62
Views
43
CrossRef citations to date
0
Altmetric
Review

Concepts in Ras-directed therapy

, &
Pages 2121-2140 | Published online: 23 Feb 2005

Bibliography

  • BOGUSKI MS, MCCORMICK F: Proteins regulating Ras and its relatives. Nature (1993) 366(6456):643–654.
  • LANGE CARTER CA, JOHNSON GL: Ras-dependent growth factor regulation of MEK kinase in PC12 cells. Science (1994) 265(5177):1458–1461.
  • COX AD, DER CJ: Farnesyltransferase inhibitors and cancer treatment: targeting simply Ras? Biochim. Biophys. Acta (1997) 1333(1):F51–71.
  • LOWY DR, WILLUMSEN BM: Function and regulation of ras. Ann. Rev. Biochem. (1993) 62:851–891.
  • SCHLESSINGER J, ULLRICH A: Growth factor signaling by receptor tyrosine kinases. Neurone (1992) 9(3):383–391.
  • MARSHALL CJ: Ras effectors. Curr. Opin. Cell Biol. (1996) 8(2):197–204.
  • MALUMBRES M, PELLICER A: RAS pathways to cell cycle control and cell transformation. Front. Biosci. (1998) 3:d887–912.
  • BARBACID M: Ras genes. Ann. Rev. Biochem. (1987)56:779–827.
  • BOS JL: Ras oncogenes in human cancer: a review. Cancer Res. (1989) 49(17):4682–4689.
  • BOS JL: p2lras: an oncoprotein functioning in growth factor-induced signal transduction. Fur. J. Cancer (1995) 31a(7–8):1051–1054.
  • VOJTEK AB, DER CJ: Increasing complexity of the Ras signaling pathway. J. Biol. Chem. (1998) 273(32):19925–19928.
  • KHOSRAVI FAR R, CAMPBELL S, ROSSMAN KL, DER CJ: Increasing complexity of Ras signal transduction: involvement of Rho family proteins. Adv Cancer Res. (1998) 72:57–107.
  • JONES MK, JACKSON JH: Ras-GRF activates Ha-Ras, but not N-Ras or K-Ras 4B, protein in vivo. J. Biol. Chem. (1998) 273(3):1782–1787.
  • YAN J, ROY S, APOLLONI A, LANE A, HANCOCK JF: Rasisoforms vary in their ability to activate Raf-1 and phosphoinositide 3-kinase. J. Biol. Chem. (1998) 273(37)24052–24056.
  • HAMILTON M, WOLFMAN A: Ha-ras and N-ras regulate MAPK activity by distinct mechanisms in vivo. Oncogene (1998) 16(11):1417–1428.
  • ROY S, LUETTERFORST R, HARDING A et al.: Dominant-negative caveolin inhibits H-Ras function by disrupting cholesterol-rich plasma membrane domains. Natue Cell Biol. (1999) 1(2):98–105.
  • PEEPER DS, UPTON TM, LADHA MH et al.: Ras signalling linked to the cell-cycle machinery by the retinoblas-toma protein. Nature (1997) 386(6620:177–181.
  • LEONE G, DEGREGORI J, SEARS R, JAKOI L, NEVINS JR: Myc and Ras collaborate in inducing accumulation of active cyclin E/Cdk2 and E2F. Nature (1997) 387(6630422–426.
  • SERRANO M, UN AW, MCCURRACH ME, BEACH D, LOWE SW: Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p161NK4a. Cell (1997) 88(5):593–602.
  • DOWNWARD J: Ras signalling and apoptosis. Curr. Opin. Genet. Dev. (1998) 8(0:49–54.
  • TAKAI Y, KAIBUCHI K, SASAKI T, TANAKA K, SHIRATAKI H, NAKANISHI H: Rho small G protein and cytoskeletal control. Princess Takamatsu Symp. (1994) 24:338–350.
  • YARDEN Y, ULLRICH A: Growth factor receptor tyrosine kinases. Ann. Rev. Biochem. (1988) 57:443–478.
  • WINITZ S, RUSSELL M, QIAN NX, GARDNER A, DWYER L, JOHNSON GL: Involvement of Ras and Raf in the Gi-coupled acetylcholine muscarinic m2 receptor activation of mitogen-activated protein ( MAP) kinase kinase and MAP kinase. J. Biol. Chem. (1993) 268(26):19196–19199.
  • FINCO TS, KADLECEK T, ZHANG W, SAMELSON LE, WEISS A: LAT is required for TCR-mediated activation of PLCgammal and the Ras pathway. Immunity (1998) 9(5):617–626.
  • LUTTRELL LM, DAAKA Y, LEFKOWITZ RJ: Regulation of tyrosine kinase cascades by G-protein-coupled receptors. Curr. Opin. Cell Biol. (1999) 11(2):177–183.
  • CHIN L, TAM A, POMERANTZ J et al.: Essential role for oncogenic Ras in tumour maintenance. Nature (1999) 400(6743)468–472.
  • ALMOGUERA C, SHIBATA D, FORRESTER K, MARTIN J,ARNHEIM N, PERUCHO M: Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell (1988) 53(4):549–554.
  • HRUBAN RH, VAN MANSFELD AD, OFFERHAUS GJ et al.: K-ras oncogene activation in adenocarcinoma of the human pancreas. A study of 82 carcinomas using a combination of mutant-enriched polymerase chain reaction analysis and allele-specific oligonucleotide hybridization. Am. J. Pathol (1993) 143(2):545–554.
  • KOLIBABA KS, DRUKER BJ: Protein tyrosine kinases and cancer. Biochim. Biophys. Acta (1997) 1333(3):F217–248.
  • HUANG HS, NAGANE M, KLINGBEIL CK et al.: The enhanced tumorigenic activity of a mutant epidermal growth factor receptor common in human cancers is mediated by threshold levels of constitutive tyrosine phosphorylation and unattenuated signaling. J. Biol. Chem. (1997) 272(5):2927–2935.
  • SMITH JJ, DERYNCK R, KORC M: Production of transforming growth factor alpha in human pancre-atic cancer cells: evidence for a superagonist autocrine cycle. Proc. Natl. Acad. Sci. USA (1987) 84(20:7567–7570.
  • LEVITZKI A: Signal-transduction therapy. A novel approach to disease management. Eur. J. Biochem. (1994) 226(1):1–13.
  • SLAMON DJ, CLARK GM, WONG SG, LEVIN WJ, ULLRICH A, MCGUIRE WL: Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science (1987) 235 (4785):177–182.
  • GUHA A, DASHNER K, BLACK PM, WAGNER JA, STILES CD: Expression of PDGF and PDGF receptors in human astrocytoma operation specimens supports the existence of an autocrine loop. Int. J. Cancer (1995) 60(2):168–173.
  • RODECK U, BECKER D, HERLYN M: Basic fibroblast growth factor in human melanoma. Cancer Cells (1991) 3 (8):308–311.
  • PENDERGAST AM, QUILLIAM LA, CRIPE LD et al.: BCR-ABL-induced oncogenesis is mediated by direct interaction with the SH2 domain of the GRB-2 adaptor protein. Cell (1993) 75(0:175–185.
  • KOHL NE, WILSON FR, MOSSER SD et al.: Protein farnesyltransferase inhibitors block the growth of ras-dependent tumors in nude mice. Proc. Natl. Acad. ScL USA (1994) 91(19):9141–9145.
  • SCHEFFZEK K, AHMADIAN MR, KABSCH W et al.: TheRas-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science (1997) 277(5324):333–337.
  • BOURNE HR, SANDERS DA, MCCORMICK F: The GTPase superfamily: conserved structure and molecular mechanism. Nature (1991) 349(6305):117–127.
  • MCCORMICK F: Signal transduction. How receptors turn Ras on. Nature (1993) 363(6424):15–16.
  • CASEY PJ, SOLSKI PA, DER CJ, BUSS JE: p2lras is modified by a farnesyl isoprenoid. Proc. Natl. Acad. Sci. USA (1989) 86(20:8323–8327.
  • HANCOCK JF, CADWALLADER K, PATERSON H, MARSHALL CJ: A CAAX or a CAM motif and a second signal are sufficient for plasma membrane targeting of ras proteins. EMBO J (1991) 10(13):4033–4039.
  • HANCOCK JF, MAGEE Al, CHILDS JE, MARSHALL CJ: All ras proteins are polyisoprenylated but only some are palmitoylated. Cell (1989) 57 (7):1167–1177.
  • WILLUMSEN BM, COX AD, SOLSKI PA, DER CJ, BUSS JE: Novel determinants of H-Ras plasma membrane localization and transformation. Oncogene (1996) 13 (9):1901–1909.
  • KATO K, COX AD, HISAKA MM, GRAHAM SM, BUSS JE, DER CJ: Isoprenoid addition to Ras protein is the critical modification for its membrane association and transforming activity. Proc. Natl. Acad. ScL USA (1992) 89(14) 6403–6407.
  • COX AD, HISAKA MM, BUSS JE, DER CJ: Specific isoprenoid modification is required for function of normal, but not oncogenic, Ras protein. Mol. Cell. Biol. (1992) 12(6):2606–2615.
  • BORIACK SJODIN PA, MARGARIT SM, BAR SAGI D, KURIYAN J: The structural basis of the activation of Ras by Sos. Nature (1998) 394(6690:337–343.
  • SCHEFFZEK K, AHMADIAN MR, WITTINGHOFER A: GTPase-activating proteins: helping hands to comple-ment an active site. Trends Biochem. Sci. (1998) 23 (7):257–262.
  • AHMADIAN MR, ZOR T, VOGT D et al.: Guanosine triphosphatase stimulation of oncogenic Ras mutants. Proc. Nall Acad. ScL USA (1999) 96(12):7065–7070.
  • WHITE MA, NICOLETTE C, MINDEN A et al: Multiple Rasfunctions can contribute to mammalian cell transfor-mation. Cell (1995) 80(4) 533–541.
  • RODRIGUEZ VICIANA P, WARNE PH, KHWAJA A et al. Role of phosphoinositide 3-0H kinase in cell transfor-mation and control of the actin cytoskeleton by Ras. Cell (1997) 89(3):457–467.
  • JONESON T, WHITE MA, WIGLER MH, BAR SAGI D: Stimulation of membrane ruffling and MAP kinase activation by distinct effectors of RAS. Science (1996) 271 (5250):810–812.
  • AVRUCH J, ZHANG XF, KYRIAKIS JM: Raf meets Ras: completing the framework of a signal transduction pathway. Trends Biochem. ScL (1994) 19 (7) 279–283.
  • COBB MH, GOLDSMITH EJ: How MAP kinases are regulated. J Biol. Chem. (1995) 270 (25) :14843–14846.
  • DERIJARD B, HIBI M, WU IH et al.: JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell (1994) 76(6):1025–1037.
  • KYRIAKIS JM, BANERJEE P, NIKOLAKAKI E et al.: The stress-activated protein kinase subfamily of c-Jun kinases. Nature (1994) 369(6476):156–160.
  • RUSSELL M, LANGE CARTER CA, JOHNSON GL: Regula-tion of recombinant MEK1 and MEK2b expressed in Escherichia coli. Biochemistry (1995) 34 (20) 6611–6615.
  • MINDEN A, LIN A, MCMAHON M et al. Differential activa- tion of ERK and JNK mitogen-activated protein kinases by Raf-1 and MEKK. Science (1994) 266(5191):1719–1723.
  • RODRIGUEZ VICIANA P, WARNE PH, DHAND R et al.:Phosphatidylinosito1-3-0H kinase as a direct target of Ras. Nature (1994) 370(6490)527–532.
  • HAWKINS PT, EGUINOA A, QIU RG et al.: PDGF stimulates an increase in GTP-Rac via activation of phosphoinositide 3-kinase. Curr. Biol. (1995) 5 (4) :393–403.
  • BURGERING BM, BOS JL: Regulation of Ras-mediated signalling: more than one way to skin a cat. Trends Biochem. Sci. (1995) 20(0:18–22.
  • MAYO MW, WANG CY, COGSWELL PC et al.: Require-ment of NF-kappaB activation to suppress p53-independent apoptosis induced by oncogenic Ras. Science (1997) 278(5344):1812–1815.
  • URANO T, EMKEY R, FEIG LA: Ral-GTPases mediate adistinct downstream signaling pathway from Ras that facilitates cellular transformation. EMBO J. (1996) 15 (4):810–816.
  • JIANG H, LUO JQ, URANO T et al.: Involvement of RalGTPase in v-Src-induced phospholipase D activation. Nature (1995) 378(6555):409–412.
  • CANTOR SB, URANO T, FEIG LA: Identification andcharacterization of Ral-binding protein 1, a potential downstream target of Ral GTPases. Mol Cell. Biol. (1995) 15 (8):4578–4584.
  • RIDLEY AJ, HALL A: The small GTP-binding protein rhoregulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell (1992) 70 (3) :389–399.
  • QIU RG, CHEN J, KIRN D, MCCORMICK F, SYMONS M: Anessential role for Rac in Ras transformation. Nature (1995) 374 (6521) :457–459.
  • SETTLEMAN J, NARASIMHAN V, FOSTER LC, WEINBERG RA: Molecular cloning of cDNAs encoding the GAP-associated protein p190: implications for a signaling pathway from ras to the nucleus. Cell (1992) 69(3) 539–549.
  • AFAR DE, HAN L, MCLAUGHLIN J et al.: Regulation of the oncogenic activity of BCR-ABL by a tightly bound substrate protein RM. Immunity (1997) 6 (6) :773–782.
  • PAWSON T, SAXTON TM: Signaling networks-do all roads lead to the same genes? Cell (1999) 97 (6) 675–678.
  • KAUFFMANN ZEH A, RODRIGUEZ VICIANA P, ULRICH E et al.: Suppression of c-Myc-induced apoptosis by Ras signalling through PI(3)K and PKB. Nature (1997) 385 (6616):544–548.
  • FUKASAWA K, VANDE WOUDE GF: Synergy between the Mos/mitogen-activated protein kinase pathway and loss of p53 function in transformation and chromo-some instability. Mol. Cell. Biol. (1997) 17(0:506–518.
  • KHWAJA A, RODRIGUEZ VICIANA P, WENNSTROM S, WARNE PH, DOWNWARD J: Matrix adhesion and Ras transformation both activate a phosphoinositide 3-0H kinase and protein kinase B/Akt cellular survival pathway. EMBO J (1997) 16(10)2783–2793.
  • GUTIERREZ L, MAGEE Al, MARSHALL CJ, HANCOCK JF:Post-translational processing of p2lras is two-step and involves carboxyl-methylation and carboxy-terminal proteolysis. EMBO J (1989) 8 (4) :1093–1098.
  • BOYARTCHUK VL, ASHBY MN, RINE J: Modulation of Rasand a-factor function by carboxyl-terminal proteolysis. Science (1997) 275(5307) :1796–1800.
  • FUJIMURA KAMADA K, NOUVET FJ, MICHAELIS S: A novel membrane-associated metalloprotease, Ste24p, is required for the first step of NM-terminal processing of the yeast a-factor precursor. J. Cell Biol. (1997) 136 (2):271–285.
  • OTTO JC, KIM E, YOUNG SG, CASEY PJ: Cloning and characterization of a mammalian prenyl protein-specific protease. J Biol. Chem. (1999) 274(13)8379–8382.
  • CLARKE S, VOGEL JP, DESCHENES RJ, STOCK J: Posttrans-lational modification of the Ha-ras oncogene protein: evidence for a third class of protein carboxyl methyl-transferases. Proc. Natl. Acad. Sci. USA (1988) 85(13)4643–4647.
  • DAI Q, CHOY E, CHIU V et al.: Mammalian prenylcys-teine carboxyl methyltransferase is in the endoplasmic reticulum. J. Biol. Chem. (1 99 8) 273 (24) :15030–15034.
  • GELB MH: Protein prenylation, et cetera: signal transduction in two dimensions. Science (1997) 275 (5307):1750–1751.
  • CHOY E, CHIU VK, SILLETTI J et al: Endomembranetrafficking of ras: the CAAX motif targets proteins to the ER and Golgi. Cell (1999) 98(1):69–80.
  • MARCIANO D, BEN BARUCH G, MAROM M, EGOZI Y, HAKLAI R, KLOOG Y: Farnesyl derivatives of rigid carboxylic acids-inhibitors of ras-dependent cell growth. J. Med. Chem. (1995) 38(8):1267–1272.
  • MARCIANO D, AHARONSON Z, VARSANO T, HAKLAI R, KLOOG Y: Novel inhibitors of the prenylated protein methytransferase revel distinctive structural require-ments.) Bioorg. Med. Chem. Lett. (1997 7(13):1709–1714.
  • RANDO RR: Chemical biology of protein isoprenyla-tion/methylation. Biochim. Biophys. Acta (1996) 1300 (1):5–16.
  • RANDO RR: Chemical biology of isoprenyla-tion/methylation. Biochem. Soc. Trans. (1996) 24(3):682–687.
  • VOLKER C, MILLER RA, MCCLEARY WR et al.: Effects offarnesylcysteine analogs on protein carboxyl methylation and signal transduction. J. Biol. Chem. (1991) 266(32):21515–21522.
  • AHARONSON Z, GANA WEISZ M, VARSANO T, HAKLAI R,MARCIANO D, KLOOG Y: Stringent structural require-ments for anti-Ras activity of S-prenyl analogues. Biochim. Biophys. Acta (1998) 1406(0:40–50.
  • KOHL NE, MOSSER SD, DESOLMS SJ et al. Selective inhibition of ras-dependent transformation by a farnesyltransferase inhibitor. Science (1 9 93) 2 60(5116) 1934–1937
  • JAMES GL, GOLDSTEIN JL, BROWN MS et al.: Benzodi-azepine peptidomimetics: potent inhibitors of Ras farnesylation in animal cells. Science (1 99 3) 2 60 (5116):1937–1942.
  • GARCIA AM, ROWELL C, ACKERMANN K, KOWALCZYK JJ,LEWIS MD: Peptidomimetic inhibitors of Ras farnesylation and function in whole cells. J. Biol. Chem. (1993) 268(25):18415–18418.
  • GELB MH, SCHOLTEN JD, SEBOLT LEOPOLD JS: Protein prenylation: from discovery to prospects for cancer treatment. Curr. Opin. Chem. Biol. (1998) 2(1):40–48.
  • GIBBS JB, OLIFF A: The potential of farnesyltransferase inhibitors as cancer chemotherapeutics. Ann. Rev. Pharmacol. Toxicol. (1997) 37:143–166.
  • GIBBS JB, OLIFF A, KOHL NE: Farnesyltransferase inhibitors: Ras research yields a potential cancer therapeutic. Cell (1994) 77 (2):175–178.
  • YANG W, DEL VILLAR K, URANO J, MITSUZAWA H, TAMANOI F: Advances in the development of farnesyl-transferase inhibitors: substrate recognition by protein farnesyltransferase. J. Cell. Biochem. Suppl. (1997) 27:12–19.
  • LERNER EC, HAMILTON AD, SEBTI SM: Inhibition of Ras prenylation: a signaling target for novel anti-cancer drug design. AntiCancer Drug Des. (1997) 12(4):229–238.
  • TANIMOTO T, OHYA S, TSUJITA Y: Inhibitory activity to protein prenylation and antifungal activity of zaragozic acid D3, a potent inhibitor of squalene synthase produced by the fungus, Mollisia sp. SANK 10294. (1998) 1 Antibiot. Tokyo 51 (4):428–431.
  • BISHOP WR, BOND R, PETRIN J et al.: Novel tricyclic inhibitors of farnesyl protein transferase. Biochemical characterization and inhibition of Ras modification in transfected Cos cells. J. Biol. Chem. (1995) 270(50:30611–30618.
  • VOGT A, QIAN Y, BLASKOVICH MA, FOSSUM RD, HAMILTON AD, SEBTI SM: A non-peptide mimetic of Ras-CAAX: selective inhibition of farnesyltransferase and Ras processing.J. Biol. Chem. (1995) 270(2)660–664.
  • PATEL DV, YOUNG MG, ROBINSON SP, HUNIHAN L, DEAN BJ, GORDON EM: Hydroxamic acid-based bisubstrate analog inhibitors of Ras farnesyl protein transferase. J. Med. Chem. (1996) 39(21):4197–4210.
  • WHYTE DB, KIRSCHMEIER P, HOCKENBERRY TN et al: K-and N-Ras are geranylgeranylated in cells treated with farnesyl protein transferase inhibitors. J. Biol. Chem. (1997) 272(22):14459–14464.
  • NAGASU T, YOSHIMATSU K, ROWELL C, LEWIS MD, GARCIA AM: Inhibition of human tumor xenograft growth by treatment with the farnesyl transferase inhibitor B956. Cancer Res. (1995) 55 (22):5310–5314.
  • SUN J, QIAN Y, HAMILTON AD, SEBTI SM: Ras CAAX peptidomimetic FTI 276 selectively blocks tumor growth in nude mice of a human lung carcinoma with K-Ras mutation and p53 deletion. Cancer Res. (1995) 55 (19):4243–4247.
  • LIU M, BRYANT MS, CHEN J eta].:Effects of SCH 59228, an orally bioavailable farnesyl protein transferase inhibitor, on the growth of oncogene-transformed fibroblasts and a human colon carcinoma xenograft in nude mice. Cancer Chemother. PharmacoL (1999) 43(1) 50–58
  • LIU M, BRYANT MS, CHEN J et al.: Antitumor activty of SCH 66336, an orally bioavailable tricyclic inhibitor of farnesyl protein transferase, in human tumor xenograft models and wap-ras trasgenic mice. Cancer Res. (1998) 58:4947–4956.
  • MCNAMARA DJ, DOBRUSIN E, LEONARD DM et al: C-terminal modifications of histidyl-N-benzylglycinamides to give improved inhibition of Ras farnesyltransferase, cellular activity, and anticancer activity in mice. J. Med. Chem. (1997) 40 (20:3319–3322.
  • KOHL NE, OMER CA, CONNER MW et al. Inhibition of farnesyltransferase induces regression of mammary and salivary carcinomas in ras transgenic mice. (1995) Nature Merl. 1(8):792–797.
  • NORGAARD P, LAW B, JOSEPH H et al.: Treatment with farnesyl-protein transferase inhibitor induces regres-sion of mammary tumors in transforming growth factor (TGF) alpha and TGF alpha/neu transgenic mice by inhibition of mitogenic activity and induction of apoptosis. (1999) Clin. Cancer Res. 5(1)35–42.
  • LERNER EC, ZHANG TT, KNOWLES DB, QIAN Y, HAMILTON AD, SEBTI SM: Inhibition of the prenylation of K-Ras, but not H- or N-Ras, is highly resistant to CAAX peptidomimetics and requires both a farnesyl-transferase and a geranylgeranyltransferase I inhibitor in human tumor cell lines. (1997) Oncogene 15(10:1283–1288.
  • REISS Y, STRADLEY SJ, GIERASCH LM, BROWN MS, GOLDSTEIN JL: Sequence requirement for peptide recognition by rat brain p2lras protein farnesyltrans-ferase. (1991) Proc. Natl. Acad. Sci. USA. 88(3):732–736.
  • ROWELL CA, KOWALCZYK JJ, LEWIS MD, GARCIA AM: Direct demonstration of geranylgeranylation and farnesylation of Ki-Ras in vivo. (1997) J. Biol. Chem. 272 (22) 14093–14097.
  • LEBOWITZ PF, PRENDERGAST GC: Non-Ras targets of farnesyltransferase inhibitors: focus on Rho. (1998) Oncogene 17:1439–1445.
  • 112.DALTON MB, FANTLE KS, BECHTOLD HA et al.: The farnesyl protein transferase inhibitor BZA-5B blocks farnesylation of nuclear lamins and p2lras but does not affect their function or localization. (1995) Cancer Res. 55(15):3295–3304.
  • JAMES GL, GOLDSTEIN JL, PATHAK RK, ANDERSON RG, BROWN MS: PxF, a prenylated protein of peroxisomes. (1994) J. Biol. Chem. 269(19):14182–14190.
  • COX AD, DER CJ: Farnesyltransferase inhibitors: Anti-Ras or anti-cancer drugs? In: Signaling Networks and Cell Cycle Control: The molecular basis of cancer and other diseases. Gutkind JS, (Ed.), Humana Press, USA. (In Press).
  • SEPP LORENZINO L, MA Z, RANDS E et al. A peptidomi- metic inhibitor of farnesyl:protein transferase blocks the anchorage-dependent and -independent growth of human tumor cell lines. (1 9 9 5) Cancer Res. 55(22)5302–5309.
  • ZHANG FL, KIRSCHMEIER P, CARR D et al.: Characteriza-tion of Ha-ras, N-ras, Ki-Ras4A, and Ki-Ras4B as in vitro substrates for farnesyl protein transferase and geranylgeranyl protein transferase Type I. (1997) J. Biol. Chem. 272(15):10232–10239.
  • JAMES GL, GOLDSTEIN JL, BROWN MS: Polylysine and CVIM sequences of K-RasB dictate specificity of prenylation and confer resistance to benzodiazepine peptidomimetic in vitro. (1995) J. Biol. Chem. 270(10:6221–6226.
  • MAHGOUB N, TAYLOR BR, GRATIOT M et al.: In vitro and In vivo effects of a farnesyltransferase inhibitor on Nfl-deficient hematopoietic cells. (1999) Blood 94 (7):2469–2476.
  • MANGUES R, CORRAL T, KOHL NE et al.: Antitumor effect of a farnesyl protein transferase inhibitor in mammary and lymphoid tumors overexpressing N-ras in transgenic mice. (1998) Cancer Res. 58 (6): 1253–1259.
  • MICAL TI, MONTEIRO MJ: The role of sequences unique to nuclear intermediate filaments in the targeting and assembly of human lamin B: evidence for lack of interaction of lamin B with its putative receptor. (1998) J. Cell Sci. 111\(Pt 23):3471–3485.
  • DUGAN JM, ALLEN CM: Changes in protein prenylation and prenyltransferase activity in the rat seminiferous epithelium during early stages of spermatogenesis. (1995) Biol Reprod. 53(4):958–973.
  • RILLING HC, BRUENGER E, LEINING LM, BUSS JE, EPSTEIN WW: Differential prenylation of proteins as a function of mevalonate concentration in CHO cells. Arch. Biochem. Biophys. (1993) 301 (2):210–215.
  • LUTZ RJ, MCLAIN TM, SINENSKY M: Feedback inhibition of polyisoprenyl pyrophosphate synthesis from mevalonate in vitro. Implications for protein prenyla-tion. J. Biol. Chem. (1992) 267(12):7983–7986.
  • LAEZZA C, DI MARZO V, BIFULCO M: v-K-ras leads to preferential farnesylation of p21(ras) in FRTL-5 cells: multiple interference with the isoprenoid pathway. Proc. Natl. Acad. Sci. USA (1998) 95(23):13646–13651.
  • SONG SK, LI S, OKAMOTO T, QUILLIAM LA, SARGIACOMO M, LISANTI MP: Co-purification and direct interaction of Ras with caveolin, an integral membrane protein of caveolae microdomains. Detergent- free purification of caveolae microdo-mains. J. Biol. Chem. (1996) 271(16):9690–9697.
  • MINE() C, JAMES GL, SMART EJ, ANDERSON RG: Localiza-tion of epidermal growth factor-stimulated Ras/Raf-1 interaction to caveolae membrane. J. Biol. Chem. (1996) 2 71(2011930–11935.
  • ENGELMAN JA, WYKOFF CC, YASUHARA S, SONG KS, OKAMOTO T, LISANTI MP: Recombinant expression of caveolin-1 in oncogenically transformed cells abrogates anchorage-independent growth. J. Biol. Chem. (1997) 272(26)16374–16381.
  • MINEO C, ANDERSON RG, WHITE MA: Physical associa-tion with ras enhances activation of membrane-bound raf (RafCAAX). J. Biol. Chem. (1997) 272(16):10345–10348.
  • LI S, COUET J, LISANTI MP: Src tyrosine kinases, Galpha subunits, and H-Ras share a common membrane-anchored scaffolding protein, caveolin. Caveolin binding negatively regulates the auto-activation of Src tyrosine kinases. j Biol. Chem. (1996) 271 (46):29182–29190.
  • BUSS JE, SOLSKI PA, SCHAEFFER JP, MACDONALD MJ, DER CJ: Activation of the cellular proto-oncogene product p21Ras by addition of a myristylation signal. Science (1989) 243 (4898):1600–1603.
  • SHAHINIAN S, SILVIUS JR: Doubly-lipid-modified protein sequence motifs exhibit long-lived anchorage to lipid bilayer membranes. Biochemistry (1995) 34(11):3813–3822.
  • SCHROEDER H, LEVENTIS R, REX S et al.: S-Acylation and plasma membrane targeting of the farnesylated carboxyl-terminal peptide of N-ras in mammalian fibroblasts. Biochemistry (1997) 36 (42):13102–13109.
  • SIDDIQUI AA, GARLAND JR, DALTON MB, SINENSKY M: Evidence for a high affinity, saturable, prenylation-dependent p2 1Ha-ras binding site in plasma membranes. J. Biol. Chem. (1998) 273(6):3712–3717.
  • FURUCHI T, ANDERSON RG: Cholesterol depletion of caveolae causes hyperactivation of extracellular signal-related kinase (ERK). J. Biol. Chem. (1998) 273 (33):21099–21104.
  • ANDERSON RG: The caveolae membrane system. Ann. Rev. Biochem. (1998) 67:199–225.
  • KOLESKE AJ, BALTIMORE D, LISANTI MP: Reduction of caveolin and caveolae in oncogenically transformed cells. Proc. Natl. Acad. Sci. USA (1995) 92(5):1381–1385.
  • ENGELMAN JA, LEE RJ, KARNEZIS A et al: Reciprocal regulation of neu tyrosine kinase activity and caveolin-1 protein expression in vitro and in vivo. Implications for human breast cancer. J. Biol. Chem. (1998) 273(32)20448–20455.
  • NIV H, GUTMAN 0, HANIS YI, KLOOG Y: Membrane interactions of a constitutively active GFP-K-Ras 4B and their role in signaling: Evidence from lateral mobility studies. J. Biol. Chem. (1999) 274(3):1606–1613.
  • YOKOE H, MEYER T: Spatial dynamics of GFP-tagged proteins investigated by local fluorescence enhance-ment. Nature Biotech. (1996) 14:1252–1256.
  • JOHNSON L, GREENBAUM D, CICHOWSKI K et al K-ras is an essential gene in the mouse with partial functional overlap with N-ras. Genes Dev. (1997) 11(19) 2468–2481
  • KOERA K, NAKAMURA K, NAKAO K et al: K-ras is essential for the development of the mouse embryo. Oncogene (1997) 15(10):1151–1159.
  • MAROM M, HAKLAI R, BEN BARUCH G, MARCIANO D, EGOZI Y, KLOOG Y: Selective inhibition of Ras-dependent cell growth by farnesylthiosalisylic acid. J. Biol. Chem. (1995) 270(38):22263–22270.
  • HAKLAI R, GANA-WEISZ G, ELAD G et al.: Dislodgment and accelerated degradation of Ras. Biochemistry (1998) 37 (5):1306–1314.
  • ELAD G, PAZ A, HAKLAI R, MARCIANO D, COX A, KLOOG Y: Targeting of K-Ras 4B by S-trans, trans-farnesyl thiosalicylic acid. Biomedica Biochimica Acta (1998). (In Press).
  • JANSEN B, SCHLAGBAUER-WADL H, KAHR H et al: novel Ras antagonist blocks human melanoma growth. Proc. Natl. Acad. Sci. USA (1999) (In Press).
  • WEISZ B, GIEHL K, GANA-WEISZ M et al.: A new functional Ras antagonist inhibits human pancreatic tumor growth in nude mice. Oncogene (1999) 18:2579–2588.
  • EGOZI Y, WEISZ B, GANA-WEISZ M, BEN-BARUCH G, KLOOG Y: Growth Inhibition of Ras-Dependent Tumors in Nude Mice by a Potent Ras-Dislodging Antagonist. Int. J. Cancer (1999) 80:911–918.
  • HARING R, FISHER A, MARCIANO D et al.: Mitogen-activated protein kinase-dependent and protein kinase C-dependent pathways link the ml muscarinic receptor to beta-amyloid precursor protein secretion. Neurochem. (1998) 71(5):2094–2103.
  • GANA-WEISZ M, HAKLAI R, MARCIANO D, EGOZI Y, BEN BARUCH G, KLOOG Y: The Ras antagonist S-farnesylthiosalicylic acid induces inhibition of MAPK activation. Biochem. Biophys. Res. Commun. (1997) 239(3)900–904.
  • SYMONS M: Rho family GTPases: the cytoskeleton and beyond. Trends Biochem. Sci. (1996) 21 (5):178–181.
  • KLINT P, KANDA S, KLOOG Y, CLAESSON-WELSH L: Contribution of Src and Ras pathways in FGF-2 induced endothelial cell differentiation. Oncogene (1999) 18:3354–3364.
  • REIF S, WEISZ B, AEED H et al.: The Ras antago-nist,Farnesyl thiosalicylic acid (FTS) inhibits experi-menfily - induced liver Chirrhosis in rats. J. Hepatology (1999). (In Press).
  • JANSEN B, HEERE-RESS E, SCHLAGBAUER-WADL H et al.: Farnesylthiosalicylic acid inhibits the growth of human merkel cell carcinoma in scid mice. Mot. Med. Today (1999). (In Press).
  • SHIH TY, HATTORI S, CLANTON DJ et al.: Structure and function of p21 ras proteins. Gene. Amplif Anal. (1986) 4:53–72.
  • KRENGEL U, SCHLICHTING L, SCHERER A et al. Three- dimensional structures of H-ras p21 mutants: molecular basis for their inability to function as signal switch molecules. Cell (1990) 62(3):539–548.
  • MITTAL R, AHMADIAN MR, GOODY RS, WITTINGHOFER A: Formation of a transition-state analog of the Ras GTPase reaction by Ras-GDP, tetrafluoroaluminate, and GTPase-activating proteins. Science (1996) 273(5270:115–117.
  • ZOR T, BAR YAACOV M, ELGAVISH S, SHAANAN B, SELINGER Z: Rescue of a mutant G-protein by
  • ZOR T, ANDORN R, SOFER I, CHOREV M, SELINGER Z: GTP analogue hydrolysis by the Gs protein: implica-tion for the role of catalytic glutamine in the GTPase reaction. FEBS Lett. (1998) 433(3):326–330.
  • COLEMAN DE, BERGHUIS AM, LEE E, UNDER ME, GILMAN AG, SPRANG SR: Structures of active conformations of Gi alpha 1 and the mechanism of GTP hydrolysis. Science (1994) 265(5177):1405–1412.
  • LAMBRIGHT DG, SONDEK J, BOHM A, SKIBA NP, HAMM HE, SIGLER PB: The 2.0 A crystal structure of a heterotri-meric G protein. Nature (1996) 379(6563):311–319.
  • CLARK GJ, DRUGAN JK, TERRELL RS et al.: Peptides containing a consensus Ras binding sequence from Raf-1 and the GTPase activating protein NF1 inhibit Ras function. Proc. Natl. Acad. Sci. USA (1996) 93(4):1577–1581.
  • HERRMANN C, BLOCK C, GEISEN C et al.: Sulindac sulfide inhibits Ras signaling. Oncogene (1998) 17(101769–1776.
  • VANE JR, BOTTING RM: Mechanism of action of anti-inflammatory drugs. Scand. J. Rheumatol. (Suppl.) (1996) 102:9–21.
  • PIAZZA GA, ALBERTS DS, HIXSON LJ et al: Sulindac sulfone inhibits azoxymethane-induced colon carcinogenesis in rats without reducing prostaglandin levels. Cancer Res. (1997) 57(14)2909–2915.
  • AOKI K, YOSHIDA T, MATSUMOTO N, IDE H, SUGIMURA T, TERADA M: Suppression of Ki-ras p21 levels leading to growth inhibition of pancreatic cancer cell lines with Ki-ras mutation but not those without Ki-ras mutation. Mol. Carcinog. (1997) 20(2)251–258.
  • LIAO Y, TANG ZY, LIU KD, YE SL, HUANG Z: Apoptosis of human BEL-7402 hepatocellular carcinoma cells released by antisense H-ras DNA-in vitro and in vivo studies. (1997) J. Cancer. Res. Clin. Oncol. 123(1):25–33.
  • ALEMANY R, RUAN S, KATAOKA M et al.: Growth inhibi-tory effect of anti-K-ras adenovirus on lung cancer cells. Cancer Gene Ther. (1996) 3(5):296–301.
  • AOKI K, YOSHIDA T, SUGIMURA T, TERADA M: Liposome-mediated in vivo gene transfer of antisense K-ras construct inhibits pancreatic tumor dissemina-tion in the murine peritoneal cavity. Cancer Res. (1995) 55 (17):3810–3816.
  • INDOLFI C, AVVEDIMENTO EV, RAPACCIUOLO A et al: Inhibition of cellular ras prevents smooth muscle cell proliferation after vascular injury in viva Nature Med. (1995) 1(6):541–545.
  • UENO H, YAMAMOTO H, ITO S, LI JJ, TAKESHITA A: Adenovirus-mediated transfer of a dominant-negative H-ras suppresses neointimal formation in balloon-injured arteries in vivo. Arterioscler. Thromb. Vasc. Biol. (1997) 17(5)898–904.
  • FEIG LA: Tools of the trade: use of dominant-inhibitory mutants of Ras-family GTPases. Nature Cell Biology (1999) 1:E25–E27.
  • COFFEY MC, STRONG JE, FORSYTH PA, LEE PW: Reovirus therapy of tumors with activated Ras pathway. Science (1998) 282 (5392) :1332–1334.
  • STRONG JE, COFFEY MC, TANG D, SABININ P, LEE PW: The molecular basis of viral oncolysis: usurpation of the Ras signaling pathway by reovirus. EMBO J. (1998) 17(12)3351–3362.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.