14
Views
16
CrossRef citations to date
0
Altmetric
Original Article

Section Review: Central & Peripheral Nervous Systems: Therapeutic potential of calpain inhibitors in neurodegenerative disorders

&
Pages 1291-1304 | Published online: 03 Mar 2008

References

  • BUSCH WA, STROMER MH, GOLL DE, SUZUKI A: Calcium- specific removal of Z-Hnes from rabbit skeletal muscle. J. Cell Blot (1972) 52:367-381. One of the first papers describing the discovery of calpain.
  • HUSTON RB, KREBS EG: Activation of skeletal muscle phosphorylase kinase by calcium. H. Identification ofa kinase activating factor as a proteolytic enzyme. Biochemistry (1968) 7:2116-2121. One of the first papers describing the discovery of calpain.
  • WAXMAN L: Calcium-activated proteases in masnmalian tissues. Methods Enzymol. (1981) 80:664-680.Good calpain purification method.
  • YOSHIMURA N, KIKUCHI T, SASAKI T et al.: Two distinct calcium proteases (calpain I and calpain II) purified concurrently by the same method from rat kidney. J. Biol. Chem. (1983) 258:8883–8889.
  • NISHIURA I, TANAKA K, YAMATO S, MURACHI T: The occurrence of an inhibitor of calcium-dependent neu-tral protease in rat liver. J. Biochem. (1978) 84:1657–1659.
  • EMORI Y, KAWASAKI H, IMAJOH S, KAWASHIMA S, SUZUKI K: Isolation and sequence analysis of cDNA clones for the small subunit of rabbit calcium-depend-ent protease. J. Biol. Chem. (1986) 261:9472–9476.
  • OHNO S, EMORI Y, IMAJOH S et al.: Evolutionary origin of a calcium-dependent protease by fusion of genes fora thiol protease and a calcium-binding protein? Nature (1984) 312:566-570. First paper on the cloning of calpain.
  • TAKANO E, K1TAHARA A, SASAKI T, KANNAGI R, MURACHI T: Two different molecular species of pig calpastatin. Structural and functional relationship between 107 kDa and 68 kDa molecules. Biochem. J. (1986) 235:97–102.
  • OHNO S, MINOSHIMA S, KUDOH J et al.: Four genes for the calpain family locate on four distinct human chro-mosomes. Cytogenet. Cell Genet. (1990) 53:225–259.
  • SUZUKI K, IMAJOH S, EMORI Y et al.: Calcium activated neutral protease and its endogenous inhibitor. Activa-tion at the cell membrane and biological function. FEBS Lett. (1987) 220:271–277.
  • AOKI K, IMAJOH S, OHNO S et al.: Complete amino acidsequence of the large subunit of the low-calcium-requir-ing form of human calcium-activated neutral protease (p.CANP) deduced from its cDNA sequence. FEBS Lett. (1986) 205:313–317.
  • IMAJOH S, AOKI K, OHNO S et at: Molecular cloning of the cDNA for the large subunit of the high-calcium-re-quiring form of human calcium-activated neutral pro-tease. Biochemistry (1988) 27:8122–8128.
  • RICHARD I, BROUX 0, ALLAMAND V et al.: Mutations in the proteolytic enzyme calpain 3 cause limb-girdle muscular dystrophy type 2A. Cell (1995) 81:27-40. First genetic disorder linkage to a calpain gene.
  • SORIMACHI H, TOYAMA SN, SAIDO TC et al.: Muscle-spe- cific calpain, p94, is degraded by autolysis immediately after translation, resulting in disappearance from mus-cle. J. Biol. Chem. (1993) 268:10593–10605.
  • OHNO S, EMORI Y, SUZUKI K: Nucleotide sequence of a cDNA coding for the small subunit of human calcium-dependent protease. Nucleic Acids Res. (1986) 14:5559.
  • YOSH1ZAWA T, SORIMACHI H, TOMIOKA S, ISHIURA S, SUZUKI K: A catalytic subunit of calpain possesses full proteolytic activity. FEBS Lett. (1995) 358:101–103.
  • GRAHAM-SIEGENTHALER K, GAUTHIER S, DAVIES PL, ELCE JS: Active recombinant rat calpain IL Bacterially produced large and small subunits associate both in vivo and to vitro. J. Biol. Chem. (1994) 269:30457-30460. Documentation of functional recombinant in-calpain.
  • MEYER SL, BOZYCZKO-COYNE D, MALLYA SK et al.: Bio- logically-active monomeric and heterodimeric recom- binant human calpain I produced using the baculovirus expression system. Biochem. J. (1996) 314:511-519. Documentation of functional recombinant g-calpain by a baculovirus system.
  • COOLICAN SA, HATHAWAY DR: Effect of L-alpha-phos- phatidylinositol on a vascular smooth musde calcium-dependent protease. Reduction of the calcium requirement for autolysis. J. Biol. Chem. (1984) 259:11627–11630.
  • IMAJOH S, KAWASAKI H, SUZUKI K: Limited autolysis of calchun-activated neutral protease (CANP): reduction of the calcium-requirement is due to the amino-terminal processing of the large subunit./ Biochem.(Tokyo)(1986) 100:633–642.
  • PONTREMOLI S, MELLONI E, SPARATORE B et al.: Role of phospholipids in the activation of the caldum-depend-eat neutral proteinase of human erythrocytes. Biochem. Biophys. Res. Commun. (1985) 129:389–395.
  • SAIDO TC, MIZUNO K, SUZUKI K: Proteolysis of protein kinase C by calpain: effect of acidic phospholipids. Biomed. Biocbim. Acta (1991) 50:485–489.
  • SAIDO TC, SHIBATA M, TAICENAWA T, MUROFUSH1 H,SUZUKI K: Positive regulation of µ-calpain action by polyphosphoinositides. J. Biol. Chem. (1992) 267:24585–24590.
  • CRAWFORD C, WM.'S AC, GAGNON J: The effects ofautolysis on the structure of chicken calpain IL Biochem. J. (1987) 248:579–588.
  • HATHAWAY DR, WERTH DK, HAEBERLE fit: Limited autolysis reduces the calcium requirement of a smooth muscle calcium-activated protease. J. Biol. Chem. (1982) 257:9072–9077.
  • CONG J, GOLL DE, PETERSON AM, KAPPRELL HP: The role of autolysis in activity of the Ca2*-dependent protei-nases (p.-calpain and m-calpain). J. Biol. Chem. (1989) 264:10096–10103.
  • WANG IUCW, ROUFOGALIS BD, VILLALOBO A: Further characterization of calpain-mediated proteolysis of the human erythrocyte plasma membrane Ca2'-ATPase. Arch. Biochem. Biophys. (1988) 267:317–327.
  • SASAKI T, KIKUCHI T, YUMOTO N, YOSHIMURA N, MU-RACHI T: Comparative specificity and kinetic studies on porcine calpain I and calpain II with naturally occur-ring peptides and synthetic fluorogenic substrates. J. Biol. Chem. (1984) 259:12489-12494. Excellent study on calpain substrate site preferences.
  • CROALL DE, DEMARTINO GN: Calcium-activated neutral protease (calpain) system: structure, function, and regulation. Physiol. Rev. (1991) 71:813–847.
  • GREGORIOU M, WILLIS AC, PEARSON MA, CRAWFORD C: The calpain cleavage sites in the epidermal growth factor receptor kinase domain. Eur. J. Biochem. (1994) 223:455–464.
  • WANG KKW, VILLALOBO A, ROUFOGALIS BD: Cal- modulin-binding proteins as calpain substrates. Bio-chem. J. (1989) 262:693-706. Providing insights on secondary recognition sequences (PEST) in calpain targets and calmodulin-binding proteins as selective targets for calpain.
  • DI-LISA F, DE-TULLIO R, SALAMINO F et al.: Specific degradation of troponin T and I by µ-calpain and its modulation by substrate phosphorylation. Biochem. J. (1995) 308:57–61.
  • MATESIC DF, UN RCS: Microtubule-associated protein 2 as an early indicator of ischemia-induced neurodegen-eration in the gerbil forebrain. J. Neurochem. (1994) 63:1012–1020.
  • POSMANTUR R, HAYES EL, DIXON CE, TAFT WC: Neuro-filament 68 and neuroftlament 200 protein levels de-crease after traumatic brain injury. J. Neurotrauma (1994) 11:533–545–
  • ELVIRA M, DIEZ JA, WANG KKW, VILLALOBO A: Phospho-rylation of connexin-32 by protein kinase C prevents its proteolysis by µ-calpain and m-calpain. J. Biol. Chem. (1993) 268:14294–14300.
  • GILCHRIST JS, WANG KKW, KATZ 5, BELCASTRO AN: Calcium-activated neutral protease effects upon skele-tal muscle sarcoplasmic reticulum protein structure and calcium release. J. Biol. Chem. (1992) 267:20857–20865.
  • TALLANT EA, BRUMLEY LM, WALLACE RW: Activation of a calmodulin-dependent phosphatase by a calcium-de-pendent protease. Biochemistry (1988) 27:2205–2211.
  • CARILLO S, PARIAT M, STEFF AM et al.: Differential sensi-tivity of FOS and JUN family members to calpains. Oncogene (1994) 9:1679–1689.
  • HIRAI S, KAWASAKI H, YANIV M, SUZUKI K: Degradation of transcription factors, c-Jun and c-Fos, by calpain. FESS Lett. (1991) 287:57–61.
  • WATT F, MOLLOY PL: Specific cleavage of transcriptionfactors by the thlol protease, m-calpain. Nucleic Acids Res. (1993) 21:5092–5100.
  • LIU Z-Q, KUNIMATSU M, YANG J-P et al.: Proteolytic processing of nuclear factor xB by calpain in vitro. FESS Lett. (1996) 385:109–113.
  • BANNO Y, ASANO T, NOZAWA Y: Proteolytic modifica-tion of membrane-associated phospholipase C-13 by µ-calpain enhances its activation by G-protein subunits in human platelets. FEI3S Lett. (1994) 340:185–188.
  • ANDO Y, IMAMURA S, MURACHI T, KANNAGI R: Calpainactivates two transghuaininases from porcine skin. Arch Dermatol. Res. (1988) 280:380–384.
  • EZUMI Y, TAKAYAMA H, OKUMA M: Differential regula-tion of protein-tyrosine phosphatases by integrin al-11,133 through cytoskeletal reorganization and tyrosine phosphorylation in human platelets. J. Biol. Chem. (1995) 270:11927–11934.
  • ODA A, DRUKER BJ, ARIYOSHI H, SMITH M, SALZMAN EW:pp6Osrc is an endogenous substrate for calpain in human blood platelets. J. Biol. Chem. (1993) 268:12603–12608.
  • SCHOLLMEYER JE: Calpain II involvement in mitosis. Science (1988) 240:911–913.
  • COTTIN P, BRUSTIS JJ, POUSSARD S etal.: Ca2+dependent proteinases (calpains) and muscle cell differentiation. Biochim. Biophys. Acta (1994) 1223:170–178.
  • EBISUI C, TSUJINAKA T, ICIDO Y et al.: Role of intracellular proteases in differentiation of L6 myoblast cells. Bio-chem. Mol. Biol. Int. (1994) 32:515–521.
  • GLASER T, KOSOWER NS: Calpain-calpastatin and fusion. Fusibility of erythrocytes is determined by a protease-protease inhibitor [calpain-calpastatin] balance. FFIIS Lett. (1986) 206:115–120.
  • OLIVER MW, BAUDRY M, LYNCH G: The protease inhibi-tor leupeptin interferes with the development of LTP in hippocampal slices. Brain Res. (1989) 505:233–238.
  • WANG KKW, YUEN PW: Calpain inhibition: an overview of its therapeutic potential. Trends Pharmacol. Sci. (1994)15:412-419. Good overview on calpain inhibitor development.
  • HARRIS AS, CROALL DE, MORROW JS: The cahnodulin- binding site in a-fodrin is near the calcium-dependent protease-I cleavage site. J. Biol. Chem. (1988) 263:15754-15761. It forms the basis for SBDP150-specific antibodies (see 1551).
  • WANG KKW, NATH R, POSNER A et al.: An alpha-mercap- toacrylic add derivative is a selective nonpeptide cell- permeable calpain inhibitor and is neuroprotective. Proc. Natl. Acad. Sci. USA (1996) 93:6687-6692. Description of first calcium binding site, non-peptide calpain-specific inhibitors.
  • WANG KKW, NATH R, RASER KJ, HAJIMOHAMMADREZA I: Maitotoxin induces calpain activation in SH-SY5Y neuroblastoma cells and cerebrocortical cultures. Arch. Biochem. Biophys. (1996). In press.
  • SAIDO TC, YOKOTA M, NAGA0 S etal.: Spatial resolution of fodrin proteolysis in postischemic brain. J. Biol. Chem. (1993) 268:25239–25243.
  • NISHIMURA T, GOLL DE: Binding of calpain fragments to calpastatin. J. Biol. Chem. (1991) 266:11842–11850.
  • INAZAWA J, NAKAGAWA H, MISAWA S etal.: Assignment of the human calpastatin gene (CAST) to chromosome 5 at region q14q22. Cytogenet. Cell Genet. (1990) 54:156–158.
  • TAKANO E, MAKI M, HATANAKA M et al.: Evidence forthe repetitive domain structure of pig calpastatin as demonstrated by cloning of complementary DNA. FFIZS Lett. (1986) 208:199–202.
  • MAKI M, TAKANO E, MORI H et al.: All four internally repetitive domains of pig calpastatin possess inhibitory activities against calpains I and IL FFJ3S Lett. (1987) 223:174-180. Clear demonstration that each repeated domain of calpastatin is a functional inhibitory unit.
  • LFF WJ, MA H, TAKANO E et al.: Molecular diversity in amino-terminal domains of human calpastatin by mon skipping. J. Biol. Chem. (1992) 267:8437–8442.
  • TAKANO E, UEDA M, TSUNEKAWA S et al.: Molecular diversity of erythrocyte calpastatin. Biomed. Biochim. Acta (1991) 50:517–521.
  • IMAJOH S, KAWASAKI H, EMORI Y, SUZUKI K: Calcium-activated neutral protease inhibitor from rabbit eryth-rocytes lacks the N-terminal region of the liver inhibitor but retains three inhibitory units. Biochem. Biophys. Res. Commun. (1987) 146:630–637.
  • MA H, YANG HQ, TAICANO E et al.: Requirement of different subdomains of calpastatin for calpain inhibi-tion and for binding to caknodulin-like domains. J. Biochem. (1993) 113:591–599.
  • YANG HQ, MA H, TAKANO E, HATANAKA M, MAKI M: Analysis of calcium-dependent interaction between amino-terminal conserved region of calpastatin func-tional domain and calmodulin-like domain oft-calpain large subunit. J. Biol. Chem. (1994) 269:18977-18984. It demonstrates that the conserved region A of domain 1 in calpas-tatin can interact with the calcium-binding domain IV of µ-calpain.
  • MAKI M, BAGCI H, HAMAGUCHI K et al.: Inhibition of calpain by a synthetic oligopeptide corresponding toan egon of the human calpastatin gene. J. Biol. Chem. (1989) 264:18866-18869. First study showing a 27-mer peptide based on the centre region of repeat 1 in calpastatin mimics the inhibitory activity of full length calpastatin.
  • UEMORI T, SHIMOJO T, ASADA K et al.: Characterization of a functional domain of human calpastatin. Biochem. Biophys. Res. Commun. (1990) 166:1485–1493.
  • CROALL DE, MCGRODY KS: Domain structure of calpain: mapping the binding site for calpastatin. Biochemistry (1994) 33:13223–13230.
  • SALVESEN G, PARKES C, ABRAHAMSON M, GRUBB A, BARRETT AJ: Human low-Mr kininogen contains three copies of a cystatin sequence that are divergent in structure and in inhibitory activity for cysteine protei-nases. Biochem.J. (1986) 234:429–434.
  • PURI RN, MATSUEDA R, UMEYAMA H, BRADFORD HN, COLMAN RW: Modulation of thrombin-induced platelet aggregation by inhibition of calpain by a synthetic peptide derived from the thiol-protease inhibitory se-quence of kininogens and S-(3-nitro-2-pyridine-sulfeny1)-cysteine. Eur. J. Biochem. (1993) 214:233–241.
  • TOY0-01CA T, SHIMIZU T, MASAKI T: Inhibition of pro-teolytic activity of calcium activated neutral protease by kupeptin and antipain. Biochem. Biophys. Res. Commun. (1978) 82:484–491.
  • SUZUKI K, TSUJI S, KUBOTA S, KIMLTRA Y, IMAHORI K:Limited autolysis of calcium ion-activated neutral pro-tease (CANP) changes its sensitivity to calcium ions. J. Biochem. (1981) 90:275–278.
  • SASAKI T, KIKUCHI T, YUMOTO N, YOSHIMURA N, MU-RACHI T: Comparative specificity and kinetic studies on porcine calpain I and calpain II with naturally occur-ring peptides and synthetic fluorogenic substrates. J. Biol. Chem. (1984) 259:12489–12494.
  • SAITO M, KAWAGUCHI N, HASHIMOTO M etal.: Purifica-tion and structure of novel cysteine proteinase inhibi-tors, staccopins P1 and P2, from Staphylococcus tanabeensis. Agric. Biol. Chem. (1987) 51:861–868.
  • IMPERIALI B, ABELES RH: Inhibition of serine proteases by peptidyl fluoromethyl ketones. Biochemistry (1986) 25:3760–3767.
  • SHAW E: Cysteinyl proteinases and their selective inac-tivation. Adv. Enzymol. Relat. Areas Mol. Biol. (1990) 63:271–347.
  • AZUMA M, DAVID LL, SHEARER TR: Superior preventionof calcium ionophore cataract by E64d. Biochim. Biophys. Acta (1992) 1180:215–220.
  • CRAWFORD C, MASON RW, WLKSTROM P, SHAW E: Thedesign of peptidylcliazomethane inhibitors to distin-guish between the cysteine proteinases calpain 11, cathepsin L and cathepsin B. Biocbem. J. (1988) 253:751–758.
  • CHATTERJEE S, JOSEF K, WELLS G et at.: Potentfluoromethyl ketone inhibitors of recombinant human calpain L Bioorg. Med. Chem. Lett. (1996) 6:1237–1240.
  • GRAYBILL TL, ROSS MJ, GAUVIN BR et at.: Synthesis andevaluation of azapepticle-derived inhibitors of serine and cysteine proteases. Bioorg. Med. Chem. Lett. (1992) 2:1375–1380.
  • GIORDANO C, CALABRETTA R, GALLINA C etal.: Synthesisand inhibiting activities of 1-peptidy1-2-haloacetyl hy-drazines toward cathepsin B and calpains. Eur. J. Med Chem. (1993) 28:297–311.
  • MATSUEDA R, UMEYAMA H, PURI RN, BRADFORD FIN, COLMAN RW: Potent affinity labeling peptide inhibitors of calpain. Chem. Lett. (1990). 191–194. First report of highly selective peptidic inhibitor of calpain over other cysteine proteases.
  • SAIDO TC, SORIMACHI H, SUZUKI K: Calpain: new per- .cs in molecular diversity and physiological-pathological involvement. FASEB J. (1994) 8:814-822. Excellent recent review on calpain.
  • SPENCER MJ, CROALL DE, TIDBALL JG: Calpains are activated in necrotic fibers from matrix dystrophic mice. J. Biol. Chem. (1995) 270:10909–10914.
  • SHEARER 'TR, AZUMA M, DAVID LL, MURACHI T: Amelio-ration of cataracts and proteolysis in cultured lenses by cysteine protease inhibitor E64. Invest. Ophthalmol. Vis. Sci. (1991) 32:533-540. Demonstration of anti-cataractic affects of calpain inhibition.
  • SANDERSON J, MARCANTONIO JM, DUNCAN G: Calciumionophore induced proteolysis and cataract Inhibition by cell permeable calpain antagonists. Biochem. Biophys. Res. Commun. (1996) 218:893–901.
  • FUJIMORI Y, SHIMIZU K, SUZUKI K etal.: Immunohisto-chemical demonstration of calcium-dependent cyste-ine proteinase (calpain) in collagen-induced arthritis In mice. Z. Rheumatol. (1994) 53:72–75.
  • VAMAURA I, TANI E, SAIDO TC etal.: Calpain-calpastatin system of canine basilar artery in vasospasm. J. Neuro-sing. (1993) 79:537-543. Describing the role of calpain in vasospasm.
  • YOSHIDA K, SORIMACHT Y, FUJIWARA M, H1RONAKA K:Calpain is implicated in rat myocardial injury after ischemia or reperfusion. Jpn. Circ. J. (1995) 59:40–48.
  • MELDRUM B, GARTHWATEE J: Excitatory amino add neurotoxkity and neurodegenerative disease. Trends Pharmacol. Sci. (1990) 11:379–387.
  • CHOI DW: Glutamate neurotoxicity and diseases of the nervous system. Neuron (1988) 1:623–634.
  • LIPTON SA, ROSENBERG PA: Excitatory amino adds as a final common pathway for neurologic disorders. New Engl. J. Med. (1994) 330:613–622.
  • DINGLEDINE R, MCBAIN CJ, MCNAMARA JO: Excitatoryamino acid receptors in epilepsy. Trends Pbarmacol. Sci. (1990) 11:334–338.
  • LEE KS, FRANK S, VANDERKLISH P, ARAI A, LYNCH G:Inhibition of proteolysis protects hippocampal neu-rons from ischeinia. Proc. Natl. Acad. Sci. USA (1991) 88:7233–7237.
  • HAJIMOHAMMADREZA I, PROBERT AW, Jr., COUGHE-NOUR LL et al.: Inhibition of calmodulin-dependent protein kinase-II attenuates excitotoxic amino acid me-diated neuronal death. J. Neurosci. (1995) 15:4093–4101.
  • CHOI DW, MAULUCCI-GEDDE M, KRIEGSTEIN AR: Gluta-mate neurotoxicity in cortical culture. J. Neurosci. (1987) 7:357–368.
  • ROBERTS-LEWIS JM, SAVAGE MJ, MARCY VR, PINSKER LR,SIMAN R: Immunolocalization of calpain I-mediated spectrin degradation to vulnerable neurons in the is-chemic gerbil brain. J Neurosci. (1994) 14:3934–3944.
  • BRORSON JR, MARCECCILLI CL, MITI FR RJ: Delayed an- tagonism of calpain reduces excitotoxicity in cultured neurons. Stroke (1995) 26:1259-1267. Delayed application of calpain inhibitor was still protective.
  • RAMI A, KRIEGLSTEIN J: Protective effects of calpain Inhibitors against neuronal damage caused by cytotoxic hypoxia in vitro and ischemia in vivo. Brain Res. (1993) 609:67–70.
  • BRORSON JR, MANZOLILLO PA, MIIIPR RL: Ca2+ entry viaAMPA/KA receptors and excitotoxicity in cultured cere-bellar Purkinje cells. J. Neurosci. (1994) 14:187–197.
  • ARAI A, VANDERKLISH P, KESSLER M, LEE KS, LYNCH G: A brief period of hypoxia causes proteolysis of cy-toskeletal proteins in hippocampal slices. Brain Res. (1991) 555:276–80.
  • SIMAN R, NOSZEK JC: Excitatory amino acids activate calpain I and induce structural protein breakdown in vivo. Neuron (1988) 1:279–287.
  • LEE KS, FRANK S, VANDERKLISH P, ARM A, LYNCH, G: Inhibition of proteolysis protects hippocampal neu-rons from ischemia. Proc. Natl. Acad. Sci. USA (1991) 88:7233–7237.
  • ARM A, KESSLER M, LEE KS, LYNCH G: Calpain inhibitors improve the recovery of synaptic transmission from hypoxia in hippocampal slices. Brain Res. (1990) 532:63-68. Detailed study on the protective effects of calpain inhibitors in a hippocampal slice model of hypoxia.
  • ARLINGHAUS L, MEHDI S, LEE KS: Improved posthypoxic recovery with a membrane-permeable calpain Eur. J. Pbarmacol. (1991) 209:123–125.
  • H1RAMATSU K-I, KASSELL NF, LEE KS: Improved posthy-poxk recovery of synaptic transmission in gerbil neo-cortical slices treated with a calpain inhibitor. Stroke (1993) 24:1725–1728.
  • CANER H, COLLINS JL, HARRIS SM, KASSELL NF, UP KS: Attenuation of AMPA-induced neurotoxicity by a cal-pain inhibitor. Brain Res. (1993) 607:354-356. Useful alternative model to the hippocampal model (see [1031).
  • SEUBERT P, LEE K, LYNCH G: Ischemia triggers NMDA receptor linked cytoskeletal proteolysis in hippocam-pus. Brain Res. (1989) 492:366–370.
  • HONG SC, GOTO Y, LANZINO G et al.: Neuroprotection with a calpain inhibitor in a model of focal cerebralischemia. Stroke (1994) 25:663-669. Demonstration of neuroprotective action of calpain inhibitors in vivo.
  • BARTUS RT, BAKER la, HEISER AD et al.: Postischemic administration of AK275, a calpain inhibitor, provides substantial protection against focal ischemic brain damage. J. Cereb. Blood Flow Metab. (1994) 14:537-544. Another demonstration of neuroprotective action of calpain inhibi-tors in vivo.
  • BARTUS RT, HAYWARD NJ, ELLIOTT PJ et al.: Calpain inhibitor AK295 protects neurons from focal brain ischemia: effects of postocclusion intra-arterial admini-stration. Stroke (1994) 25:2265–2270.
  • OLNEY JW, LABRUYERE J, WANG G et al.: NMDA antago-nist neurotoxicity: mechanism and prevention. Science (1991) 254:15154518.
  • HAYES FR, JENKINS LW, LYETH BG: Neurotransmitter-mediated mechanisms of traumatic brain injury. J. Neurotrauma (1992) 9:S173–S187.
  • FINEMAN I, HOVDA D, SMITH M, YOSHINO A, BECKER D: Concussive brain injury is associated with a prolonged accumulation of calcium: a 45Ca autoradiographic study. Brain Res. (1993) 624:94–102.
  • ARRIGONI E, COHADON F: Caldum-activated neutral protease activities in brain trauma. Neunacbem. Res. (1991) 16:483–487.
  • TAFT WC, YANG K, DIXON CE, HAYES RL: Microtubuk-associated protein 2 level in hippocampus following traumatic brain injury. j Neurotrauma (1992) 9:281–290.
  • POSMANTUR R, HAYES RE, DIXON E, TAFT WC: Neurofila-ment 68 and neurofilament 200 protein levels decrease after traumatic brain injury. J. Neurotrauma (1994) 11:533–545.
  • POSMANTUR R, KAMPFL A, SIMAN R et al.: A calpain inhibitor attenuates cortical cytoskektal protein lossafter experimental traumatic brain injury in the rat. Neuroscience (1996). In press. Demonstration of neuroprotective action of calpain inhibitors against TBI-induced neurofilament loss.
  • SAATMAN FR, MURAI H, BARTUS RT et al.: Calpain inhibi- tor AK295 attenuates motor and cognitive deficits fol-lowing experimental brain injury in the rat. Proc. Natl. Acad. Sci. USA (1996) 93:3428-3433. Demonstration of neuroprotective action of calpain inhibitors in an animal model of TBI.
  • KASSELL NF, SASAICI T, COLOHAN ART, NAZAR G: Cere-bral vasospasm following aneurysmal subarachnoid hemorrhage. Stroke (1985) 16:562–572.
  • FINDLAY JM, MACDONALD RE, WEIR BK: Current con-cepts of pathophysiology and management of cerebral vasospasm following aneurysmal subarachnoid hem-orrhage. Cerebrovasc. Brain Metab. Rev. (1991) 3:336–361.
  • FOLEY PL, KASSELL NF, HUDSON SB, LEE KS: Hemoglobin penetration in the wall of the rabbit basilar artery after 117.
  • MINAMI N, TANI E, MAEDA Y, TAMAURA I, FUKAMI M: Effects of inhibitors of protein kinase C and calpain in experimental delayed cerebral vasospasm. J. Neurosurg. (1992) 76:111–118.
  • ASHALL F, GOATE AM: Role of the beta-amyloid precur-sor protein in Alzheimer's disease. Trends Biocbem. Sci. (1994) 19:42–46.
  • SIMAN R, CARD JP, DAVIS LG: Proteolytic processing of beta antyloid precursor by calpain L J. Neurosci. (1990) 10:2400–2411.
  • ICLAFKI HW, PAGANETTI PA, SOMMER B, STAUFENBIEL M: Calpain inhibitor I decreases f3A4 secretion from hu-man embryonal kidney cells expressing 0-amyloid pre-cursor protein carrying the APP670/671 double mutation. Neurosci. Lett. (1995) 201:29–32.
  • PNAMOTO N, THANGNIPON W, CRAWFORD C, EMSON PC: Localization of calpain immunoreactivity in senile plaques and in neurones undergoing neurofibrillary degeneration in Alzheimer's disease. Brain Res. (1991) 561:177–180.
  • SAITO K-I, ELCE JS, HAMOS JE, NIXON RA: Widespread activation of calcium-activated neutral proteinase (cal-pain) in the brain in Alzheimer disease: a potential molecular basis for neuronal degeneration. Proc. Natl. Acad. Sci. USA (1993) 90:2628-2632. Important study linking calpain to Alzheimer's disease.
  • MATTSON MP, BARGER SW, CHENG B et al.: 0-Amyloid precursor protein metabolizes and loss of neuronal calcium homeostasis in Alzhekner's disease. Trends Neuroscience (1993) 16:409–414.
  • NIXON RA, SAITO K-I, GRYSPAN F et al.: Calcium-acti-vated neutral proteinase (Calpain) system in aging and Alzheimer's disease. Ann. IVY Acad. Sci. (1994) 747:77–91.
  • BANIK NL, CHAKRABARTI AK, KONAT GW, GANTT WG, HOGAN EL: Calcium-activated neutral proteinase (cal-pain) activity in C6 cell line: compartmentation of s-and m-calpain. J. Neurosci. Res. (1992) 31:708–714.
  • PERSSON H, KARLSSON J-0: Calpain activity in a subcel-lular fraction enriched in partially degraded CNS mye-lin fragments compared with myelin. Neuroscience Lett. (1991) 130:81–84.
  • SCHLAEPFER WW, MICK() S: Calcium-dependent alterna-tions of neurofIlament proteins of rat peripheral nerve. Neurochem. (1979) 32:244 249.
  • ZIMMERMAN U-JP, SCHLAEPFER WW: Calcium-activated neutral protease (amp) in brain and other tissues. Prog. Neurobiol. (1984) 23:63–78.
  • MATA M, KUPINA N, FINK DJ: Calpain II in rat peripheral nerve. Brain Res. (1991) 564:328–331.
  • BANIK NL, MCALHANEY WW, HOGAN EL: Calcium stimu- lated proteolysis in myelin: evidence for a calcium-ac-tivated neutral proteinase associated with purified myelin of rat CNS. J. Neurochem. (1985) 45:581-588. It shows that myelin can be degraded by endogenous calpain.
  • KAMAKURA K, ISHIURA 5, SUZUKI K, SUGITA H, TOYOKURA Y: Calcium-activated neutral protease in the peripheral nerve, which requires pM order calcium, and its effect on the neurofilament triplet. J. Neurosci. Res. (1985) 13:391–403.
  • WAXMAN SG: Demyelination in spinal cord injury and multiple sclerosis: what can we do to enhance func-tional recovery? J. Neurotrauma (1993) 9:S105–S117.
  • BANIK NL, HOGAN EL, WHETSTINE LJ, BALENTINE JD: Changes in myelin and axonal proteins in calcium chloride-induced myelopathy in rat spinal cord. Central Nervous System Trauma (1984) 1:131–137.
  • BANIK NL, HOGAN EL, PONVERS JM, SMITH KP: Proteolytic enzymes in experimental spinal cord injury. J. Neuro-logical Sci. (1986) 73:245–256.
  • BZUKA H, IWASAKI Y, YAMAMOTO T, KADOYA S: Mor-phometric assessment of drug effects in experimental spinal cord injury. J. IVeurosurg. (1986) 65:92–98
  • BADALAMENTLE MA, HURST LC, STRACHER A: Neuromus- cube recovery using adcium protease inhibition after median nerve repair in primates. Proc. Natl. Acad. Sci. USA (1989) 86:5983-5987. This paper notes that lack of observable side-effects of prolonged administration of leupeptin.
  • BADALAMENTLE MA, HURST LC, STRACHER A: Recovery after delayed nerve repair: influence of a pharma-cologic adjunct in a primate mocleL J. Reconstr. Microsurg. (1992) 8:319–397.
  • COHEN Apoptosis. Immunol. Today (1993) 14:126–130.
  • DRAGUNOW M, FAULL RLM, LAWLOR P et al.: In situ evidence for DNA fragmentation in Huntington's dis-ease striatum and Alzheimer's disease temporal lobes. NeuroReport (1995) 6:1053–1057.
  • LINNIK MD, ZOBRIST RH, HATFIELD MD: Evidence sup- porting a role for programmed cell death in focal cerebral ischemia in rats. Stroke (1993) 24:2002-2008. The first published study on the presence of apoptosis in cerebral ischaemia.
  • PORTERA-CAILLIAU C, HEDREEN JC, PRICE DL, KOLIATSOS VE: Evidence for apoptotic cell death in Huntington disease and excitotoxic animal models. J. Neuroscience (1995) 15:3775–3787.
  • SARIN A, CLERICI M, BLATT SP et al.: Inhibition of activa-tion-induced programmed cell death and restoration of defective immune responses of HIV donors by cysteine protease inhibitors. j Immunol. (1994) 15 3:862–872.
  • SARIN A, NAKAJIMA H, HENKART PA: A protease-depend-ent TCR-induced death pathway in mature lympho-cytes. J. Immunol. (1995) 154:5806–5812.
  • SQUIER MK, MITI FR AC, MALKINSON AM, COHEN JJ: Calpain activation in apoptosis. J. Cell Pbysiol. (1994)159:229-237. Convincing demonstration of calpain activation in T-cell apoptosis.
  • NATH R, RASER KJ, STAFFORD D et al.: Nonerythroid a-spectrin breakdown in apoptotic cells: contributory roles of both protease families by calpain and inter-leukinlii-converting-enxyme-like protease(s) in neuro-nal apoptosis. Biocbem. J. (1996). In press. First demonstration that calpain is involved in neuronal apoptosis.
  • HARBESON SL, ABELLEIRA SM, AKIYAMA A et al.: Stereos pecific synthesis of peptidyl a-keto amides as Inhibitors of calpain. J. Med. Chem. (1994) 37:2918–2929.
  • ALVAREZ ME, HOUCK DR, WHITE CB et al.: Isolation and structure elucidation of two new calpain inhibitors from Streptomyces griseus. J. Antibiot. (1994) 47:1195–1201.
  • GRAYBILL TL, DOLLE RE, OSIFO IK et al.: Inhibition of human erythrocyte calpain I lby novel quinolinecarbox-amides. Bioorg. Med. Chem. Lett. (1995) 5(4)387–392.
  • HARRIS AL, GREGORY JS, MAYCOCK AL et al.: Charac- •terization of a continuous fluorogenic assay for calpain L Kinetic evaluation of peptide aldehydes, halomethyl ketones and (acyloxy)methyl ketones as inhibitors of the enzyme. Bioorg. Med. Chem. Lett. (1995) 5(4):393–398.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.