20
Views
0
CrossRef citations to date
0
Altmetric
Review

Gene therapy for Parkinson’s disease: review and update

&
Pages 1551-1564 | Published online: 23 Feb 2005

Bibliography

  • POLYMEROPOULOS MH, LAVEDAN C, LEROY E et al: Mutation in the a-synuclein gene identified in families with Parkinson's disease. Science (1997) 276:2045–2047.
  • LEROY E, BOYER R, AUBURGER G et al.: The ubiquitin pathway in Parkinson's disease [letter]. Nature (1998) 395:451–452.
  • KITADA T, ASAKAWA S, HATTORI N et al: Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature (1998) 392:605–608.
  • Friedmann T: The road toward human gene therapy - a 25-year perspective. Ann. Med. (1997) 29:575–577.
  • •An excellent overview.
  • HERMENS WTJM, VERHAAGEN J: Viral vectors, tools for gene transfer in the nervous system. Prog. Neurobiol (1998) 55:399–432.
  • KANG UJ: Potential of gene therapy for Parkinson's disease: neurobiologic issues. Mov. Disord. (1998) 13 (Suppl. 0:59–72.
  • REDDY PH, WILLIAMS M, TAGLE DA: Recent advances in understanding the pathogenesis of Huntington's disease. Trends Neurosci. (1999) 22:248–255.
  • GAGE FH: Intracerebral grafting of genetically modified cells acting as biological pumps. Trends Pharmacol. Sc1 (1990) 11:437–439.
  • LINDNER MD, WINN SR, BAETGE EE et al: Implantation of encapsulated catecholamine and GDNF-producing cells in rats with unilateral dopamine depletions and parkinsonian symptoms. Exper. Neurol. (1995) 132:62–76.
  • KAWAJA MD, FAGAN AM, FIRESTEIN BL, GAGE FH: Intracerebral grafting of cultured autologous skin fibroblasts into the rat striatum: an assessment of graft size and ultrastructure. J. Comp. Neurof (1991) 307:695–706.
  • BENCSICS C, WACHTEL SR, MILSTIEN S et al: Doubletransduction with GTP cyclohydrolase I and tyrosine hydroxylase is necessary for spontaneous synthesis of L-DOPA by primary fibroblasts. J. Neurosci. (1996) 16:4449–4456.
  • LA GAMMA EF, WEISINGER G, LENN NJ, STRECKER RE: Genetically modified primary astrocytes as cellular vehicles for gene therapy in the brain. Cell Transplant. (1993) 2:207–214.
  • LUNDBERG C, HORELLOU P, MALLET J, BJeRKLUND A: Generation of DOPA-producing astrocytes by retroviral transduction of the human tyrosine hydroxylase gene: In vitro characterization and in vivo effects in the rat Parkinson model. Exp. Neurol (1996) 139:39–53.
  • BARKATS M, BILANG-BLEUEL A, BUC-CARON MH et al.:Adenovirus in the brain: recent advances of gene therapy for neurodegenerative diseases. Prog. Neurobiol (1998) 55(4):333–341.
  • YUREK DM: Glial cell line-derived neurotrophic factorimproves survival of dopaminergic neurons in transplants of fetal ventral mesencephalic tissue. Exp. Neurol (1998) 153:195–202.
  • RENFRANZ PJ, CUNNINGHAM MG, MCKAY DG: Region-specific differentiation of the hihppocampal stem cell line HiB5 upon implantation into the developing mammalian brain. Cell (1991) 66:713–729.
  • SNYDER EY, DEITCHER DL, WALSH C et al.: Multipotentneural cell lines can engraft and participate in development of mouse cerebellum. Cell (1992) 68:33–51.
  • HOSHIMARU M, RAY J, SAH DWY, GAGE FH: Differentia-tion of the immortalized adult neuronal progenitor cell line 11C2S2 into neurons by regulatable suppres-sion of the v-myc oncogene. Proc. Natl. Acad. Sci. USA (1996) 93:1518–1523.
  • GAGE FH, COATES PW, PALMER TD et al.: Survival anddifferentiation of adult neuronal progenitor cells transplanted to the adult brain. Proc. Natl. Acad. ScL USA (1995) 92:11879–11883.
  • PALMER TD, RAY J, GAGE FH: FGF-2-responsiveneuronal progenitors reside in proliferative and quiescent regions of the adult rodent brain. Mol. NeuroscL (1995) 6:474–486.
  • REYNOLDS BA, TETZLAFF W, WEISS S: A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J. NeuroscL (1992) 12:4565–4574.
  • REYNOLDS BA, WEISS S: Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science (1992) 255:1707–1710.
  • WINKLER C, FRICKER RA, GATES MA et al: Incorporation and glial differentiation of mouse EGF-responsive neural progenitor cells after transplantation into the embryonic rat brain. Mol. Cell Neurosci. (1998) 11:99–116.
  • ZETTERSTROM RH, SOLOMIN L, JANSSON L et al.:Dopamine neuron agenesis in Nurrl-deficient mice [see comments]. Science (1997) 276:248–250.
  • SAUCEDO-CARDENAS 0, QUINTANA-HAU JD, LE WD etNurrl is essential for the induction of the dopamin-ergic phenotype and the survival of ventral mesencephalic late dopaminergic precursor neurons. Proc. Natl. Acad. Sci. USA (1998) 95:4013–4018.
  • WAGNER J, AKERUD P, CASTRO DS et al.: Induction of amidbrain dopaminergic phenotype in Nurrl-overexpressing neural stem cells by Type 1 astrocytes. Nat. Biotechnol. (1999) 17:653–659.
  • ANTON R, KORDOWER JH, MAIDMENT NT et al.: Neural-targeted gene therapy for rodent and primate hemiparkinsonism. Exp. Neurol. (1994) 127:207–218.
  • MART1NEZ-SERRANO A, LUNDBERG C, HORELLOU P etCNS-derived neural progenitor cells for gene transfer of nerve growth factor to the adult rat brain: Complete rescue of axotomized cholinergic neurons after transplantation into the septum. J. NeuroscL (1995) 15:5668–5680.
  • SABATE 0, HORELLOU P, VIGNE E et al.: Transplantation to the rat brain of human neural progenitors that were genetically modified using adenoviruses. Nature Genet. (1995) 9:256–260.
  • FLAX JD, AURORA S, YANG C et al.: Engraftable human neural stem cells respond to developmental cues, replace neurons, and express foreign genes. Nature Biotechnol (1998) 16:1033–1039.
  • FRICKER RA, CARPENTER MK, WINKLER C et al.: Site-specific migration and neuronal differentiation of human neural progenitor cells after transplantation in the adult rat brain [In Process Citation]. J. NeuroscL (1999) 19:5990–6005.
  • DOBSON AT, MARGOLIS TP, SEDARATI F, STEVENS JG, FELDMAN LT: A latent, nonpathogenic HSV-1-derived vector stably expresses b-galactosidase in mouse neurons. Neurone (1990) 5:353–360.
  • JOHNSON PA, YOSHIDA K, GAGE FH, FRIEDMANN T: Effects of gene transfer into cultured CNS neurons with a replication-defective herpes simplex virus Type 1 vector. Mol. Brain Res. (1992) 12:95–102.
  • SPAETE RR, FRENKEL N: The herpes simplex virus amplicon: a new eukaryotic defective-virus cloning-amplifying vector. Cell (1982) 30:295–304.
  • GELLER Al, KEYOMARSI K, BRYAN J, PARDEE AB: An efficient deletion mutant packaging system for defective herpes simplex virus vectors: potential applications to human gene therapy and neuronal physiology. Proc. Natl. Acad. Sci. USA (1990) 87:8950–8954.
  • DURING MJ, NAEGELE JR, O'MALLEY KL, GELLER Al:Long-term behavioral recovery in parkinsonian rats by an HSV vector expressing tyrosine hydroxylase. Science (1994) 266:1399–1403.
  • JOHNSON PA, MIYANOHARA A, LEVINE F, CAHILL T, FRIEDMANN T: Cytotoxicity of a replication-defective mutant of herpes simplex virus Type 1.1 Vim]. (1992) 66:2952–2965.
  • ISACSON 0: Behavioral effects and gene delivery in arat model of Parkinson's disease. Science (1995) 269:856–856.
  • KENNEDY PG: Potential use of herpes simplex virus(HSV) vectors for gene Therapy of neurological disorders. Brain (1997) 120:1245–1259.
  • NEVE RL: Adenovirus vectors enter the brain. Trends NeuroscL (1993) 16:251–253.
  • FRIEDMANN T: Gene therapy for neurological disorders. Trends Genet. (1994) 10:210–214.
  • DAIDSON BL, ALLEN ED, KOZARSKY KF, WILSON JM, ROESSLER BJ: A model system for in vivo gene transfer into the central nervous system using an adenoviral vector. Nature Genet. (1993) 3:219–223.
  • LE GAL L, ROBERT JJ, BERRARD S et al.: An adenovirus vector for gene transfer into neurons and glia in the brain. Science (1993) 259:988–990.
  • CHOI-LUNDBERG DL, UN Q, CHANG YN eta].: Dopamin-ergic neurons protected from degeneration by GDNF gene therapy [see comments]. Science (1997) 275(5300838–841.
  • •An important description of GDNF activity.
  • GHADGE G, ROOS RP, KANG UJ et al.: CNS gene delivery by retrograde transport of recombinant replication-defective adenoviruses. Gene Therapy (1995) 2:132–137.
  • BYRNES AP, MACLAREN RE, CHARLTON HM: Immuno-logical instability of persistent adenovirus vectors in the brain: Peripheral exposure to vector leads to renewed inflammation, reduced gene expression, and demyelination. j Neurosci. (1996) 16:3045–3055.
  • STRATFORD-PERRICAUDET LD, MAKEH I, PERRICAUDET M, BRIAND P: Widespread long-term gene transfer to mouse skeletal muscles and heart. J. Clin. Invest. (1992) 90:626–630.
  • TRIPATHY SK, GOLDWASSER E, LU MM, BARR E, LEIDENJM: Stable delivery of physiologic levels of recombi-nant erythropoietin to the systemic circulation by intramuscular injection of replication-defective adenovirus. Proc. Natl. Acad. Sci. USA (1994) 91:11557–11561.
  • KOCHANEK S, CLEMENS PR, MITANI K et al: A new adenoviral vector: replacement of all viral coding sequences with 28 kb of DNA independently expressing both full-length dystrphin and beta-galactosidase. Proc. Natl. Acad. Sci. USA (1996) 93:5731–5736.
  • BURCIN MM, SCHIEDNER G, KOCHANEK S, TSAI SY, O'MALLEY BW: Adenovirus-mediated regulable target gene expression in vivo. Proc. Natl. Acad. Sci. USA (1999) 96:355–360.
  • SAMULSKI RJ, ZHU X, XIAO X et al.: Targeted integration of adeno-associated virus (AAV) into human chromo-some 19 [published erratum appears in EMBO J 1992 Mar;11(3):1228]. Embo. J. (1991) 10:3941–3950.
  • XIAO X, LI J, SAMULSKI RJ: Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J. Virol. (1998) 72:2224–2232.
  • MCCOWN TJ, XIAO X, LI J, BREESE GR, SAMULSKI RJ: Differential and persistent expression patterns of CNS gene transfer by an adeno-associated virus (AAV) vector. Brain Res. (1996) 713:99–107.
  • SAMULSKI RJ, DURING MJ, KAPLITT MG et al: Adeno-associated virus vectors yield long-term expression and delivery of potentially therapeutic genes intonon-dividing neuronal cells. J. Neurovirol. (1997) 3 (Suppl. 1):572–S72.
  • MANDEL RJ, RENDAHL SK, SPRATT SK et al: Characteri-zation of intrastriatal recombinant adeno-associated virus-mediated gene transfer of human tyrosine hydroxylase and human GTP-cyclohydrolase 1 in a rat model of Parkinson's Disease. J. Neurosci. (1998) 18:4271–4284.
  • LEFF SE, SPRATT SK, SNYDER RO, MANDEL RJ: Long-termrestoration of striatal L-aromatic amino acid decarboxylase activity using recombinant adeno-associated viral vector gene transfer in a rodent model of Parkinson's disease [In Process Citation]. Neurosci-ence (1999) 92:185–196.
  • MILLER AD, MILLER DG, GARCIA JV, LYNCH CM: Use of retroviral vectors for gene transfer and expression. Methods Enzymol. (1993) 217:581–599.
  • Kolberg R: Gene-transfer virus contaminant linked to Monkeys' cancer. J. NIH Res. (1992) 4:43–44.
  • MILLER AD, ROSMAN GJ: Improved retroviral vectors for gene transfer and expression. BioTechniques (1989) 7:980–989.
  • DANOS 0, MULLIGAN RC: Safe and efficient generationof recombinant retroviruses with amphotropic and ecotropic host ranges. Proc. Natl. Acad. Sci. USA (1988) 85:6460–6464.
  • MILLER DG, ADAM MA, MILLER AD: Gene transfer byretrovirus vectors occurs only in cells that are actively replicating at the time of infection. Mol Cell. Biol. (1990) 10:4239–4242.
  • JACOBY DR, FRAEFEL C, BREAKEFIELD XO: Hybrid vectors: a new generation of virus-based vectors designed to control the cellular fate of delivered genes [editorial]. Gene Ther. (1997) 4:1281–1283.
  • •A thoughtful overview.
  • BLOMER U, NALDINI L, VERMA IM, TRONO D, GAGE FH: Applications of gene therapy to the CNS. Hum. Mol Gen. (1996) 5:1397–1404.
  • NALDINI L, BLOMER U, GALLAY P et al.: In vivo gene delivery and sTable transduction of nondividing cells by a lentiviral vector. Science (1996) 272:263–267.
  • JOHNSTON KM, JACOBY D, PECHAN PA et al.: HSV/AAV hybrid amplicon vectors extend transgene expression in human glioma cells. Hum. Gene Ther. (1997) 8:359–370.
  • KESSLER DA, SIEGEL JP, NOGUCHI PD et al.: Regulationof somatic-cell therapy and gene therapy by the Food and Drug Administration. New Engl. J. Med. (1993) 329:1169–1173.
  • MILLER AD: Human gene therapy comes of age. Nature(1992) 357:455–460.
  • PALMER TD, ROSMAN GJ, OSBORNE WRA, MILLER AD:Genetically modified skin fibroblasts persist long after transplantation but gradually inactivate introduced genes. Proc. Natl. Acad. Sci. USA (1991) 88:1330–1334.
  • MULLIGAN RC: The basic science of gene therapy.Science (1993) 260:926–932.
  • SCHARFMANN R, AXELROD JH, VERMA IM: Long-term invivo expression of retrovirus-mediated gene transfer in mouse fibroblast implants. Proc. Natl. Acad. Sci. USA (1991) 88:4626–4630.
  • DAI Y, ROMAN M, NAVIAUX RK, VERMA IM: Gene therapy via primary myoblasts: long-term expression of Factor IX protein following transplantation in vivo. Proc. Natl. Acad. Sci. USA (1992) 89:10892–10895.
  • LI X, EASTMAN EM, SCHWARTZ RJ, DRAGHIA-AKLI R: Synthetic muscle promoters: activities exceeding naturally occurring regulatory sequences [see comments]. Nature Biotechnol (1999) 17:241–245.
  • ROEMER K, JOHNSON PA, FRIEDMANN T: Activity of thesimian virus 40 early promoter-enhancer in herpes simplex virus Type 1 vectors is dependent on its position, the infected cell type, and the presence of Vmw175. j Vim]. (1991) 65:6900–6912.
  • DHAWAN J, RANDO TA, ELSON SL, BUJARD H, BLAU HM: Tetracycline-regulated gene expression following direct gene transfer into mouse skeletal muscle. Somat. Cell Mol. Genet. (1995) 21:233–240.
  • SUHR ST, GIL EB, SENUT MC, GAGE FH: High level transactivation by a modified Bombyx ecdysone receptor in. Proc. Natl. Acad. Sci. USA (1998) 95:7999–8004.
  • CHASE TN, ENGBER TM, MOURADIAN MM: Palliative andprophylactic benefits of continuously administered dopaminomimetics in Parkinson's disease. Neurology (1994) 44:S15–S18.
  • MOURADIAN MM, HEUSER IJ, BARONTI F, CHASE TN: Modification of central dopaminergic mechanisms by continuous levodopa therapy for advanced Parkin-son's disease. Ann. Neurol. (1990) 27:18–23.
  • LINDVALL 0, SAWLE G, WIDNER H et al: Evidence for long-term survival and function of dopaminergic grafts in progressive Parkinson's disease. Ann. Neurol. (1994) 35:172–180.
  • OLANOW CW, KORDOWER JH, FREEMAN TB: Fetal nigral transplantation as a therapy for Parkinson's disease. Trends Neurosci. (1996) 19:102–109.
  • WOLFF JA, FISHER LJ, JINNAH HA et al: Grafting fibroblasts genetically modified to produce L-dopa in a rat model of Parkinson's disease. Proc. Natl. Acad. Sci. USA (1989) 86:9011–9014.
  • •Classic early description of ex vivo gene therapy.
  • HORELLOU P, BRUNDIN P, KALEN P, MALLET J, BJÜRKLUND A: In vivo release of DOPA and dopamine from genetically engineered cells grafted to the denervated rat striatum. Neurone (1990) 5:393–402.
  • FISHER LJ, JINNAH HA, KALE LC, HIGGINS GA, GAGE FH:Survival and function of intrastriatally grafted primary fibroblasts genetically modified to produce L-DOPA. Neurone (1991) 6:371–380.
  • RAO S, GUREVICH V, WOLFF JA: Long-term correctionof rat model of Parkinson's disease by gene therapy. Nature (1993) 362:450–453.
  • KAPLITT MG, LEONE P, SAMULSKI RJ et al.: Long-termgene expression and phenotypic correction using adeno-associated virus vectors in the mammalian brain. Nature Genet. (1994) 8:148–154.
  • NAGATSU T: Biopterin cofactor and monoamine-synthesizing monooxygenases. Neurochem. Int. (1983) 5:27–38.
  • ICHINOSE H, OHYE T, TAKAHASHI E et al: Hereditaryprogressive dystonia with marked diurnal fluctuation caused by mutations in the GTP cyclohydrolase 1 gene. Nature Genet. (1994) 8:236–242.
  • ABERCROMBIE ED, BONATZ AE, ZIGMOND MJ: Effects ofL-DOPA on extracellular dopamine in striatum of normal and 6-hydroxydopamine-treated rats. Brain Res. (1990) 525:36–44.
  • ZHU MY, JUORIO AV: Aromatic L-amino acid decarboxylase: biological characterization and functional role. Gen. Pharmacol. (1995) 26:681–696.
  • MELAMED E, HEFTI F, PETTIBONE DJ, LIEBMAN J,WURTMAN RJ: Aromatic L-amino acid decarboxylase in rat corpus striatum: implications for action of L-DOPA in parkinsonism. Neurology (1981) 31:651–655.
  • WACHTEL SR, BENCSICS C, KANG UJ: The role of aromatic L-amino acid decarboxylase for dopamine replacement by genetically modified fibroblasts in a rat model of Parkinson's disease. J. Neurochem. (1997) 69:2055–2063.
  • LEE WY, CHANG JW, NEMETH NL, KANG UJ Vesicular monoamine transporter-2 and aromatic L-amino acid decarboxylase enhance dopamine delivery after L-3,4-dihydroxyphenylalanine administration in Parkinsonian rats. (1999) (In Press)
  • KANG UJ, FISHER LJ, JOH TH, O'MALLEY KL, GAGE FH:Regulation of dopamine production by genetically modified primary fibroblasts. J. Neurosci. (1993) 13:5203–5211.
  • KADDIS FG, CLARKSON ED, WEBER MJ et al.: Intrastriatalgrafting of Cos cells stably expressing human aromatic L- amino acid decarboxylase: neurochemical effects. J. Neurochem. (1997) 68:1520–1526.
  • HEFTI F: Neurotrophic factor therapy for nervoussystem degenerative diseases. J. Neurobiol. (1994) 25(10:1418–1435.
  • UNSICKER K: Growth factors in Parkinson's disease. Prog. Growth Factor Res. (1994) 5(0:73–87.
  • SULLIVAN AM, OPACKA-JUFFRY J, BLUNT SB: Long-term protection of the rat nigrostriatal dopaminergic system by glial cell line-derived neurotrophic factor against 6-hydroxydopamine in vivo. Eur. J. Neurosci. (1998) 10(0:57-63. © Ashley Publications Ltd. All rights reserved.Exp. Opin. Invest. Drugs (1999) 8(10)
  • ROSENBLAD C, KIRIK D, DEVAUX B et al.: Protection andregeneration of nigral dopaminergic neurons by neurturin or GDNF in a partial lesion model of Parkin-son's disease after administration into the striatum or the lateral ventricle. Eur. J. Neurosci. (1999) 11(5):1554–1566.
  • OPACKA-JUFFRY J, ASHWORTH S, HUME SP et al: GDNFprotects against 6-0HDA nigrostriatal lesion: in vivo study with microdialysis and PET. Neuroreport (1995) 7 (1):348–352.
  • LINDSAY RM, ALTAR CA, CEDARBAUM JM, HYMAN C, WIEGAND SJ: The therapeutic potential of neurotrophic factors in the treatment of Parkinson's disease. Exper. Neurol (1993) 124(0:103–118.
  • KUPSCH A, OERTEL WH, EARL CD, SAUTTER J: Neuronal transplantation and neurotrophic factors in the treatment of Parkinson's disease-update February 1995.J. Neural Transmiss. Suppl. (1995) 46:193–207.
  • HYMAN C, HOFER M, BARDE YA et al.: BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature (1991) 350(6315)230–2.
  • GALPERN WR, FRIM DM, TATTER SB et al.: Cell-mediated delivery of brain-derived neurotrophic factor enhances dopamine levels in an MPP+ rat model of substantia nigra degeneration. Cell Transplantation (1996) 5(2):225–232.
  • FRIM DM, UHLER TA, GALPERN WR et al.: Implanted fibroblasts genetically engineered to produce brain-derived neurotrophic factor prevent 1-methy1-4-phenylpyridinium toxicity to dopaminergic neurons inthe rat. Proc. Natl. Acad. Sci. USA (1994) 91(11):5104–8.
  • DATE I, AOI M, TOMITA S, COLLINS F, OHMOTO T: GDNF administration induces recovery of the nigrostriatal dopaminergic system both in young and aged parkin-sonian mice. Neuroreport (1998) 9(10):2365–2369.
  • CLARKSON ED, ZAWADA WM, FREED CR: GDNF improves survival and reduces apoptosis in human embryonic dopaminergic neurons in vitro. Cell & Tissue Research (1997) 289(2):207–210.
  • BOWENKAMP KE, LAPCHAK PA, HOFFER BJ, MILLER PJ, BICKFORD PC: Intracerebroventricular glial cell line-derived neurotrophic factor improves motor function and supports nigrostriatal dopamine neurons in bilaterally 6-hydroxydopamine lesioned rats. Exper. Neurol (1997) 145(0:104–117.
  • BJORKLUND A, ROSENBLAD C, WINKLER C, KIRIK D: Studies on neuroprotective and regenerative effects of GDNF in a partial lesion model of Parkinson's disease. Neurobiol. Disease (1997) 4(3-4):186–200.
  • LEVIVIER M, PRZEDBORSKI S, BENCSICS C, KANG UJ: Intrastriatal implantation of fibroblasts genetically engineered to produce brain-derived neurotrophic factor prevents degeneration of dopaminergic neurons in a rat model of Parkinson's disease. J. Neurosci. (1995) 15(12):7810–7820.
  • LUCIDI-PHILLIPI CA, GAGE FH, SHULTS CW et al.: Brain-derived Neurotrophic factor-transduced fibroblasts: production of BDNF and effect of grafting to the adult rat brain. J. Comp. Neurol. (1995) 354:361–376.
  • LU X, HAGG T: Glial cell line-derived neurotrophic factor prevents death, but not reductions in tyrosine hydroxylase, of injured nigrostriatal neurons in adult rats. J. Comp. Neurol. (1997) 388(3):484–494.
  • LAPCHAK PA, GASH DM, RAO S, MILLER PJ, HILT D: Glial cell line-derived neurotrophic factor: a novel therapeutic approach to treat motor dysfunction in Parkinson's disease. Exper. Neurol. (1997) 144 (1) 29–34.
  • GRONDIN R, GASH DM: Glial cell line-derived neurotrophic factor (GDNF): a drug candidate for the treatment of Parkinson's disease. J. Neurol. (1998) 245\(Suppl. 3):35–42.
  • •Review of GDNF function.
  • GASH DM, ZHANG Z, GERHARDT G: Neuroprotective and neurorestorative properties of GDNF. Ann. Neurol (1998) 44Suppl. 1):S121–5.
  • LAPCHAK PA, ARAUJO DM, HILT DC, SHENG J, RAO S: Adenoviral vector-mediated GDNF gene therapy in a rodent lesion model of late stage Parkinson's disease. Brain Research (1997) 777(1-2):153–160.
  • KOJIMA H, ABIRU Y, SAKAJIRI K et al.: Adenovirus-mediated transduction with human glial cell line-derived neurotrophic factor gene prevents 1-methy1-4-pheny1-1,2,3,6-tetrahydropyridine-induced dopamine depletion in striatum of mouse brain. Biochem. Biophy. Res. Comm. (1997) 238(2)569–573.
  • FAN D, OGAWA M, IKEGUCHI K et al.: Prevention of dopaminergic neuron death by adeno-associated virus vector-mediated GDNF gene transfer in rat mesencephalic cells in vitro. Neurosci. Lett. (1998) 248(1)61–64.
  • MANDEL RJ, SPRATT SK, SNYDER RO, LEFF SE: Midbrain injection of recombinant adeno-associated virus encoding rat glial cell line-derived neurotrophic factor protects nigral neurons in a progressive 6-hydroxydopamine-induced degeneration model of Parkinson's disease in rats. Proc. Natl. Acad. ScL USA (1997) 94(25):14083–14088.
  • WESTPHAL CH, LEDER P: Transposon-generated 'knock-out' and 'knock-in' gene-targeting constructs for use in mice. Curr. Biol. (1997) 7:530–533.
  • BLAESE RM: Gene therapy for cancer. ScL Am. (1997) June:107–115.
  • LINNIK MD, ZAHOS P, GESCHWIND MD, FEDEROFF HJ: Expression of bc1-2 from a defective herpes simplex virus-1 vector limits neuronal death in focal cerebral ischemia. Stroke (1995) 26: 1670-1674.
  • SCHIERLE GS, HANSSON 0, LEIST M et al.: Caspase inhibition reduces apoptosis and increases survival of nigral transplants. Nature Med. (1999) 5:97–100.
  • PRZEDBORSKI S, KOSTIC V, JACKSON-LEWIS V et al: Transgenic mice with increased Cu/Zn-superoxide dismutase activity are resistant to N-methy1-4-phenyl-1,2,3,6- tetrahydropyridine-induced neurotoxicity. j NeuroscL (1992) 12: 1658-1667.
  • NAKAO N, FRODL EM, WIDNER H et al: Overexpressing Cu/Zn superoxide dismutase enhances survival of transplanted neurons in a rat model of Parkinson's disease. Nature Med. (1995) 1:226–231.
  • GRANHOLM AC, MOTT JL, BOWENKAMP K et al.: Glial cell line-derived neurotrophic factor improves survival of ventral mesencephalic grafts to the 6-hydroxydopamine lesioned striatum. Exper. Br. Res. (1997) 116(10:29–38.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.