26
Views
15
CrossRef citations to date
0
Altmetric
Miscellaneous

Efflux pumps in bacteria: overview, clinical relevance, and potential pharmaceutical target

&
Pages 199-217 | Published online: 23 Feb 2005

Bibliography

  • NEU HC: The crisis in antibiotic resistance [see com- ments]. Science (1992) 257:1064–1073.
  • JONES RN, PFALLER MA, DOERN GV eta].: Initial Report of a longitudinal, International Antimicrobial Surveil-lance Study (SENTRY): alarming resistance rates in monitored sites (68 Medical Centers) in the USA, Can-ada, South America, and Europe. Interscience Confer-ence on Antimicrobial Agents and Chemotherapy (1997). E–109.
  • ••This is a comprehensive, up-to-date survey of evolving resis-tance patterns in clinically-relevant pathogens from around the world.
  • STEPHENSON J: Worry grows as antibiotic-resistantbacteria continue to gain ground. J Am. Med. Assoc. (1997) 278:2049–2050.
  • MCMANUS MC: Mechanisms of bacterial resistance toantimicrobial agents. Am. J. Health Syst. Pharm. (1997) 54:1420–1433.
  • RUSSELL AD, DAY MJ: Antibiotic and biocide resistancein bacteria. Microbios (1996) 85:45–65.
  • NEU HC: Overview of mechanisms of bacterial resis- tance. Diagn. Microbiol. Infect. Dis. (1989) 12:109S–116S.
  • ••This is an extensive overview of the ABC-type multi-drugtransporters in bacteria.
  • OUELLETTE M, LEGARE D, PAPADOPOULOU B: Micro-bial multi-drug resistance ABC transporters. Trends Mi-crobiol. (1994) 2:407–411.
  • ALBERTSON GD, NIIMI M, CANNON RD eta].: Multiple ef-flux mechanisms are involved in Candida albicans flu-conazole resistance. Antimicrob. Agents Chemother. (1996) 40:2835–2841.
  • CHOPRA I: Efflux-based antibiotic resistance mecha-nisms: the evidence for increasing prevalence. J. Anti-microb. Chemother. (1992) 30:737–739.
  • JENKINSON HF: Ins and outs of antimicrobial resis-tance: era of the drug pumps. J. Dent. Res. (1996) 75:736–742.
  • KOHLER T, PECHERE JC, PLESIAT P: [Active efflux. A dis-quieting bacterial resistance phenomenon]. Presse Med. (1997) 26:173–177.
  • LEVY SB: Active efflux mechanisms for antimicrobial resistance. Antimicrob. Agents Chemother. (1992) 36 :695–703.
  • •This is an intersting comparison of the similarities between pumps that have evolved in the bacterial world.
  • LEWIS K: multi-drug resistance pumps in bacteria: variations on a theme. Trends Biochem. Sci. (1994) 19:119–123.
  • POOLE K: Bacterial multi-drug resistanc-eemphasis on efflux mechanisms and Pseudomonas aeruginosa. Antimicrob. Chemother. (1994) 34:453–456.
  • WILLIAMS JB: Drug efflux as a mechanism of resistance. Br. J. Biomed. Sci. (1996) 53:290–293.
  • WOOLRIDGE DP, VAZQUEZ LASLOP N, MARKHAM PN et al.: Efflux of the natural polyamine spermidine facili-tated by the Bacillus subtilis multi-drug transporter Blt. J. Biol. Chem. (1997) 272:8864–8866.
  • •This is a provocative review with speculation on the 'natural' origins of the antibiotic resistance efflux pumps in bacteria.
  • NEYFAKH AA: Natural functions of bacterial multi-drug transporters. Trends Microbiol. (1997) 5:309–313.
  • HARKAWAY KS, MCGINLEY KJ, FOGLIA AN eta].: Antibi-otic resistance patterns in coagulase-negative staphy-lococci after treatment with topical erythromycin, benzoyl peroxide, and combination therapy. Br]. Der-matol. (1992) 126:586–590.
  • CHEN HY, YUAN M, LIVERMORE DM: Mechanisms of re-sistance to beta-lactam antibiotics amongst Pseudo-monas aeruginosa isolates collected in the UK in 1993. J. Med. Microbiol. (1995) 43:300–309.
  • CLANCY J, PETITPAS J, DIB-HAJJ F eta].: Molecular clon-ing and functional analysis of a novel macrolide-resistance determinant, mefA, from Streptococcus pyogenes. Mol. Microbiol. (1996) 22:867–879.
  • •Thorough review of the Gram-negative multi-drug resis-tance motifs.
  • GEORGE AM: multi-drug resistance in enteric and other Gram-negative bacteria. FEMS Microbiol. Lett. (1996) 139:1–10.
  • OKUSU H, MA D, NIKAIDO H: AcrAB efflux pump plays a major role in the antibiotic resistance phenotype of Escherichia call multiple-antibiotic-resistance (Mar) mutants. J. Bacteriol. (1996) 178:306–308.
  • •Interesting paper tying the acrAB efflux pump system to the multiple drug-resistance phenotype in E. coli.
  • PAULSEN IT, BROWN MH, SKURRAY RA: Proton-dependent multi-drug efflux systems. Microbiol. Rev. (1996) 60:575–608.
  • ••Excellent overview on the proton-motive force-based effluxsystems in bacteria.
  • NIKAIDO H: Multi-drug efflux pumps of Gram-negative bacteria. J. Bacteria (1996) 178:5853–5859.
  • GOTTESMAN MM, PASTAN I: Biochemistry of multi-drug resistance mediated by the multi-drug trans-porter. Annu. Rev. Biochem. (1993) 62:385–427.
  • •Clinical perspectives of the 'relevance' of resistance mecha-nisms in bacteria.
  • MANSOURI A, HENLE KJ, NAGLE WA: multi-drug resis-tance: prospects for clinical management. SAAS Biochem. Biotechnol. (1992) 5:48–52.
  • TVVENTYMAN PR: Transport proteins in drug resis-tance: biology and approaches to circumvention./ mt. Med. (1997) 242:133–137.
  • NIKAIDO H: Prevention of drug access to bacterial tar-gets: permeability barriers and active efflux. Science (1994) 264:382–388.
  • HANCOCK RE: The bacterial outer membrane as a drug barrier. Trends Microbiol. (1997) 5:37–42.
  • PAULSEN IT, SKURRAY RA, TAM R eta].: The SMR family: a novel family of multi-drug efflux proteins involved with the efflux of lipophilic drugs. Mol. Microbiol. (1996) 19:1167–1175.
  • SAIER MH, Jr., TAM R, REIZER A eta].: Two novel familiesof bacterial membrane proteins concerned with nodu-lation, cell division and transport. Mol. Microbiol. (1994) 11:841–847.
  • NIES DH, SILVERS: Ion efflux systems involved in bacte- rial metal resistances. J Ind. Microbiol. (1995) 14:186–199.
  • ••Insightful overview/comparison of the multiple-antibioticresistance system in E. colt
  • MILLER PF, SULAVIK MC: Overlaps and parallels in the regulation of intrinsic multiple-antibiotic resistance in Escherichia coll. Mol. Microbiol. (1996) 21:441–448.
  • VAN VEEN HW, KONINGS WN: Drug efflux proteins in multi-drug resistant bacteria. Biol. Chem. (1997) 378:769–777.
  • LAMB DC, KELLY DE, MANNING NJ et al.: Reduced intra-cellular accumulation of azole antifungal results in re-sistance in Candida albicansisolate NCPF 3363. FEMS Microbiol. Lett. (1997) 147:189–193.
  • PARKINSON T, FALCONER DJ, HITCHCOCK CA: Flucona-zole resistance due to energy-dependent drug efflux in Candida glabrata. Antimicrob. Agents Chemother. (1995) 39:1696–1699.
  • VANDEN BOSSCHE H, WARNOCK DW, DUPONT B et al.: Mechanisms and clinical impact of antifungal drug re-sistance. J. Med. Vet. Mycol. (1994) 32:189–202.
  • ••Clinical perspectives of the 'relevance' of antifungal drug-resistance.
  • VANDEN BOSSCHE H, MARICHAL P, ODDS FC: Molecular mechanisms of drug resistance in fungi. Trends Micro-biol. (1994) 2:393–400.
  • ••Excellent review of antifungal drug-resistance mechanisms.
  • BERKOWER C, MICHAELIS S: Mutational analysis of theyeast a-factor transporter STE6, a member of the ATP binding cassette (ABC) protein super family. EMBOJ. (1991) 10:3777–3785.
  • RAYMOND M, RUETZ S, THOMAS DY et al.: Functionalexpression of P-glycoprotein in Saccharomyces cere-visiae confers cellular resistance to the immunosup - pressive and antifungal agent FK520. Ma Cell Biol. (1994) 14:277–286.
  • MAHE Y, PARLE MCDERMOTT A, NOURANI A et al.: TheATP-binding cassette multi-drug transporter Snq2 of Saccharomyces cerevisiae: a novel target for the tran-scription factors Pdr1 and Pdr3. Mol. Microbiol. (1996) 20:109–117.
  • DECOTTIGNIES A, LAMBERT L, CATTY P eta].: Identifica-tion and characterization of SNQ2, a new multi-drug ATP binding cassette transporter of the yeast plasma membrane. J. Biol. Chem. (1995) 270:18150–18157.
  • BOYUM R, GUIDOTTI G: Effect of ATP binding cas-sette/multi-drug resistance proteins on ATP efflux of Saccharomyces cerevisiae. Biochem. Biophys. Res. Com-mun. (1997) 230:22–26.
  • NEYFAKH AA, BORSCH CM, KAATZ GW: Fluoroqui-nolone resistance protein NorA of Staphylococcus au-reus is a multi-drug efflux transporter. Antimicrob. Agents. Chemother. (1993) 37:128–129.
  • HOOPER DC, WOLFSON JS, SOUZA KS eta].: Mechanisms of quinolone resistance in Escherichia coli: charac-terization of nfxB and cfxB, two mutant resistance loci decreasing norfloxacin accumulation. Antimicrob. Agents Chemother. (1989) 33:283–290.
  • DICATO M, DUHEM C, PAULY M eta].: multi-drug resis- tance: molecular and clinical aspects. Cytokines Mol. Ther. (1997) 3:91–99.
  • •A good review of drug-resistance due to efflux pump sys-tems in Gram-negative bacteria.
  • LI XZ, MA D, LIVERMORE DM et al.: Role of efflux pump (s) in intrinsic resistance of Pseudomonas ae-ruginosa: active efflux as a contributing factor to beta-lactam resistance. Antimicrob. Agents Chemother. (1994) 38:1742–1752.
  • MA D, COOK DN, HEARST JE eta].: Efflux pumps and drug resistance in Gram-negative bacteria. Trends Mi-crobiol. (1994) 2:489–493.
  • AHMED M, LYASS L, MARKHAM PN et al.: Two highly similar multi-drug transporters of Bacillus subtilis whose expression is differentially regulated. J. Bacte-riol. (1995) 177:3904–3910.
  • ALLARD JD, BERTRAND KP: Sequence of a class E tetra-cycline resistance gene from Escherichia coli and comparison of related tetracycline efflux proteins. J. Bacteriol. (1993) 175:4554–4560.
  • GRINIUS L, DREGUNIENE G, GOLDBERG EB et al.: Astaphylococcal multi-drug resistance gene product is a member of a new protein family. Plasmid (1992) 27:119–129.
  • LOMOVSKAYA O, LEWIS K: Emr, an Escherichia colilo-cus for multi-drug resistance. Proc. Natl. Acad. Sci. USA (1992) 89:8938–8942.
  • LYRAS D, ROOD JI: Genetic organization and distribu-tion of tetracycline resistance determinants in Clos-tridium perfringens. Antimicrob. Agents Chemother. (1996) 40:2500–2504.
  • NEAL RJ, CHATER KF: Nucleotide sequence analysis re-veals similarities between proteins determining meth-ylenomycin A resistance in Streptomyces and tetracycline resistance in eubacteria. Gene (1987) 58:229–241.
  • NEYFAKH AA: The multi-drug efflux transporter of Ba-cillus subtilis is a structural and functional homolog of the Staphylococcus NorA protein. Antimicrob. Agents Chemother. (1992) 36:484–485.
  • RUBIN RA, LEVY SB, HEINRIKSON RL eta].: Gene duplica-tion in the evolution of the two complementing do-mains of Gram-negative bacterial tetracycline efflux proteins. Gene (1990) 87:7–13.
  • ROBERTS MC: Epidemiology of tetracycline-resistance determinants. Trends Microbiol. (1994) 2:353–357.
  • ROBERTS MC: Tetracycline resistance determinants: mechanisms of action, regulation of expression, ge-netic mobility, and distribution. FEMS Microbiol. Rev. (1996) 19:1–24.
  • ROBERTS MC: Genetic mobility and distribution of tet-racycline resistance determinants. Ciba Found. Symp. (1997) 207:206–222.
  • YAMAGUCHI A, ADACHI K, AKASAKA T et al.: Metal-tetr acycline /1-1+ antipor ter of Escherichia coli en-coded by a transposon Tn10. flistidine 257 plays an es-sential role in H+ translocation. J. Biol. Chem. (1991) 266:6045–6051.
  • YAMAGUCHI A, AKASAKA T, ONO N et al.: Metal-tetr acycline /1-1+ antipor ter of Escherichia coli en-coded by transposon Tn10. Roles of the aspartyl resi-dues located in the putative transmembrane helices. J. Biol. Chem. (1992) 267:7490–7498.
  • HILLEN W, BERENS C: Mechanisms underlying expres-sion of Tn10 encoded tetracycline resistance. Ann. Rev. Microbiol. (1994) 48:345–369.
  • GUAY GG, TUCKMAN M, ROTHSTEIN DM: Mutations in the tetA(B) gene that cause a change in substrate speci-ficity of the tetracycline efflux pump. Antimicrob. Agents Chemother. (1994) 38:857–860.
  • MCMURRY L, PETRUCCI RE, Jr., LEVY SB: Active efflux of tetracycline encoded by four genetically different tet-racycline resistance determinants in Escherichia coll. Proc. Natl. Acad. Sci. USA (1980) 77:3974–3977.
  • LEVY SB: Evolution and spread of tetracycline resis-tance determinants. J Antimicrob Chemother. (1989) 24:1–7.
  • CARRASCO N, PUTTNER IB, ANTES LM eta].: Characteri-zation of site-directed mutants in the lac permease of Escherichia coli. 2. Glutamate-325 replacements. Bio-chemistry (1989) 28:2533–2539.
  • CARRASCO N, ANTES LM, POONIAN MS et al.: I2.c per-mease of Escherichia coli: histidine-322 and glutamic acid-325 may be components of a charge-relay system. Biochemistry (1986) 25:4486–4488.
  • KIMURA T, YAMAGUCHI A: Asp-285 of the metal-tetracycline/H+ an tip or ter of Escherichia coli is es-sential for substrate binding. FEBS Lett. (1996) 388:50–52.
  • SULAVIK MC, GAMBINO LF, MILLER PF: The MarR re-pressor of the multiple antibiotic resistance (mar) operon in Escherichia coli: prototypic member of a family of bacterial regulatory proteins involved in sensing phenolic compounds. Mol. Med. (1995) 1:436–446.
  • MILLER YW, EADY EA, LACEY RW eta].: Sequential anti-biotic therapy for acne promotes the carriage of resis-tant staphylococci on the skin of contacts. J. Antimicrob. Chemother. (1996) 38:829–837.
  • ••Excellent paper tying the regulatory relationship betweenthe environmental oxidative stress response in bacteria to antibiotic resistance mediated through the Mar system.
  • PIDDOCK LJ: Mechanisms of resistance to fluoroqui- nolones: state-of-the-art 1992-1994. Drugs (1995) 49:29–35.
  • MILLER PF, GAMBINO LF, SULAVIK MC eta].: Genetic rela-tionship between soxRS and mar loci in promoting multiple antibiotic resistance in Escherichia con Anti-microb. Agents Chemother. (1994) 38:1773–1779.
  • NUNOSHIBA T, HIDALGO E, AMABILE CUEVAS CF eta].: Two-stage control of an oxidative stress reg-ulon: the Escherichia coli SoxR protein triggers redox-inducible expression of the soxS regulatory gene. J. Bacteriol. (1992) 174:6054–6060.
  • ALEKSHUN MN, LEVY SB: Regulation of chromosomallymediated multiple antibiotic resistance: the marreg-u-Ion. Antimicrob. Agents Chemother. (1997) 41 :2067–2075.
  • WHITE DG, GOLDMAN JD, DEMPLE B et al.: Role of theacrAB locus in organic solvent tolerance mediated by expression of marA, sox S, or r obAin Escherichia coli. J Bacteriol. (1997) 179:6122–6126.
  • ROSNER JL, CHAI TJ, FOULDS J: Regulation of ompFporin expression by salicylate in Escherichia coll. J. Bacteriol. (1991) 173:5631–5638.
  • COHEN SP, HACHLER H, LEVY SB: Genetic and func-tional analysis of the multiple antibiotic resistance (mar) locus in Escherichia coli. J. Bacteriol. (1993) 175:1484–1492.
  • MA D, ALBERTI M, LYNCH C eta].: The local repressorAcrR plays a modulating role in the regulation of ac-rAB genes of Escherichia coli by global stress signals. Mol. Microbiol. (1996) 19:101–112.
  • SEOANE AS, LEVY SB: Characterization of MarR, the re-pressor of the multiple antibiotic resistance (mar) operon in Escherichia coli. J. Bacteriol. (1995) 177:3414–3419.
  • HAGMAN KE, PAN W, SPRATT BG et al.: Resistance ofNeisseria gonorrhoeae to antimicrobial hydrophobic agents is modulated by the mtrRCDEefflux system. Mi-crobiology (1995) 141:611–622.
  • LI XZ, NIKAIDO H, POOLE K: Role of mexA-mexB-oprM in anefflux in Pseudomonas aeruginosa. Anti-microb. Agents Chemother. (1995) 39:1948–1953.
  • POOLE K, TETRO K, ZHAO Q et al.: Expression of themulti-drug resistance operon mexA-mexB-oprM in Pseudomonas aeruginosa: mexR encodes a regulator of operon expression. Antimicrob. Agents Chemother. (1996) 40:2021–2028.
  • MOKEN MC, MCMURRY LM, LEVY SB: Selection ofmultiple-antibiotic-resistant (Mar) mutants of Escherichia coli by using the disinfectant pine oil: roles of the mar and acrAB loci. Antimicrob. Agents Che-mother. (1997) 41:2770–2772.
  • NAGEL DE ZWAIG R, LURIA SE: Genetics and physiologyof colicin-tolerant mutants of Escherichia coli. J. Bac-teriol. (1967) 94:1112–1123.
  • WHITNEY EN: The toIC locus in Escherichia coli K-12.Genetics (1970) 67:39–59.
  • FOREMAN DT, MARTINEZ Y, COOMBS G eta].: To1C andDsbA are needed for the secretion of STB, a heat-sTable enterotoxin of Escherichia coli. Mol. Microbiol. (1995) 18:237–245.
  • HIRAGA S, NIKI H, OGURA T eta].: Chromosome parti-tioning in Escherichia coli: novel mutants producing anucleate cells. J. Bacteria (1989) 171 :1496–1505.
  • FRALICK JA: Evidence that To1C is required for func-tioning of the Mar /AcrAB efflux pump of Escherichia coli. j Bacteriol. (1996) 178:5803–5805.
  • TURNER RJ, TAYLOR DE, WEINER JH: Expression ofEscherichia coli TehA gives resistance to antiseptics and disinfectants similar to that conferred by multi-drug resistance efflux pumps. Antimicrob. Agents Che-mother. (1997) 41 :440–444.
  • SKARSTAD K, THONY B, HWANG DS eta].: A novel bind-ing protein of the origin of the Escherichia coli chro-mosome. J. Biol. Chem. (1993) 268:5365–5370.
  • TANAKA T, HORII T, SHIBAYAMA K eta].: RobA-induced multiple antibiotic resistance largely depends on the activation of the AcrAB efflux. Microbiol. Immunol. (1997) 41:697–702.
  • LOMOVSKAYA O, LEWIS K, MATIN A: Emr R is a negative regulator of the Escherichia colimulti-drug resistance pump EmrAB. j Bacteriol. (1995) 177:2328–2334.
  • LUCAS CE, HAGMAN KE, LEVIN JC eta].: Importance of li-pooligosaccharide structure in determining gonococ-cal resistance to hydrophobic antimicrobial agents resulting from the mtr efflux system. Mol. Microbiol. (1995) 16:1001–1009.
  • HAGMAN KE, LUCAS CE, BALTHAZAR JT et al.: The MtrDprotein of Neisseria gonorrhoeae is a member of the resistance/nodulation /division protein family consti-tuting part of an efflux system. Microbiology (1997) 143:2117–2125.
  • LUCAS CE, BLATHAZAR JT, HAGMAN KE eta].: The MtrR repressor binds the DNA sequence between the mtrit and mt/C genes of Neiseria gonorrhoeae. j Bacteriol. (1997) 179:4123–4128.
  • MASUDA N, OHYA S: Cross-resistance to meropenem, cephems, and quinolones in Pseudomonas aerugi-nosa. Antimicrob. Agents Chemother. (1992) 36:1847–1851.
  • RELLA M, HAAS D: Resistance of Pseudomonas aerugi-nosa PAO to nalidixic acid and low levels of P-lactam antibiotics: mapping of chromosomal genes. Antimi-crob. Agents Chemother. (1982) 22:242–249.
  • ROBILLARD NJ, SCARPA AL: Genetic and physiological characterization of ciprofloxacin resistance in Pseu-domonas aeruginosa PAO. Antimicrob. Agents Chemo-ther. (1988) 32:535–539.
  • HIRAI K, SUZUE S, IRIKURA T eta].: Mutations producing resistance to norfloxacin in Pseudomonas aerugi-nosa. Antimicrob. Agents Chemother. (1987) 31 :582–586.
  • FUKUDA H, HOSAKA M, HIRAI K eta].: New norfloxacin resistance gene in Pseudomonas aeruginosa PAO. Anitrnicrob. Agents Chemother. (1990) 34:1757–1761.
  • POOLE K, KREBES K, MCNALLY C eta].: Multiple antibi-otic resistance in Pseudomonas aeruginosa: evidence for involvement of an efflux operon. j Bacteriol. (1993) 175:7363–7372.
  • MASUDA N, SAKAGAWA E, OHYA S: Outer membrane proteins responsible for multiple drug resistance in Pseudomonas aeruginosa. Antimicrob. Agents Chemo-ther. (1995) 39:645–649.
  • POOLE K, HEINRICHS DE, NESHAT S: Cloning and se-quence analysis of an EnvCD homologue in Pseudo-monas aeruginosa: regulation by iron and possible involvement in the secretion of the siderophore pyo-veridine. Mol. Microbiol. (1993) 10:529–544.
  • BIANCO N, NESHAT S, POOLE K: Conservation of the multi-drug resistance efflux gene oprM in Pseudomo-nas aeruginosa. Antimicrob. Agents Chemother. (1997) 41:853–856.
  • POOLE K, GOTOH N, TSUJIMOTO H et al.: Overexpres-sion of the mexC-mexD-oprj efflux operon in nfxB-typ e multi-drug resistant strains of Pseudomonas ae-ruginosa. Mol. Microbiol. (1996) 21 :713–724.
  • SHIBA T, ISHIGURO K, TAKEMOTO N eta].: Purification and characterization of the Pseudomonas aeruginosa NAB protein, the negative regulator of the nfxB gene. Bacteriol. (1995) 177:5872–5877.
  • HAMZEHPOUR MM, PECHERE JC, PLESIAT P eta].: OprK and OprM define two genetically distinct multi-drug efflux systems in Pseudomonas aeruginosa. Antimi-crob. Agents Chemother. (1995) 39:2392–2396.
  • KOHLER T, MICHEA HAMZEHPOUR M, HENZE U et al.: Characterization of MexE-MexF-OprN, a positively regulated multi-drug efflux system of Pseudomonas aeruginosa. Mol. Microbiol. (1997) 23:345–354.
  • BARANOVA NN, NEYFAKH AA: Apparent involvement of a multi-drug transporter in the fluoroquinolone re-sistance of Streptococcus pneumoniae. Antimicrob. Agents Chemother. (1997) 41:1396–1398.
  • AHMED M, BORSCH CM, NEYFAKH AA eta].: Mutants of the Bacillus subtilis multi-drug transporter Bmr with altered sensitivity to the antihypertensive alkaloid re-serpine. J. Biol. Chem. (1993) 268:11086–11089.
  • SUTCLIFFE J, TAIT KAMRADT A, WONDRACK L: Strepto-coccus pneumoniae and Streptococcus pyogenes re-sistant to macrolides but sensitive to clindamycin: a common resistance pattern mediated by an efflux sys-tem. Antimicrob. Agents Chemother. (1996) 40:1817–1824.
  • •Clinically relevant observations of a new resistance motif in a serious bacterial pathogen.
  • EADY EA, ROSS JI, TIPPER JL et al.: Distribution of genes encoding erythromycin ribosomal methylases and an erythromycin efflux pump in epidemiologically dis-tinct groups of staphylococci. J. Antimicrob. Chemother. (1993) 31:211–217.
  • LECLERCQ R, COURVALIN P: Intrinsic and unusual resis-tance to macrolide, lincosomide, and streptogramin antibiotics in bacteria. Antimicrob. Agents Chemother. (1991) 35:1273–1276.
  • TAIT-KAMRADT A, CLANCY J, CRONAN M et al.: MefE is necessary for the erythromycin-resistant M pheno-type in Streptococcus pneumoniae. Antimicrob. Agents Chemother. (1997) 41:2251–2255.
  • SCHWARZ S, CARDOSO M, WEGENER H: Nucleotide se-quence and phylogeny of the tet(L) tetracycline resistance determinant encoded byplasmid pSTE1 from Staphylococcus hyicus. Antimicrob. Agents Che-mother. (1992) 36:580–588.
  • YAMAGUCHI A, SHIINA Y, FUJIHIRA E eta].: The tetracy-cline efflux protein encoded by the tet(K) gene from Staphylococcus aureus is a metal-tetracycline/H+ an-tiporter. FEBS Lett. (1995) 365:193–197.
  • LAMPSON BC, VON DAVID W, PARISI JT: Novel mecha-nism for plasmid-mediated erythromycin resistance by pNE24 from Staphylococcus epidermidis. Antimi-crob. Agents Chemother. (1986) 30:653–658.
  • ROSS JI, EADY EA, COVE JH eta].: Inducible erythromy-cin resistance in staphylococci is encoded by a mem-ber of the ATP-binding transport super-gene family. Mol. Microbiol. (1990) 4:1207–1214.
  • ROUCH DA, CRAM DS, DIBERARDINO D et al.: Efflux-mediated antiseptic resistance gene qacA from Staphy-lococcus aureus: common ancestry with tetracycline-and sugar-transport proteins. Mol. Microbiol. (1990) 4:2051–2062.
  • LYON BR, SKURRAY R: Microbiol. Rev. (1987) 51 :88–134.
  • PAULSEN IT, BROWN MH, LITTLEJOHN TG et al.: multi-drug resistance proteins QacA and QacB from Staphy-lococcus aureus: membrane topology and identifica-tion of residues involved in substrate specificity. Proc. Natl. Acad. Sci. USA (1996) 93:3630–3635.
  • NEYFAKH AA, BIDNENKO VE, CHEN LB: Efflux-mediated multi-drug resistance in Bacillus subtilis: similarities and dissimilarities with the mammalian system. Proc. Natl. Acad. Sci. USA (1991) 88:4781–4785.
  • KLYACHKO KA, SCHULDINER S, NEYFAKH AA: Muta-tions affecting substrate specificity of the Bacillus sub-tills multi-drug transporter Bmr. j Bacteria (1997) 179:2189–2193.
  • AHMED M, BORSCH CA, TAYLOR SS eta].: A protein that activates expression of a multi-drug efflux transporter unpon binding the transporter substrates. J. Biol. Chem. (1994) 269:28506–28513.
  • AHMED M, LYASS L, MARKHAM PN et al.: Two highly similar multi-drug transporters of Bacillus subtilis whose expression is differentially regulated. J. Bacte-riol. (1995) 177:3904–3910.
  • IONESCO H, MICHEL J, CAMI B eta].: Genetics of sp orula-tion in Bacillus subtilis marburg. J. App]. Bact. (1970) 33:13–24.
  • TAKIFF HE, CIMINO M, MUSSO MC eta].: Efflux pump of the proton antiporter family confers low-level fluoro-quinolone resistance in Mycobacterium smegmatis. Proc. Natl. Acad. Sci. USA (1996) 93:362–366.
  • LIU J, TAKIFF HE, NIKAIDO H: Active efflux of fluoroqui-nolones in Mycobacterium smegmatis mediated by LfrA, a multi-drug efflux pump. J. Bacteriol. (1996) 178:3791–3795.
  • DORAN JL, PANG Y, MDLULIKE eta].: Mycobacterium tu-berculosis efpA encodes an efflux protein of the QacA transporter family. Clin. Diagn. Lab. Immunol. (1997) 4:23–32.
  • TERCERO JA, LACALLE RA, JIMENEZ A: The pur8 gene from the pur cluster of Streptomyces alboniger en-codes a highly hydrophobic polypeptide which con-fers resistance to puromycin. Eur. j Biochem. (1993) 218:963–971.
  • GRIFFITH JK, BAKER ME, ROUCH DA et al.: Membrane transport proteins: implications of sequence com-parisons. Cum Opin. Cell Biol. (1992) 4:684–695.
  • DEL SORBO G, ANDRADE AC, VAN NISTELROOY JGM et al.: multi-drug resistance in Aspergillus nidulans in-volves novel ATP-binding cassette transporters. Mol. Gen. Genet. (1997) 254:417–426.
  • RAYMOND M, GROS P, WHITEWAY M eta].: Functional complementation of yeast ste6 by a mammalian multi-drug resistance mdr gene. Science (1992) 256:232–234.
  • KATZMANN DJ, HALLSTROM TC, MAHE Y et al.: Multiple Pdr1p/Pdr3p binding sites are essential for normal ex-pression of the ATP binding cassette transporter protein-encoding gene PDR5. J. Biol. Chem. (1996) 271 :23049–23054.
  • BALZI E, CHEN W, ULASZEWSKI S et al.: The multi-drug resistance gene PDR1 from Saccharomyces cerevi-siae. J. Biol. Chem. (1987) 262:16871–16879.
  • SANGLARD D, ISCHER F, MONOD M et al.: Cloning of Candida albicans genes conferring resistance to azole antifungal agents: characterization of CDR2, a new multi-drug ABC transporter gene. Microbiology (1997) 143:405–416.
  • ALARCO AM, BALAN I, TALIBI D et al.: AP1-mediated multi-drug resistance in Saccharomyces cerevisiaer e-quires FLR1 encoding a transporter of the major facili-tator superfamily. J. Biol. Chem. (1997) 272:19304–19313.
  • STEPHEN DW, RIVERS SL, JAMIESON DJ: The role of the YAP1 and YAP2 genes in the regulation of the adaptive oxidative stress responses of Saccharomyces cerevi-siae. Mol. Microbiol. (1995) 16:415–423.
  • ODDS FC: Pathogenesis of Candida infections. J. Arm Acad. Dermatol. (1994) 31:S2–5.
  • ODDS FC: Candida albicans, the life and times of a pathogenic yeast. J Med. Vet. Mycol. (1994) 32 (Suppl. 1):1–8.
  • SANGLARD D, KUCHLER K, ISCHER F eta].: Mechanisms of resistance to azole antifungal agents in Candida al-bicans isolates from AIDS patients involve specific multi-drug transporters. Antimicrob. Agents Chemother. (1995) 39:2378–2386.
  • •Clinically relevant observations of a new resistance motif in serious fungal pathogens arise from selective pressure with extensive use of azoles.
  • KELLY SL, LAMB DC, KELLY DE et al.: Resistance to flu-conazole and cross-resistance to amphotericin B in Candida albicans from AIDS patients caused by defec-tive sterol delta5,6-desaturation. FEBS Lett. (1997) 400:80–82.
  • PRASAD R, DEWERGIFOSSE P, GOFFEAU A eta].: Molecu-lar cloning and characterization of a novel gene of Candida albicans, CDR1, conferring multiple resis-tance to drugs and antifungals. Cum Genet. (1997) 27:320–329.
  • BALAN I, ALARCO A-M, RAYMOND M: The Candida albi-cansCDR3 gene codes for an opaque-phase ABC trans-porter. J. Bacteriol. (1997) 179:7210–7218.
  • KATZMANN DJ, HALLSTROM TC, VOET M eta].: Expres-sion of an ATP-binding cassette transporter-encoding gene (YOR1) is required for oligomycin resistance in Saccharomyces cerevisiae. Mol. Cell Biol. (1995) 15:6875–6883.
  • NOURANI A, WESOLOWSKI LOUVEL M, DELAVEAU T et al.: Multiple drug-resistance phenomenon in the yeast Saccharomyces cerevisiae: involvement of two hex ose transporters. Mo/. Ce//Bio/. (1997) 17:5453–5460.
  • DELAVEAU T, DELAHODDE A, CAR VAJAL E eta].: PDR3, a new yeast regulatory gene, is homologous to PDR1 and controls the multi-drug resistance phenomenon. Mol. Gen. Genet. (1994) 244:501–511.
  • WONDRACK L, MASSA M, YANG BV eta].: Clinical strain of Staphylococcus aureus inactivates and causes ef-flux of macrolides. Antimicrob. Agents Chemother. (1996) 40:992–998.
  • ZELLER V, JANOIR C, KITZIS MD et al.: Active efflux as a mechanism of resistance to ciprofloxacin in Strepto-coccus pneumoniae. Antimicrob. Agents Chemother. (1997) 41:1973–1978.
  • GEORGE A, LEVY S: Amplifiable resistance to tetracy-cline, chloramphenicol, and other antibiotics in Escherichia coli: involvement of a non-plasmid-determined efflux of tetracycline. J Bacteriol. (1983) 155:531–540.
  • COHEN SP, MCMURRY LM, HOOPER DC et al.: Cross-resistance to fluoroquinolones in multiple antibiotic-resistant (Mar) Escherichia coli selected by tetracy-cline or chloramphenicol: decreased drug accumula-tion associated with membrane changes in addition to OmpF reduction. Antimicrob. Agents Chemother. (1989) 33:1318–1325.
  • JANOIR C, ZELLER V, KITZIS MD eta].: High-level fluoro-quinolone resistance in Streptococcus pneumoniae requires mutations in parC and gyrA. Antimicrob. Agents Chemother. (1996) 40:2760–2764.
  • HULLEN V, HEISIG P, WIEDEMANN B: Role of marR mu-tations in the development of clinical resistance of Escherichia collagainstfluoroquinolones. The 97th In-terscience Conference on Antimicrobial Agents and Chemo-therapy (1997). Abstract C–64.
  • KOHLER T, KOK M, MICHEA HAMZEHPOUR M et al.: multi-drug efflux in intrinsic resistance to tri-methoprim and sulfamethox azole in Pseudomonas aeruginosa. Antimicrob. Agents Chem other. (1996) 40:2288–2290.
  • LI X-Z, LIVERMORE DM, NIKAIDO H: Role of efflux pumps(s) in intrinsic resistance of Pseudomonas ae- ruginosa:resistance to tetracycline, chloramphenicol, and norfloxacin. Antimicrob. Agents Chemther. (1994) 38:1732–1741.
  • WONG KK, POOLE K, GOTOH N eta].: Influence of OprM expression on multiple antibiotic resistance in Pseu-domonas aeruginosa. Antimicrob. Agents Chemother. (1997) 41:2009–2012.
  • AHMED M, BORSCH CM, TAYLOR SS eta].: A protein that activates expression of a multi-drug efflux transporter upon binding the transporter substrates. J. Biol. Chem. (1994) 269:28506–28513.
  • MA D, COOK DN, ALBERTI M et al.: Molecular cloning and characterization of acrA and acrE genes of Escherichia coli. j Bacteriol. (1993) 175:6299–6313.
  • KLEIN JR, HENRICH B, PLAPP R: Molecular analysis and nucleotide sequence of the envCD operon of Escheri-chia coli. Mol. Gen. Genet. (1991) 230:230–240.
  • SAN GLARD D, ISCHER F, MONOD M eta].: Susceptibilites of Candida albicans multi-drug transporter mutants to various antifungal agents and other metabolic in-hibitors. Antimicrob. Agents Chemother. (1996) 40:2300–2305.
  • •Clinically relevant observations of a new resistance mecha-nism in serious fungal pathogens arising from extensive use of azoles.
  • DESNOTTES JF: New targets and strategies for the devel-opment of antibacterial agents. Trends Biotechnol. (1996) 14:134–140.
  • NELSON ML, PARK BH, LEVY SB: Molecular require-ments for the inhibition of the tetracycline antiport protein and the effect of potent inhibitors on the growth of tetracycline-resistant bacteria. J. Med. Chem. (1994) 37:1355–1361.
  • NELSON ML, PARK BH, ANDREWS JS eta].: Inhibition of the tetracycline efflux antiport protein by 13-thio- sub-stituted 5 -hydroxy-6-deoxytetracyclines. J. Med. Chem. (1993) 36:370–377.
  • BARDEN TC, BUCKWALTER BL, TESTA RT eta].: Glycylcy-dines 3 9-aminodoxycyclinecarboxamides. J. Med. Chem. (1994) 37:3205–3211.
  • JOHNSON DM, JONES RN: Two investigational glycylcy-din es, DMG-DMDOT and DMG-MINO. Antimicrobial activity studies against Gram-positive species. Diagn. Microbiol. Infect. Dis. (1996) 24:53–57.
  • SOMEYA Y, YAMAGUCHI A, SAWAI T: A novel glycylcy-cline, 9-(N,N-dimethylglycylamido)-6-demethy1-6- de-oxytetr acycline, is neither transported nor recognized bythe transposon Tn1 0-encoded metal-tetracycline/H+ antiporter. Antimicrob. Agents Chemo-ther. (1995) 39:247–249.
  • SUM PE, LEE VJ, TESTA RT eta].: Glycylcy clin es. 1. Anew generation of potent antibacterial agents through modification of 9-aminotetracyclines. J. Med. Chem. (1994) 37:184–188.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.