, SELBEKK B: Esterification of cholesterol in human small intestine: the importance of acyl-CoA:cholesterol acyltransferase. Eur. J. Clin. Invest. (1979) 9:55–62.
  • SLISKOVIC DR, TRIVEDI BK: ACAT inhibitors: potentialantiatherosclerotic agents. Curr. Med. Chem. (1994) 1:204–225.
  • HARRIS WS, DUJOVNE CA, VON BERGMANN K, NEAL J, AICESTER J, WINDSOR SL, GREENE D, LOOK Z: Effects of the ACAT inhibitor CL 277,082 on cholesterol metabo- lism in humans. Clin. Pharmacol. Ther. (1990) 48:189-194. This paper, more than any other, shifted emphasis away from the 'intestinal approach' for ACAT inhibitors and towards liver and/or arterial ACAT. It is still unclear why this compound failed to inhibit cholesterol absorption in man. Many plausible reasons are given in the Discussion.
  • KATHAWALA FG, HEIDER JG: Acyl-CoA:cholesterol acyl-transferase inhibitors and lipid-lipoprotein metabo-lism. In: Antilipidemic Drugs. Witiak DT, Newman HAI, Feller DR (Eds.). Elsevier, Amsterdam (1991).
  • SLISKOVIC DR, KRAUSE BR, PICARD JA, ANDERSON M,BOUSLEY RF, HAMELELE KL, HOMAN R, JULIAN TN, RASHIDGAIGI ZA, STANFIELD RL: Inhibitors of acyl-CoA:cholesterol acyltransferase (ACAT) as hypo-cholesterolemk agents. 6. The first watersolubk ACAT inhibitor with lipid-regulating activity. J. Med. Chem. (1994) 37:560–562.
  • KRAUSE BR, BOUSLEY R, KIEFT K, PAPE M, STANFILLD R,SAWYER JK, RUDEL LL: LDL-lowering activity in experi-mental animals by PD 13814215, a water-soluble inhibi-tor of acyl-CoA:cholesterol acyltransferase (ACAT). Atherosclerosis (1994) 109:164 (Abstract).
  • CARR TP, HAMILTON EL, RUDEL LL: ACAT inhibitors decrease secretion of cholesteryl esters and apolipo-protein B by perfused livers of African green monkeys. J Lipid Res. (1995) 36:25-36. First direct evidence that ACAT inhibitors can affect lipid and apoB secretion in the liver.
  • LANGE LG, SPILBURG CA: W09012579 (1990).
  • LOPEZCANDALES A, BOSNER MS, SPILBURG CA, LANGE LG: Cholesterol transport function of pancreatic cho-lesterol esterase: directed sterol uptake and esterifica-tion in enterocytes. Biochemistry (1993) 32:12085–12089.
  • MCKEAN ML, COMMONS TJ, BERENS MS, HSU PL, ACKER-MAN DM, STEINER KR, ADELMAN SJ: Effects of inhibitors of pancreatic cholesterol ester hydrolase (PCEH) on 0Q-cholesterol absorption in animal models. FASEBJ. (1992) 6:A1388.
  • RNETT DA, CAPLEN MA, DAVIS HR, BURRIER RE, CLADER JW: 2-Azetidinones as inhibitors of cholesterol absorption. J. Med. Chem. (1994) 37:1733-1736. SALISBURY BG, DAVIS HR, BURRIER RE, BURNETT DA, BOYKOW G, CAPLEN MA, CLEMMONS AL, COMPTON DS, HOOS LM, MCGREGOR DG, SCHNITZERPOLOKOFF R, SMITH AA, WEIG BC, ZILLI DL, CLADER JW, SYBERTZ EJ: Hypocholesterolemic activity of a novel inhibitor of cholesterol absorption, SCH 48461. Atherosclerosis (1995). In press. The fact that any compound can lower cholesterol potently in monkeys warrants further investigation as to mechanism. Histori-cally, hypolipidaemic drugs are inactive or require very high doses in this species.
  • ICESANIEM1 YA, GRUNDY SM: 'Turnover of low density lipoproteins during inhibition of cholesterol absorp-tion by neomycin. Arteriosclerosis (1984) 4:41–48.
  • WE I 1E,RAU JR, ZILVERSMIT DB: Localization of intracel-lular triacylglycerol and cholesteryl ester transfer activ-ity in rat tissues. Bloch im Biophys. Acta (1986) 875:610–617.
  • SHARP D, BLINDERMAN L, COMBS KR, KTENZTE B, RICCI •B, WAGERSM1TH K, GIL CM, TURCK CW, BOUMA ME,RADER DJ, AGGERBECK LP, GREGG RE, GORDON DA, WE 1'1ERAU JR: Cloning and gene defects in microsomal triglyceride transfer protein associated with abetalipo-proteinemia. Nature (1993) 365:65-69. A true milestone for those interested in VLDL assembly. Phartna-cologic implications are obvious.
  • HAMILTON EL, HAVEL RJ: Is microsomal triglyceride transfer protein the missing link in abetalipoprote-inemia? Hepatology (1993) 18:460-463. An interesting perspective linking MTP to the two-step model of VLDL assembly.
  • GREGG RE: Personal communication.
  • GREGG RE, WETTERAU JR: The molecular basis of abe-talipoproteinemia. Curr. Opin. Lipidol. (1994) 5:81–86.
  • SPARKS JD, SPARKS CE: Insulin regulation of triacyl-glycerol-rich lipoprotein synthesis and secretion. Bio-chim. Biopbys. Acta (1994) 1215:932.
  • WU X, SAKATA N, LUI E, GINSBERG HN: Evidence for a lack of regulation of the assembly and secretion of apolipoprotein B-containing lipoprotein from HepG2 cells by cholesteryl ester. J. Biol. Chem. (1994) 269:12375-12382. In vitro evidence implicating triglyceride availability as being regu-latory for apoB secretion.
  • ARBEENY CM, MEYERS DS, BERGQUIST KR, GREGG RE: Inhibition of fatty add synthesis decreases very low density lipoprotein secretion lathe hamster. J. Lipid Res. (1992) 33:843-851. The use of hamster hepatocytes is worth noting. Reasons could be made for this model being more appropriate than rat hepatocytes, although basal rates of lipogenesis are higher in hamsters compared to rats.
  • GROOT PHE, PEARCE NJ, YATES JW, GRIBBLE AD, SHAW AN, TEW DG, WIGGINS D, GIBBONS GF: Hepatic ATP-cit-rate lyase as a target for hypolipidemic intervention. Atherosclerosis (1994) 109:322 (Abstract). New light on an old target. Will these compete against MTP inhibitors?
  • DASHT1 N: The effect of low density lipoproteins, cho-lesterol and 25-hydroxycholesterol on apolipoprotein B gene expression in Hep62 cells. J. Biol. Chem. (1992) 267(10):7160–7169.
  • CLANFLONE KM, YASRUEL Z, RODRIGUEZ MA, VAS D, SNIDERMAN AD: Regulation of apoB secretion from HepG2 cells: evidence for a critical role of cholesteryl ester synthesis lathe response to a fatty add challenge. J. Lipid Res. (1990) 31:2045-2055. This paper provided evidence using human-derived cells that inhi-bition of liver ACAT may represent a novel drug target.
  • KRAUSE BR, ANDERSON M, BISGAlER CL, BOCAN T, BOUSLEY R, DEHART P, ESSENBURG A, HAMELEHLE K, HOMAN R, KIEFT K, MCNALLY W, STANFIELD R, NEWTON RS: In vivo evidence that the lipid-regulating activity of the ACAT inhibitor CI976 in rats is due to inhibition of both intestinal and liver ACAT. J. Lipid Res. (1993) 34:279-294. First paper to provide indirect in vivo evidence that orally-adminis-tered, bioavailable ACAT inhibitors lower plasma lipids in part by inhibiting liver ACAT. Data from liver perfusions later confirmed this directly [421.
  • BURRIER RE, SMITH AA, MCGREGOR DG, HOOS LM, ZILLI DL, DAVIS HR: The effect of acyl-CoA:cholesterol acyl-transferase inhibition on the uptake, esterification and secretion of cholesterol by the hamster small intestine. Pharm. E. Therap. (1995) 272:156–163.
  • BALASUBRAMANIAM S, SIMONS LA, CHANG S, ROACH PD, NESTEL PJ: On the mechanism by which an ACAT Inhibitor (CL 277,082) influences plasma lipoproteins in the rat. Atherosclerosis (1990) 82:1–5.
  • NAGAYOSHI A, MATSUKI N, SAITO H, TSUKAMOTO K, WAKASHIMA M, KINOSHITA M, YAMANAKA M, TERA-MOTO T: Deficiency of acyl CoA:cholesterol acyltrans-ferase activity in Suncus liver. J. Biochem. (1994) 115:858-861. A novel model of abetalipoproteinaemia implicating ACAT as being essential for VLDL secretion.
  • YASUHARA M, OHAMA T, MATSLTKI N, SAITO H, MAT-SUSHIMA T, KUROKAWA K, TERAMOTO T: Deficiency of apolipoprotein B synthesis in Suncus murinus. J. Bio-chem. (1991) 110:751–755.
  • FISHER WR, ZECH LA, STACPOOLE PW: ApoB metabolismIn familial hypercholesterolemia. Inconsistencies with the LDL receptor paradigm. Arterioscler. 7bromb. (1994) 14:501–510.
  • KHAN B, WILCOX HG, HEIMBERG M: Cholesterol is required for secretion of very-low-density lipoprotein by rat liver. Biochem. J. (1989) 258:807–816.
  • FELLERMAN K, REIMANN FM, HEROLD G, STANGE EF: Mevinolin, a competitive inhibitor of hydroxymethyl-glutaryl coenzyme A reductase, suppresses enterocyte esteriflcation of exogenous but not endogenous choles-teroL Biochim. Biophys. Acta (1992) 1165:78-83. This paper provides the Likely reason why HMGR inhibitors decrease cholesterol absorption in rabbits.
  • KOIZUMI J, MABUCHI H, YOSEUMURA A, MICHISHITA I, TAKEDA M, ITOH H, SAKAI Y, SAKAI T, UEDA K, TAKEDA R: Deficiency of serum cholesteryl ester transfer activity In patients with familial hyperalphalipoproteinemia. Atherosclerosis (1985) 58:175–186.
  • MOULIN P, APPEL GB, GINSBERG HN, TALL AR: Increased concentration of plasma cholesteryl ester transfer pro-tein in nephrotic syndrome: role in dyslipidemia. J. Lipid Res. (1992) 33:1817–1822.
  • WHITLOCK ME, SWENSON, RAMAKRISHNAN R, LEONARD MT, MARCEL YL, MILNE RW, TALL AR: Monoclonal anti- body inhibition of cholesteryl ester transfer protein activity in the rabbit. J. din. Invest. (1989) 84:129-137. Encouraging early data that inhibition of CETP elevates HDLC.
  • EVANS GF, BENSCH WR, APELGREN LD, BAILEY D, KAUFF- MAN RF, BUMOL TF, ZUCKERMAN SH: Inhibition of cholesteryl ester transfer protein in normo-cholesterolemic and hypercholesterolernic hamsters: effects on HDL subspecies, quantity, and apolipopro-tein distribution. J. Lipid Res. (1994) 35:1634–1645.
  • MAROTTI KR, CASTLE CK, BOYLE TP, UN, AH, MURRAY, •RW, MELCHIOR GW: Severe atherosclerosis in trans-genic mice expressing simian cholesteryl ester transfer protein. Nature (1993) 364:73-75. Transgenic mice expressing monkey CETP were produced and fed an atherogenic diet for several months. The expression of CETP resulted in more severe dyslipidaemia and atherosclerosis. This study clearly shows a relationship between cholesterol distribution in plasma and lesion area, and strongly implicates CETP as being proatherogenic.
  • BISGAlER CL, ESSENBURG AD, MINTON LL, HOMAN R, BLANKLEY CJ, WHITE A: Cholesteryl ester transfer pro-tein inhibition by PD 140195. Lipids (1994) 29:811-818. The first report of a phannacologic approach to inhibit CETP.
  • YAMASHTTA S, SPRECHER ILL, SAKAI N, MATSUZAWA Y, TARUI S, HUI DY: Accumulation of apolipoprotein-E rich high density lipoproteins in hyperalphalipoprote-inemic human subjects with plasma cholesteryl ester transfer protein deficiency. J. Clin. Invest. (1990) 86:688–695.
  • FRANCESCHINI G, WERBA JP, CALABRESI L: Drug control of reverse cholesterol transport. Pharmac. 7ber. (1994) 61:289-324. A unique review concentrating on the pharmacology of RCT, which is in its infancy.
  • BARRANS A, COLLET X, BARBARAS R, JASPARD B, MANENT J, VIEU C, CHAP H, PERRET B: Hepatic lipase induces the formation of prefil high density lipoprotein (IIDL) from triacylglycerol-rich HD1.2. A study comparing liver per-fusion to in vitro incubation with lipases. J. Biol. Chem. (1994) 269:11572–11577.
  • FRANCESCHINI G, CHLESA G, SIRTORI CR: Probucol in-creases cholesteryl ester transfer protein activity in hypercholesterolaemic patients. Eur. I Clin. Invest. (1991) 21:384–388.
  • WALLDIUS G, ERIKSON U, BERGSTRAND L, NILSSON 5, JOHANSSON J, NILSSON J, REGNSTROM J, SCHAFER-ELIN-DER L, KAIJSER L, LASSVIK C, MOLGAARD J, HOLME I, OLSSON AG: Probucol and the PQRST a look back and a look ahead. Atherosclerosis (1994) 109:90 (Abstract).
  • SCHAEFER EJ, ZECH LA, JENKINS LL, BRONZERT TJ, RUBAL-CABA EA, LINDGREN FT, AAMODT RE, BREWER HB: Hu-man apolipoprotein Al and Al! metabolism. J. Lipid Res. (1982) 23:850–862.
  • SAKU K, GARTSIDE PS, HYND BA, KASHYAP ML: Mecha-nism of action of gemfibrozil on lipoprotein metabo-lism. J. Clin. Invest. (1985) 75:1702–1712.
  • RUBIN EM, KRAUSS RM, SPANGLER EA, 'VERSTUYFT JG,CLIFT SM: Inhibition of early atherogenesis in trans-genic mice by human apolipoprotein Al. Nature (1991) 353:265–267.
  • LIU AC, LAWN RM, VERSTUYFT JG, RUBIN EM: Human apolipoprotein Al prevents atherosclerosis associated with apolipoprotein(a) in transgenic mice. J. Lipid Res. (1994) 35:2263-2267. This study may imply that Lp(a) is less detrimental if HDL is elevated. Conversely, having low HDL and elevated Lp(a) puts one at very high risk for CHD.
  • LE NA, GINSBERG HN: Heterogeneity of apolipoprotein Al turnover in subjects with reduced concentrations of 7200 plasma high density lipoprotein cholesteroL Metabo-lism (1988) 37:614–617.
  • SORCITHOMAS M, PRACK MM, DASHTI N, JOHNSON F,RUDEL LL, WILLIAMS DL: Apolipoprotein (Apo) Al pro-duction and mRNA abundance explain plasma apoAl and high density lipoprotein differences between two nonhuman primate species with high and low suscep-tibilities to diet-induced hypercholesterolemia. J. Biol. Chem. (1988) 263:5183–5189.
  • BERTHOU L, STAELS B, SALDICCO I, BERTHELOT K, CASEYJ, FRUCHART JC, DENEFLE P, BRANELLEC D: Opposite in vitro and in vivo regulation of hepatic apolipoprotein Al gene expression by retinoic acid. Absence of effects on apolipoprotein All gene expression. Arterioscler. Thromb. (1994) 14:1657–1664.
  • STAELS B, VAN TOL A, ANDREU T, AU'WERX J: Fibrates •influence the expression of genes involved in lipopro-tein metabolism in a tissue-selective manner in the rat. Arterioscler. Thromb. (1992) 12:286-294. This study clearly illustrates that fenofibrate and gemfibrozil have different effects on apolipoprotein concentrations and gene expres-sion in rats.
  • MITCHELL A, FIDGE N, GRIFFITHS P: The effect of the HMG-CoA reductase inhibitor simvastatin and of cholestyramine on hepatic apolipoprotein mRNA levels In the rat. Biochim. Biophys. Acta (1993) 1167:914.
  • TAM S-P: Effects of gemfibrozil and ketoconazole on human apolipoprotein Al, B, and E levels in two hepa-toma cell lines, HepG2 and Hep3B. Atherosclerosis (1991) 91:51–61.
  • RIBEIRO A, MANGENEY M, LORIE 11h C, THOMAS G, PEPIND, JAN VIER B, CHAMBAZ J, BEREZIAT G: Effect of simvas-tatin on the synthesis and secretion of lipoproteins in relation to the metabolism of cholesterol in cultured hepatocytes. Biochim. Biophys. Acta (1991) 1086:L279–286.
  • HAHN SE, GOLDBERG DM: Modulation of lipoproteinproduction in HepG2 cells by fenofibrate and clofibrate. Biochem. Pharm. (1992) 43:625–633.
  • BOVARD-HOUPPERMANS S, OCHOA A, FRUCHART JC, ZAKIN MM: Fenofibric acid modulates the human apolipoprotein A-W gene expression in HepG2 cells. Biochim. Biophys. Res. Commun. (1994) 198:764–769.
  • VUDAC N, SCHOONJANS K, LAINE B, FRUCHART JC, AUWERX J, STAELS B: Negative regulation of the human apolipoprotein Al promoter by fibrates can be attenu-ated by the interaction of the peroxisome proliferator-activated receptor with its response element. J. Biol. Chem. (1994) 269:31012–31018.
  • CHAO YS, PICKETT CB, YAMIN IT, GUO LSS, ALBERTS AW,}CROON PA: Phenobarbital induces rat liver apolipopro-tein Al mRNA. Molec. Pharm. (1985) 27:394–308.
  • REA TJ, BISGMER CL, DEMATTOS RB, PAPE ME: Rabbit liver apolipoprotein AI synthesis is under non-parenchymal cell paracrine controL J. Lipid Res. (1994) 35:1274-1282. Provides the reason why rabbit liver does not secrete apoAl.
  • SANDOZ LTD.: EP-0528146-A1 (1992).
  • FURRER H, GRANZER E, WAGNER R: A new class of potenthypolipemic agents raising high-density lipoproteins. Synthesis, reactions and pharmacological properties. Eur. J. Med. Chem. (1994) 29:819–829.
  • KRAUSE BR, BOUSLEY R, KIEFT K, ROBERTSON D, STAN- FIELD R, URDA E, NEWTON RS: Comparison of lifibrol to other lipid-regulating agents in experimental animals. Pharm. Res. (1994) 29:345-357. Only published data showing that lovastatin does not lower plasma cholesterol in cholesterol-fed rats.
  • LOCKER PK, JUNGBLUTH GL, FRANCOM SF, HUGHES GS:Lifibrol: a novel lipid-lowering drug for the therapy of hypercholesterolemia. Gun. Pharmacol. Ther. (1995) 57:73–88.
  • VON ECKARDSTEIN, A, HUANG Y, ASSMANN G: Physi-ological role and clinical relevance of high-density lipoprotein subclasses. Current Opinion in Lipidology (1994) 5:404-416. The many different techniques used to isolate HDL subclasses are described. A practical guide for clinicians interested in discerning RCT efficiency beyond HDL-cholesterol.
  • ALAUPOVIC P: The concepts, classification systems, and nomenclatures of human plasma lipoproteins. In: Handbook of Electrophoresis. Lewis LA, Opplt JJ (Eds.). CRC Press, Inc., Boca Raton, FL USA (1980). First classification based upon functional proteins.
  • BARD JM: Pharmacological modulation of apoA and apoB-containing lipoproteins. Prog. Lipid Res. (1991) 30:267–274.
  • FIELDING CJ, FIELDING PE: Molecular physiology of •crse cholesterol transport. J. Lipid Res. (1995) 36:211-228. This excellent review points out the current state of knowledge as well as the controversial issues regarding cholesterol removal from peripheral cells.
  • MEHRABIAN M, QIAO JH, HYMAN R, RUDDLE D, LAUGHTON C, LUSIS AJ: Influence of the apoAll gene locus on HDL levels and fatty streak development in mice. Arteriocler. Thromb. (1993) 13:1–10.
  • FRUCHART JC, BARD JM, PUCHOIS P, DOUSTEBLAZY P: Clinical significance of apo Al containing lipoprotein particles. In: Atherosclerosis VIII. Crepaldi G, et al. (Eds.). Elsevier Science Publishers By., Amsterdam (1989).
  • BARD JM, FARNIER M, BUXTORF JC, FRUCHART JC, JACO-TOT B: Comparison of the effects of ciprofilbrate and gemfibrozil on apoAl and apoB containing particles. 9th Int. Symp. on Atherosclerosis. Rosemont, IL, USA (1991):128.
  • BARD JM, FARNIER M, LEBEL P, LEQUEU B, FRUCHART JC: Effect of combined therapy with simvastatin and fen-ofibrate on apoAl and apoB containing particles. XI Int. Symp. on Drugs Affecting Lipid Metabolism. Florence, Italy (1992):123.
  • BARD JM, PARRA HJ, DOUSTEBLAZY P, FRUCHART JC: Effect of pravastatin, an HMG-CoA reductase inhibitor, and cholestyramine, a bile acid sequestrant, on lipopro-tein particles defined by their apolipoprotein compo-sition. Metabolism (1990) 39:269–273.
  • BARD JM, PARRA HJ, CAMARE R, LUC G, ZIEGLER 0, DACHET C, BRUCKERT E, DOUSTEBLAZY P, DROUIN P, JACOTOT B, DE GENNES JL, FRUCHART JC: A multicenter comparison of the effects of simvastatin and fenofibrate therapy in severe primary hypercholesterolemia, with particular emphasis on lipoproteins defined by their apolipoprotein composition. Metabolism (1992) 41:498–503.
  • KUNITAKE ST, LA SALA KJ, KANE JP: Apolipoprotein AI-containing lipoproteins with prebeta electro-phoretic mobility.]. Lipid Res. (1985) 26:549–555.
  • FIELDING PE, KAWANO M, CATAPANO AL, ZOPPO A, MARCOVINA S, FIELDING CJ: Unique epitope of apolipo-protein Al expressed in pre-131 highdensity lipoprotein and its role in the catalyzed efflux of cellular choles-teroL Biochemistry (1994) 33:6981–6985.
  • ASZTALOS BF, SLOOP CH, WONG L, ROHEIM PS: Two-di-mensional electrophoresis of plasma lipoproteins: rec-ognition of new apoAl-containing subpopulations. Biochim. Biophys. Acta (1993) 1169:291-300. A quantitative method which may become the 'gold standard' for the future. This technique illustrates the glaring need for under-standing the origin and physiologic functions of at least ten new apoAI particles.
  • ASZTALOS BF, SLOOP CH, WONG L, ROHEIM PS: Compari-son of apo AI-containing subpopulations of dog plasma and prenodal peripherallymph: evidence for alteration In subpopulations in the interstitial space. Biochim. Biophys. Acta (1993) 1169:301–304.
  • HUANG Y, VON ECKARDSTEIN A, WU S, MAEDA N, ASS-MANN G: A plasma lipoprotein containing only apolipo-protein E and with y mobility on electrophoresis releases cholesterol from cells. Proc. Natl. Acad. Sci. (1994) 91:1834–1838.
  • DUVERGER N, GHALIM N, AILHAUD G, STEINMETZ A, FRUCHART JC, CASTRO G: Characterization of apoAIV-containing lipoprotein particles isolated from human plasma and interstitial fluid. Arterioscler. Thromb. (1993) 13:126–132.
  • SLOOP CH, DORY L, HAMILTON R, KRAUSE BR, ROHEIM PS: Characterization of dog peripheral lymph lipopro-teins: The presence of a disc-shaped 'nascent' HDL. J. Lipid Res. (1983) 24:1429–1440.
  • TSUTSUMI K, INOUE Y, SHIMA A, IWASAKI K, KAWAMURA •M, MURASE T: The novel compound N01886 increases lipoprotein lipase activity with resulting elevation of high density lipoprotein cholesterol, and long-term administration inhibits atherogenesis in the coronary arteries of rats with experimental atherosclerosis. J. Clin. Invest. (1993) 92:411-417. A somewhat surprising finding given the impression in the literature that arterial wall LPL is pro-atherogenic (see [114,115]).
  • TOMITA T, SAWAMURA F, UETSUKA R, MIURA S, TOMITA I, INOUE Y, TSUTSUMI K: Antiatherogenic effects of a novel compound, N01886, in cholesterol-fed New Zea-land White rabbits. Atherosclerosis(1994) 109: 69(Abstract).
  • SAXENA U, KLEIN MG, VANNI TM, GOLDBERG IJ: Lipopro- tein lipase increases low density lipoprotein retention by subendothelial cell matrix. J. Clin. Invest. (1992) 09:373-380. This study raises the question as to whether LPL is proatherogenic.
  • STEIN 0, BENNAIM M, DABACH Y, HOLLANDER G, HALPERIN G, STEIN Y: Can lipoprotein lipase be the culprit in cholestetyl ester accretion in smooth muscle cells in atheroma? Atherosclerosis (1993) 99:15–22.
  • BERG K: A new serum system in man: The Lp system. Acta Pathol. Microbiol. Scand. (1963) 59:369–382.
  • SCHAEFER EJ, LAMONFAVA S, JENNER JL, ET AL.: Lipopro-tein(a) levels and risk of coronary heart disease in men. The Lipid Research Clinics Coronary Primary Preven-tion TriaL JAMA (1994) 271:999–1003.
  • SHINTANI S, KIKUCHI S, HAMAGUCHI H, SHIIGI T: High serum lipoprotein(a) levels are an independent risk factor for cerebral infarction. Stroke (1993) 24:965–969.
  • MCLEAN JW, TOMLINSON JE, KUANG WJ, ET AL.: cDNA •sequence of human apolipoprotein(a) is homologousto plasminogen. Nature (1987) 330:132-137. Analysis of apo(a)cDNA revealed an unexpected homology to plasminogen. This finding led to a realisation that the pathogenic mechanism of Lp(a) probably consisted of both a thrombogenic and atherogenic component.
  • FURIE B, FURIE BC: The molecular basis of blood coagu-lation. Cell (1988) 53:505–518.
  • ARMSTRONG V, WALLI AK, SEIDEL D: Isolation, charac-terization, and uptake in human fibroblasts of an apo(a) free lipoprotein obtained on reduction of lipopro-tein(a).]. Lipid Res. (1985) 26:1314–1323.
  • KOSCHINSKY ML, COTE GP, GABE B, VAN DER HOEK YY: Identification of the cysteine residue in apolipopro-tel./1(a) that mediates extracellular coupling with apop-lipoprotein B100. J. Biol. Chem. (1993) 268:19819–19825.
  • BRUNNER C, KRAFI HG, UTERMANN G, MULLER HJ: Cys4457 of apolipoprotein(a) is essential for lipopro-tein(a) assembly. Proc. Natl. Acad. Sci. USA (1993) 90:11643–11647.
  • SOMMER A, GORGES R, KOSTNER GM, PALTAUF F, HER-METTER A: Sulfhydryl-selective fluoresecence labeling of lipoprotein(a) reveals evidence for one single disul-fide linkage between apoproteins(a) and B-100. Bio-chemistry (1991) 30:11245–11249.
  • GUEVARA J, SPURLINO JJAN AY, ETAL.: Proposed mecha- nisms for binding apo(a) kringle type 9 to apo 11100 in human lipoprotein(a). Biophys. J. (1993) 64:686-700. First indepth evaluation, from a molecular modelling viewpoint, of the complex interaction between the kringles of apo(a) and apoB–100.
  • GUEVARA J, KNAPP RD, HONDA S, NORTHRUP SR, MOR-RISEIT JD: A structural assessment of the apo(a) protein of human lipoprotein(a). Proteins: Structure, Function and Genetics (1992) 12:188–199.
  • GUEVARA J, JAN AY, KNAPP R, TULINSKY A, MORRISEIT JD: Comparison of 14:and-binding sites of modeled apo(a) kringlelike sequences in human lipoprotein(a). Arteriosclk,r. Thromb. (1993) 13:758–770.
  • FRANKS, DLTROVIC S, KOSTNER GM: Structural require-ments of apo(a) for the lipoprotein(a) assembly. Bio-chem. (1994) 304:27–30.
  • LI Z, GAMFINO R FIESS GM COPELAND RA HALEPENNY AJ, SCANU AM: Expression and purification of luingle 4-type 2 of human apoplipoprotein(a) in Escbericbia coil. Protein Exp. Purif (1992) 3:212–222.
  • LOGRASSO PV, CORNELLICENNON S, BOEITCHER BR: Cloning, expression and characterization of human apolipoprotein(a) kringle W37. J. Biol. Chem. (1994) 269:21820–21827.
  • SANGRAR W, MARCOVINA SM, KOSCHINSKY ML: Expres-sion, and characterization of apolipoprotein(a) kringle IV types 1,2 and 10 in mammalian cells. Prot. Eng. (1994) 7:723–731.
  • KRAFT HG, MENZEL HJ, HOPPICHTER F, VOGEL W, UTER-MANN G: Changes of genetic apolipoprotein pheno-types caused by liver transplantation.]. Clin. Invest. (1989) 83:137–142.
  • WEISGRABER KH, SHINTO LH: Identification of the disul-fide-linked homoditner of apolipoprotein E3 in plasma. J. Biol. Chem. (1991) 266:12029–12034.
  • MENZEL HJ, DIEPLINGER H, LACKNER C, ETAL.: Abetalipo-proteinemia with an apo B-100-lipoprotein(a) glyco-protein complex in plasma. J. Biol. Chem. (1990) 265:981–986.
  • WHITE AL, RAINWATER DL, LANFORD RE: Intracellular maturation of apolipoprotein(a) and assembly of lipo-protein(a) in primary baboon hepatocytes. J. Lipid Res, (1993) 34:509–517.
  • WHITE AL, LANFORD RE: Cell surface assembly of lipo-protein(a) in primary cultures of baboon hepatocytes. J. Biol. Chem. (1994) 269:28716–28723.
  • WILKINSON J, MUNRO LH, HIGGINS JA: Apolipopro- tein(a) is not associated with apolipoprotein B in hu-man liver. J. Lipid Res. (1994) 35:1896-1901. Evidence that apo(a) and LDL form Lp(a) extracellularly in human liver cell lysates.
  • CHIESA G, HOBBS HH, KOSCHINSKY ML, ETAL.: Recon-stitution of lipoprotein(a) by infusion of human low density lipoprotein into transgenic mice expressing human apolipoprotein(a). J. Biol. Chem. (1992) 267:24369–24374.
  • LAWN RM WADE DP, HAMMER RE, CHIESA G, VERSTUFYT IJG, RUBIN EM: Atherogenesis in transgenic mice ex-pressing human apolipoprotein(a). Nature (1992) 360:670-672. Transgenic mice expressing apo(a) are more susceptible to diet-in-duced atherosclerosis than the nontransgenic controls.
  • CALLOW MJ, STOLZFUS LJ, LAWN RM, RUBIN EM: Expres- •sion of human apolipoprotein B and assembly of lipo-protein(a) in transgenic mice. Proc. Natl. Acad. Sci. (1994) 91:2130-2134. Double transgenic mouse model expressing both human apo(a) and apoB-100. These mice efficiently synthesise a human Lp(a) particle, thus providing the first nonprimate model, apart from the hedgehog, for possible utility in the search for agents which decrease Lp(a) levels.
  • LINTON MF, FARESE RV, CHIESA G, ET AL.: Transgenic mice expressing high plasma concentrations of human apolipoprotein B-100 and lipoproteM(a). J. din. Invest. (1993) 92: 3029–3037.
  • EDELSTEIN C, DAVIDSON NO, SCANU AM: Oleate stimu-lates the formation of triglyceride-rich particles con-taining apoB-100 apo(a) in long-term primary cultures of human hepatocytes. Chem. Phys. Lipids (1994) 6768:135–143.
  • BROWN MS, GOLDSTEN JL: Teaching old dogmas new tricks. Nature (1987) 330:113–114.
  • GOLDSTEIN MR: Lipoprotein(a): Friend or foe? Am. J. Cardiol. (1995) 75:319.
  • PEPIN JM, O'NEIL JA, HOFF HF: Quantification of apo(a) and apo B in human atherosclerotic lesions. J. Lipid Res. (1991) 32:317–327.
  • CUSHING GL, GAABATZ JW, NAVA ML, ETAL.: Qnantita-tion and localization of apolipoproteins (a) and B in coronary artery bypass vein grafts resected at reopera-tion. Arteriosclerosis (1989) 9:593–603.
  • LIU AC, LAWN RM: Vascular interactions of lipopro-tein(a). Curr. Opin. Lipid. (1994) 5:269–273.
  • HABERLAND ME, FLESS GM, SCANU AM, FOGELMAN AM: Malondiablehyde modification of lipoprotein(a) pro-duces avid uptake by monocyte-macrophages. J. Biol. Chem. (1992) 267:4143–4151.
  • WILLIAMS JK, BELLINGER DA, NICHOLS TC, ETAL.: Occlu- sive arterial thrombosis in cynomolgus monkeys with varying plasma concentrations of lipoprotein(a). Arte-rioscler. Thromb. (1993) 13:548-554. Compelling in vivo evidence for the thrombogenic potential of elevated Lp(a) levels.
  • MOLITERNO DJ, LANGE RA, MEIDELL RS, ETAL.: Relation •of plasma lipoprotein(a) to infarct patency in survivors of myocardial infarction. Circulation (1993) 88:935-940. Human study showing that survivors of myocardial infarction, with elevated plasma levels of Lp(a), were more likely to have a persist-ently occluded infarct artery.
  • HEARN JA, DONOHUE BC, BA'ALBAKI H, ETAL.: Useful-ness of serum lipoprotein(a) as a predictor of restenosis after percutaneous transluminal coronary angiogra-phy. Am. J. Cardiol. (1992) 69:736–739.
  • KOJIMA S, HARPEL PC, RIFKIN DB: Lipoprotein(a) inhib-its the generation of transforming growth factor beta: an endogenous inhibitor of smooth muscle cell migra-tion. J. Cell Biol. (1991) 113: 1439–1445.
  • GRAINGER DJ, KIRSCHENLOHR HL, METCALFE JC, ETAL.: Proliferation of human smooth muscle cells promoted by lipoprotein(a). Science (1993) 260:1655-1658. Compelling evidence for an additional pathogenic mechanism for Lp(a). This study demonstrates that Lp(a) promotes smooth muscle cell proliferation. This effect has also been demonstrated in vivo.
  • GRAINGER DJ, KEMP PR, LIU AC, ET AL.: Activation of transforming growth factor-5 is inhibited in transgenic apolipoprotein(a) mice. Nature (1994) 370:460–462.
  • EZRATTY A, SIMON DI, LOSCALZO J: Lipoprotein(a) binds to human platelets and attenuates plasminogen binding and activation. Biochemistry (1993) 32:4628–4633.
  • SNYDER M, POLACEK D, SCANU AM, FLESS GM: Compara-tive binding and degradation of lipoprotein(a) and low density lipoprotein by human monocyte-derived macrophages. J. Biol. Chem. (1992)267:339–346.
  • HOFMANN SL, EATON DL, BROWN MS, MCCONATHY WJ, GOLDSTEIN JL, HAMMER RE: Overexpression of human low density lipoprotein receptors leads to accelerated catabolism of Lp(a) lipoprotein in transgenic mice. J. Clin. Invest. (1990) 85:1542–1547.
  • O'CONNOR P, COOKE T, FEELY J: Effects of HMG-CoA reductase inhibitors on lipids and lipoprotein(a) In hypercholesterolemia. Drug Invest. (1992) 4:227–231.
  • ICREMPFLER F, KOSTNER GM, ROSCHER A, HASLAUER F, BOLZANO K, SANDHOFER F: Studies on the role of specific cell surface receptors in the removal of lipo-protein(a) in man. J. Clin. Invest. (1983) 71:1431–1441.
  • RADER DJ, CAIN W, ZECH LA, USHER D, BREWER HB: Variation in lipoprotein(a) concentrations among indi-viduals with the same apolipoprotein(a) isoform is determined by the rate of lipoprotein(a) production. J. Clin. Invest. (1993) 91:443–447.
  • RAMHARACK R, SPAHR MA, HICKS GW, ET AL.: Gernfi-brozil significantly lowers cynomolgus monkey plasma lipoprotein(a)protein and liver apolipoprotein(a) mRNA levels. J. Lipid Res. (1995). In press.
  • ••
  • DAIDA H, LEE YJ, YOKOI H, ET AL.: Prevention of restenosis after percutaneous transIrrainat coronary angioplasty by reducing lipoprotein(a) levels with low density lipoprotein apheresis. Am. J. Cardiol. (1994) 73:1037–1040.
  • GIJRAKAR A, HOEG JM, KOSTNER G, PAPADOPOULOS NM, BREWER HB: Levels of lipoprotein(a) decline with neo-mycin and niacin treatment. Atherosclerosis (1985) 57:293–301.
  • JONES PH, GOTTO AM, POWNALL HJ, ETAL.: Effect of gemfibrozil on plasma lipoprotein(a) levels in type Ha hyperlipoproteinemic subjects. Circulation (1991) 84:483 (Abstract).
  • BIMMERMAN A, BOERSCHMANN C, SCHWARTZKOPFF W, VON BAEYER H, SCLEICHER J: Effective therapeutic meas-ures for reducing lipoprotein(a) in patients with dyslipidemia. Lipoprotein(a) reduction with sustained release bezaflbrate. Curr. Ther. Res. (1991) 49:635–643.
  • CROOK D, SEDHU M, SEED M, O'DONNELL M, STEVENSON JC: Lipoprotein(a) levels are reduced by danazol, an anabolic steroid. Atherosclerosis (1992) 92:41–47.
  • ALBERS JJ, TAGGART HM, APPLEBAUMBOWDEN D, HAFFNER S, CHESTNUT CH, HAZZARD WR: Reduction of lecithin-cholesterol acyltransferase, apolipoprotein D and the Lp(a) lipoprotein with the anabolic steroid stanozoloL Biocbim. Biophys. Acta (1984) 796:293–296.
  • SACKS FM, McPHERSON R, WALSH BW: Effect of post-menopausal estrogen replacement on plasma Lp(a) lipoprotein concentrations. Arch. Intern, Med. (1994) 154:1106–1110.
  • FUSTER V: Mechanisms leading to myocardial In-farction: Insights from studies of vascular biology. Circulation (1994) 90:2126-2146. Outlines the stages of atherosclerosis and reviews potential areas of pharmacologic intervention which may prove beneficial in the modulation of atherosclerosis.
  • NAKAJIMA T, KITAJIMA I, SHIM H, ETAL.: Involvement of NF-kappa B activation in thrombin-induced human vascular smooth muscle cell proliferation. Biochem. Biopbys. Res, Commun. (1994) 204:950–958.
  • WILCOX JN, RODRIGLTEZ J, SUBRAMANIAN R, ET AL.: Characterization of thrombin receptor expression dur-ing vascular lesion formation. Circ. Res. (1994) 75:1029–1038.
  • NELKEN NA, SOIFER SJ, O'KEEFE J, VU TK, CHARO IF, COUGHLIN SR: Thrombin receptor expression in nor-mal and atherosclerotic human arteries. J. Clin. Invest. (1992) 90:1614–1621.
  • WALTERS TK, GORG DA, WOOD RF: Thrombin genera-tion following arterial injury is a critical initiating event in the pathogenesis of the proliferative stages of the atherosclerotic process. J. Vasc. Res. (1994) 3: 173–177.
  • SAREMBOCK IJ, GERTZ SD, GIMPLE LW, OWEN RM, POW-ERS ER, ROBERTS WC: Effectiveness of recombinant desulphatohirudin in reducing restenosis after balloon angioplasty of atherosclerotic femoral arteries in rab-bits. Circulation (1991) 84:232–243.
  • SZCZEKLIK A, MUSIAL J, DROPINSKI J, ETAL.: Thrombi-nogenesis and its pharmacological modulation in atherosclerosis. J. Physiol. Pbarmacol. (1994) 45:311.
  • BREDDIN HK: Low molecular weight heparins: State-of-the-art and unsolved issues. Blood Coagul. Fibrinolysis. (1993) 4\(Suppl. 1):S17–S19.
  • RAGOSTA M, GIMPLE LW, GERTZ SD, ET AL.: Specific factor Xa inhibition reduces restenosis after balloon angioplasty of atherosclerotic femoral arteries in rab-bits. Circulation(1994) 89:1262–1271.
  • ROSS R: The pathogenesis of atherosclerosis: a perspec- tive for the 1990s. Nature (1993) 362:801-809. A comprehensive review of cell-derived factors involved in atherosclerosis with a primary focus on growth factors and cytokines.
  • AMBROSIONI E, BACCHELLI S, DEGLIESPOSTI D, BORGHI C: ACE inhibitors and atherosclerosis. Eur. J. Epiderniot (1992) 8\(Suppl. 1):129–133.
  • MULLINS DE, HAMUD F, REIM R, DAVIS HR: Inhibition of PDGF receptor binding and PDGF stimulated biological activity in vitro and of intimal lesion formation in vivo by 2-bromomethy1-5-chlorobenzene sulfonylphtha-lamide. Arterioscler. Thromb. (1994) 14:1047–1055.
  • OHLSTEIN EH, DOUGLAS SA, SUNG CP, ETAL.: Carvedilol, a cardiovascular drug, prevents vascular smooth mus-cle cell proliferation, migration, and neointimal forma-tion following vascular injury. Proc. Natl. Acad. Sci. USA (1993) 90:6189–6193.
  • FOEGH ML: Angiopeptin: a treatment for accelerated myointimal hyperplasia?J. Heart Lung Transplant (1992) 11:S28–S31.
  • SIMONS M, EDELMAN ER, DEKEYSER JL, LANGER R, ROSENBERG RD: Antisense c-nryb oligonucleotides in-hibit intimal arterial smooth muscle cell accumulation in vivo. Nature (1992) 359:67–70.
  • MORISAKI N, KAWANO M, KOYAMA N, KOSH1KAWA T, UMEMIYA K, sArro Y, YOSHIDA S: Effects of transform-ing growth factor-beta 1 on growth of aortic smooth muscle cells. Influences of interaction with growth factors, cell state, cell phenotype and cell cycle. Atherosclerosis (1991) 88:227–234.
  • STANLEY ER: The macrophage colony-stimulating fac-tor, CSF-1. Meth. Enym. (1985) 116:564–587.
  • FILONZI EL, ZOELLNER H, STANTON H, HAMILTON JA: Cytokine regulation of granulocyte-macrophage col-ony stimulating factor and macrophage colony-stimu-lating factor production in human arterial smooth muscle cells. Atherosclerosis (1993) 99:241–252.
  • YLAHERITUALA S. LIPTON BA, ROSENFELD ME, SARKIOJA •T, YOSHIMURA T, LEONARD EF, WITZUM JL, STEINBERGD: Expression of monocyte chernoattractant protein 1 in macrophage-rich areas of human and rabbit atherosclerotic lesions. Proc. Natl. Acad. Sci. (1991) 88:5252-5256. Identification and colocalisation of an enzyme which could be responsible for the initiation of lipoprotein oxidation within the arterial wall.
  • LEONARD EJ, YOSHIMURA T: Human monocyte chemoattractant protein, MCP1. Immun. Today (1990) 11:97–101.
  • SPORN MB, ROBERTS AB, WAKEFIELD LM, CROMBRUG-GHE B: Some recent advances in the chemistry and biology of transforming growth factor-beta. J. Cell Biol. (1987) 105:1039–1045.
  • AMENTO EP, EHSANI N, PALMER H, LIBBY P: Cytokines and growth factors positively and negatively regulate
  • •• Interstitial collagen gene expression in human vascu-lar smooth muscle cells. Arterioscler. Thromb. (1991) 11:1223–1230.
  • HANSSON GK: Immunological control mechanisms in plaque formation. Basic Res. Cardiol. (1994) 89\(Suppl. 1)A1–46.
  • SIGAL E, LAUGHTON CW, MULKINS MA: Oxidation, lipoxygenase and atherogenesis. Ann. NY Acad. Sci. (1994) 714:211–214.
  • YLAHERTTUALA S, ROSENFELD ME, PARTHASARATHY S, GLASS CK, SIGAL E, WITZUM JL, STEINBERG D: Colocali-zation of 13-lipoxygenase mRNA and protein with epi-topes of oxidized low density lipoprotein in macrophage-rich areas of atherosclerotic lesions. Proc. Natl. Acad. Sci. (1990) 87:6959–6963.
  • CONRAD DJ, KUHN H, MULKINS M, HIGHLAND E, SIGAL E: Specific inflammatory cytokines regulate the expres-sion of human monocyte 13-lipoxygenase. Proc. Natl. Acad. Sci. (1992) 89:217–221.
  • RAJAVASHISTH TB, ANDALIBIAA, TERRITO MC, BERLINER JA, NAVAB M, FOGELMAN AM, LUSIS AJ: Induction of endothelial cell expression of granulocyte and macro-phage colony-stimulating factors by modified low-den-sity lipoproteins. Nature (1990) 344:254–257.
  • KUME N, CYBULSKY MI, GIMBRONE MA: Lysophospha-tidylcholine, a component of atherogenic lipoproteins, Induces mononuclear leukocyte adhesion molecules in cultured human and rabbit arterial endothelial cells. J. Clin. Invest. (1992) 90:1138–1144.
  • FROSTEGARD J, WU R, HAEGERSTRAND A, PATARROYO M, LEPVERT AK, NILSSON J: Mononuclear leukocytes exposed to oxidized low density lipoprotein secrete a factor that stimulates endothelial cells to express adhe-sion molecules. Atherosclerosis (1993) 103:213–219.
  • PORRECA E, DIFEBBO C, BARBACANE RC, PANARA MR, CUCCURULLO P, CONTI P: Effect of interleukin-1 recep-tor antagonist on vascular smooth muscle cell prolif-eration. Atherosclerosis (1993) 99:71–78.
  • HANSSON GK, STEMME S, GENG YJ, HOLM J: Can imtnu-nocompetent cells and their cytokines play a role in atherogenesis? Nouv. Rev. Fr. Hematol. (1992) 34(Suppl.):S43–S46.
  • CYBULSKY MI, GIMBRONE MA: Endothelial expression ••of a mononuclear leukocyte adhesion molecule duringatherogenesis. Science (1991) 252:788-791. First article which identifies an adhesion molecule, termed `atheroE-LAM', in the hypercholesterolaemic rabbit which could precede macrophage foam cell formation by regulating monocyte adhesion and transmigration into the subendothelium.
  • LI H, CYBULSKY MI, GIMBRONE MA, LIBBY P: An athero-genic diet rapidly induces VCAM-1, a cytokine-regulat-able mononuclear leukocyte adhesion molecule, in rabbit aortic endothelium. Arterioscler. Thromb. (1993) 13:197–204.
  • U H, CYBULSKY MI, GIMBRONE MA, LIBBY P: Inducible expression of vascular cell adhesion moleculel by vascular smooth muscle cells in vitro and within rabbit atheroma. Am. J. Pathol. (1993) 143:1551–1559.
  • RICHARDSON M, HADCOCK SJ, DERESKE M, CYBULSKY MI: Increased expression in vivo of VCAM-1 and E-se-lectin by the aortic endothelium of normolipemic and hyperlipenaic diabetic rabbits. Arterioscler. Thromb. (1994) 14:760–769.
  • CALDERON TM, FACTOR SM, HATCHER VB, BERLINER JA, BERMAN JW: An endothelial cell adhesion protein for monocytes recognized by monoclonal antibody 169. Expression in vivo in inflamed human vessels and atherosclerotic human and Watanabe rabbit vessels. Lab. Invest. (1994) 70:836–849.
  • DAVIES MJ, GORDON JL, GEARING AJ, PIGOTT R, WOOLF N, KATZ D, KYRIAKOPOULOS A: The expression of the adhesion molecules ICAM-1, VCAM-1, PECAM and E-se-lectin in human atherosclerosis./ Pathol. (1993) 171:223–229.
  • O'BRIEN ICD, ALLEN MD, MCDONALD TO, ETAL.: Vascular cell adhesion molecule-1 is expressed in human coro-nary atherosclerotic plaques. Implications for the mode of progression of advanced coronary atherosclerosis. J. Clin. Invest. (1993)92:945–951.
  • TANAKA H, SUKHOVA GK, SWANSON SJ, CLINTON SK, GANZ P, CYBULSKY MI, LIBBY P: Sustained activation of vascular cells and leukocytes in the rabbit aorta after balloon injury. Circulation (1993) 88:1788–1803.
  • CYBULSKY MI, FRIES JW, WILLIAMS AJ, ET AL.: Gene structure, chromosomal location, and basis for alterna-tive mRNA splicing of the human VCAM1 gene. Proc. Natl. Acad. Sci. (1991) 88:7859–7863.
  • NAGEL T, RESNICK N, ATKINSON WI DEWEY CF, GIM-BRONE MA: Shear stress selectively upregulates inter-cellular adhesion molecule-1 expression in cultured human vascular endothelial cells. J. Clin. Invest. (1994) 94:885–891.
  • COUFFINHAL T, DUPLAA C, MOREAU C, LAMAZIERE JM, BONNET J: Regulation of vascular cell adhesion mole-cule-1 and intercellular adhesion molecule-1 in human vascular smooth muscle cells. Circ. Res. (1994) 74:225–234.
  • MARUI N, OFFERMANN MK, SNIVERLICK R, KUNSCH C, ROSEN CA, AHMAD M, ALEXANDER RW, MEDFORD RM: Vascular cell adhesion molecule-1 (VCAM-1) gene tran-scription and expression are regulated through an antioxidant-sensitive meebAnism in human vascular endothelial cells. J. Clin. Invest. (1993) 92:1866–1874.
  • STEINBERG D, PARTHASARATHY S, CAREW TE, KHOO JC 1TZTUM JL: Modifications of low density lipoproteinthat increases its atherogenicity. New Engl.J. Med. (1989) 320:915-924. Summarises the hypothesis that oxidation of plasma lipoproteins within the arterial wall plays a central role in the initiation and progression of atherosclerotic lesions.
  • SMITH EB, EVANS PH, POWNHAM MD: Lipid lathe aortic intima: The correlation of morphological and chemical characteristics. J. Atheroscr. Res. (1967) 7:171–186.
  • GUYTON JR, BOCAN TMA, SCHIFANI TA: A quantitative analysis of periflbrous lipid and its association with elastin in nonatherosclerotic human aorta. Arterioscler. (1985) 5:644–652.
  • DAUGHERTY A, ZWEIFEL BS, SCHONFELD G: Probucol attenuates the development of aortic atherosclerosis in cholesterol-fed rabbits. Br. J. Pharmacol. (1989) 98:612–618.
  • TAWARA K, ISHIHARA M, OGAWA H, TOMIICAWA M: Effect of probucol, pantethine and their combinations on serum lipoprotein metabolism and on the incidence of atheromatous lesions in the rabbit Jpn. J. Pbarmacol. (1986) 41:211-222. 204.
  • ••
  • CAREW TE, SCHWENKE DC, STEINBERG D: Antiathero-genic effect of probucol unrelated to its hypo-cholesterolemic effect: Evidence that antioxidants in vivo can selectively inhibit low density lipoprotein degradation in macrophage-rich fatty streaks and slow the progression of atherosclerosis in Watanabe herita-ble hyperlipidemic rabbit. Proc. Natl. Acad. Sci. (1987) 84:7725–7729.
  • DAUGHERTY A, ZWEIFEL BS, SCHONFELD G: The effects of probucol on the progression of atherosclerosis in mature Watanabe heritable hyperlipidemic rabbits. Br. J. Pharmacol. (1991) 103:1013–1018.
  • KITA T, NAGANO Y, YOKODE M, ISHII K, KUME N, 00SHIMA A, YOSHIA H, KAWAI C:Probucol prevents the progression of atherosclerosis in Watanabe heritable hyperlipidemic rabbit, an animal model for familial hypercholesterolemia. Proc. Natl. Acad. Sci. (1987) 84:5928–5931.
  • BOCAN TMA, BAK MUELLER S, QUENBY-BROWN E, UHLENDORF PD, MAZUR MJ, NEWTON RS: An-tiatherosclerotk effects of antioxidants are lesion-spe-cific when evaluated in hypercholesterolemic New Zealand White rabbits. Expt.Molec. Pathol. (1992) 57 :70–83.
  • BRATTSAND R: Actions of vitamins A and E and some nicotinic acid derivatives on plasma lipids and on lipid infiltration of aorta in cholesterol-fed rabbits. Atherosclerosis (1975) 22:47–61.
  • BJORKHEM I, HENRIKSSONFREYSCHUSS A, BREUER 0, DICZFALUSY U, BERGLUND L, HENRIKSSON P: The anti-oxidant butylated hydroxytoluene protects against atherosclerosis. Arterioscler. Thromb. (1991) 11:15–22.
  • YLAHERTTUALA S: Gene expression in atherosclerotic lesions. Herz (1992) 17:270–276.
  • KLTHN H, BELKNER J, ZALAA S, FAHRENKLEMPER T, WO-HLFEIL S: Involvement of 15-lipoxygenase in early stages of atherogenesis. J. Exp. Med. (1994) 179:1903–1911.
  • RANKIN SM, PARTHASARATHY S, STEINBERG D: Evidence for a dominant role of lipoxygenase(s) in the oxidation of LDL by mouse peritoneal macrophages. J. Lipid. Res. (1991) 32:449–456.
  • SPARROW CP, OLSZEWSKI J: Cellular oxidative modifica-tion of low density lipoprotein does not require lipoxy-genases. Proc. Natl. Acad. Sci. (1992) 89:128–131.
  • NAITO M, SUZUKI H, MORI T, MATSUMOTO A, KODAMA T, TAKAHASHI K: Co-expression of type I and type II human macrophage scavenger receptors in macro-phages of various organs and foam cells in atherosclerotic lesions. Am. J. Pathol. (1992) 141:591–599.
  • LUOMA J, HILTUNEN T, SAREOJA T, MOESTRUP SK, GEE-MANN J, KODAMA T, NIKEEARI T, YLAHERTTUALA S: Expression of alpha-2 macroglobulin receptor/low density lipoprotein receptor-related protein and scav-enger receptor in human atherosclerotic lesions .J. Invest. (1994) 93:2014–2021.
  • MATSUMOTO A, NAITO M, ITAKURA H ET AL.: Human macrophage scavenger receptors: primary structure, expression and localization in atherosclerotic lesions. Proc. Natl. Acad. Sci. (1990) 87:9133–9137.
  • TSUBAMOTO Y, YAMADA N, WATANABE Y ET AL.: Dex-tran sulfate, a competitive inhibitor for scavenger re-ceptor, prevents the progression of atherosclerosis in Watanabe heritable hyperlipidemic rabbits. Atherosclerosis (1994) 106:43–50.
  • SCHAFFER SA, BLOOM JD, DEVRIES VG, ETAL.: CL277082, a novel inhibitor of cholesterol esterification and cho-lesterol absorption. In: Atherosclerosis VIII. Fidge NH, Nestel PJ (Eds.). Elsevier, Amsterdam (1986).
  • HEFFRON F, MIDDLETON B, KELLEY LA: Inhibition of acyl coenzyme A: cholesterol acyl transferase by trimethyl-cyclohexanylmandelate (cyclandelate). Biochem. Pharm. (1990) 39:575–580.
  • MIDDLETON B, MIDDLETON A, WELTTE DA, BELL GD: Dietary cyclandalate decreases pre-established atherosclerosis in rabbits. Atherosclerosis (1984) 171:171–178.
  • ASHTON MJ, BRIDGE AW, BUSH RC ET AL.: RP70676: a potent systemically available inhibitor of acyl-CoA:cho-lesterol 0-acyltransferase (ACAT). Proceedings from the 9th International Symposium on Atherosclerosis. Rosemont, USA:183.
  • FUKUSHIMA H, AONO S, NAKAMURA Y ET AL.: The effect of N-(a-methylbenzyl) linoleamide on cholesterol me-tabolism in rats. J. Atheroscler. Res. (1969) 10:403–414.
  • FUKUSHIMA H, TOLI K, NAKATANI H: The effect of N-(alpha-methylbenzyl) linoleamitie on experimental atherosclerosis in rabbits. J. Atheroscler. Res. (1969) 9:57–64.
  • GAMMILL RB, BELL FP, BELL LT, ET AL.: An-tiatherosclerotic agents: a structurally novel bivalent Inhibitor of acyl-CoA:cholesteroloacyltransferase with systemic activity. J. Med. Chem. (1990) 33:2686–2687.
  • BOCAN TMA, BAKMUELLER S, UHLENDORF PD, QUENBY-BROWN E, MAZUR MJ, BLACK AE: Inhibition of acyl-CoA cholesterol 0-acyltransferase reduces the cholesteryl ester enrichment of atherosclerotic lesions in the Yu-catan micropig. Atherosclerosis (1993) 99:175–186.
  • BOCAN TMA, BAK MUELLER S, UHLENDORF PD, NEWTON RS, KRAUSE BR: Comparison of CI976, an ACAT inhibi-tor, and selected lipid-lowering agents for an-tiatherosclerotic activity in iliac-femoral and thoracic-aortic lesions. A biochemical, mophologkal and morphometric evaluation. Arterioscler. Thromb. (1991) 11:1830-1843. Highlights the significance of inhibition of arterial wall ACAT in the absence of plasma cholesterol and lipoprotein lowering on the development and regression of atherosclerotic lesions.
  • CORSINI A, RAITERI M, SOMA M, FUMAGALLI R, PAOLETTI R: Simvastatin but not pravastatin inhibits the prolifera-tion of rat aorta myocytes. Pharmacol. Res. (1991) 23:173–180.
  • FALKE P, MATTIASSON I, STAVENOW L, HOOD B: Effects of a competitive inhibitor (mevinolin) of 3-hydroxy-3-methylglutaryl coenzyme A reductase on human and bovine endothelial cells, fibroblasts and smooth muscle cells in vitro. Pharm. Toxicol. (1989) 64:173–176.
  • HIDAKA Y, TOMOYO E, YONEMOTO M, KAMAI T: Inhibi-tion of cultured vascular smooth muscle cell migration by simvastatin (MK733). Atherosclerosis (1992) 95:87–94.
  • BOCAN TMA, FERGUSON E, MCNALLY W, ET AL.: Hepatic and nonhepatic sterol synthesis and tissue distribution of a liver selective HMG-CoA reductase inhibitor, C1981: comparison with selected HMG-CoA reductase inhibi-tors. Biochim. Biophys. Acta (1992) 1123:133–144.
  • SOMA MR, DONETTI E, PAROLINI C, MAZZINI G, FBRRARI C, FUMAGALLI R, PAOLETTI R: HMG-CoA reductase in-hibitors: In vivo effects of carotid intimal thickening in normocholesterolernic rabbits. Arterioscler. Thromb. (1993) 13:571–578.
  • BOCAN TMA, MAZUR MJ, BAK MUELLER S, ET AL.: An-tiatherosclerotic activity of inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase in cholesterol-fed rabbits: a biochemical and morphologi-cal evaluation. Atherosclerosis (1994) 111:127–142.
  • SINENSKY M, LUTZ RJ: The prenylation of proteins. Bioessays (1992) 14:2531.
  • RUBANYI GM, POLOKOFF MA: Endothelins: molecular biology, biochemistry, pharmacology, physiology and pathophysiology. Pharm. Rev. (1994) 46:325-415. Comprehensive review of endothelin and endothelin receptor. A detailed perspective of the discovery and role of endothelin in physiology and disease.
  • SHIOSAKI K, OPGENORTH TJ: Potential therapeutic util-ity of ACE inhibitors and ET receptor antagonists. Drug News Perspectives (1994) 10:593–602.
  • SAKURAI T, YANAGISAWA M, MASAKI T: Molecular char-acterization of endothelin receptors. Trends Pharnzacol. Sci. (1992) 13:103–108.
  • LERMAN A, EDWARDS BS, HALLETT JW, HEUBLEIN DM, SANDBERG SM, BURNETT JC: Circulating and tissue en-dothelin immunoreactivity in advanced atherosclerosis. New Engl. J. Med. (1991) 325:997–1001.
  • TOYOOKA T, AIZAWA T, SUZUKI N, ET AL.: Increased plasma level of endothelin-1 and coronary spasm in-duction in patients with vasospastic angina pectoris. Circulation (1991) 83:476–483.
  • MIYAUCHI T, YANAGISAWA M, TOMIZAWA T, ET AL.: Increased plasma concentrations of endothelin-1 and big endothelinl in acute myocardial infarction. Lancet (1989) 2:53–54.
  • HORIO T, KOHNO M, MURAKAWA K, YASUNARI K, YOK-OICAWA K, UEDA M, TAKEDA T: Increased plasma im-munore active endothelin-1 concentration in hypercholesterolemic rats. Atherosclerosis (1991) 89:239–246.
  • WINKLES JA, ALBERTS GF, BROGI E, LIBBY P: Endothelin-1 and endothelin receptor mRNA expression in normal and atherosclerotic human arteries. Biochem. Biophys. Res. Comm. (1993) 191:1081–1088.
  • DASHWOOD MR, BARKER SGE, MUDDLE JR, YACOUB MI-I, MARTIN JF:
  • I1 binding to vasa vasorum and regions of neovascularization in human and por-cine blood vessels: A possible role for endothelin in intitnal hyperplasia and atherosclerosis. J. Cardiovascl. Pharmacol. (1993) 22\(Suppl. 8):5343–S347.
  • DASHWOOD MR, SYKES RM, MUDDLE JR, COLLINS MJ, PREHAR S, THEODOROPOULOS S, YACOUB MH: Autora-diographic localization of [12511-endothelin binding sites in human blood vessels and coronary tissue: functional correlates. J. Cardiovasc. Pharmacol. 17\(Suppl. 7):S458–S462.
  • BOULANGER CM, TANNER FC, BEA ML, HAHN AWA, WERNER A, LUSCHER TF: Oxidized low density lipopro-teins induce mRNA expression and release of en-dothelin from human and porcine endothelium. Circ. Res.(1992) 70:1191–1197.
  • HOMO T, KOHNO M, YASUNARI K, MURAKAWA K, YOK-OKAWA K, IKEDA M, FUKUI T, TAKEDA T: Stimulation of endothelin-1 release by low density and very low den-sity lipoproteins in cultured human endothelial cells. Atherosclerosis (1993) 101:185–190.
  • MARTINNIZARD F, HOUSSAINI HS, LESTAVELDELATTRE S, DURIEZ P, FRUCHART JC: Modified low density lipopro-teins activate human macrophages to secrete im-munoreactive endothelin. FEBS Lett. (1991) 293: 127–130.
  • MAEMURA K, KURIHARA H, MORITA T, PHHASHI Y, YAZAKI Y: Production of endothelin-1 in vascular endo-thelial cells is regulated by factors associated with vascular injury. Gerontology (1992) 38\(Suppl. 1):29–35.
  • DOUGLAS SA, LOUDEN C, VICKERYCLARK LM, STORER BL, HART T, FEUERSTEIN GZ, ELLIOTT JD, OHISTEIN EH: A role for endogenous endothelin-1 in neointimal forma-tion after rat carotid artery balloon angioplasty. Protec-tive effects of the novelnonpeptide endothelin receptor antagonist SB209670. Circ. Res. (1994) 75:190–197.
  • GALIS ZS, SUKHOVA GK, LARK MW, LIBBY P: Increased •expression of matrix metalloproteinases and matrixdegrading activity in vulnerable regions of human atherosclerotic plaques. J. Chn. Invest. (1994) 94:2493-2503. Identification of matrix metalloproteinases in atherosclerotic disease which highlights the relationship between extracellular matrix re-modeling and plaque stability.
  • GALIS ZS, SUICHOVA GK, ICRANSHOFER R, CLARK S, LIBBY P: Macrophage foam cells from experimental atheroma constitutively produce matrix-degrading proteinases. Proc. Natl. Acad. Sci. (1995) 92:402–406.
  • GALIS ZS, MUSZYNSKI M, SLTKHOVA GK, SIMONMORRIS-SEY E, UNEMORI EN, LARK MW, AMENTO E, LIBBY P: Cytokine-stimulated human vascular smooth musk cell synthesize a complement of enzymes required for ex-tracellular matrix digestion. Circ. Res. (1994) 75:181–189.
  • PAULY RR, PASSANITI A, BIALTO C ET AL.: Migration of cultured vascular smooth muscle cells through a base-ment membrane barrier requires type IV collagenase activity and is inhibited by cellular differentiation. Chn. Res. (1994) 75:41–54.
  • KATSUDA S, OICADA Y, IMAI K, NAKANISHI I: Matrix metalloproteinase-9 (92 kd gelatinase/type IV col-lagenase equals gelatinase B) can degrade arterial elastin. Am. J. Pathol. (1994) 145:1208–1218.
  • BENDECK MP, ZEMPO N, CLOWES AW, GALARDY RE, REIDY MA: Smooth muscle cell migration and matrix metalloproteinase expression after arterial injury in the rat. Circ. Res. (1994) 75:539-545. Brian R Krause, Department of Atherosclerosis Therapeutics, Parke-Davis Pharmaceutical Research, Division of Wamer-Lambert Com-pany, 2800 Plymouth Road, Ann Arbor, MI 48105, USA (Phone: 313 996 7677; Fax: 313 996 3135).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.