51
Views
52
CrossRef citations to date
0
Altmetric
Review

Protein tyrosine phosphatases: their role in insulin action and potential as drug targets

&
Pages 139-160 | Published online: 23 Feb 2005

Bibliography

  • NEEL BG, TONKS NK: Protein tyrosine phosphatases in transduction. Curr. Opin. Cell Biol. (1997) 9:93–204.
  • BYON JCH, KENNER KA, KUSARI AB et al.: Regulation of growth factor-induced signaling by protein-tyrosine-phosphatases. Proc. Soc. Exp. Biol. Med. (1997) 216:1–20.
  • HUNTER T: The phosphorylation of proteins on tyro-sine: Its role in cell growth and disease. Philos. Trans. R. Soc. Lond. (1998) 353:583–605.
  • BENNETT PH: Primary prevention of NIDDM: A practi-cal reality. Diabet. Metab. Rev. (1997) 13:105–111.
  • DEFRONZO RA: Pathogenesis of Type 2 diabetes: meta-bolic and molecular implications for identifying dia-betes genes. Diabet. Rev. (1997) 5:177–269.
  • ••Authoritative review of Type 2 diabetes.
  • KLEIN R: Hyperglycemia and microvascular and mac-rovascular disease in diabetes. Diabetes Care (1995) 18:258–268.
  • REAVEN GM: Role of insulin resistance in human dis-ease. Diabetes (1988) 37:1595–1607.
  • ••Authoritative review of insulin resistance and Syndrome X.
  • WELLS AM, SUTCLIFFE IC, JOHNSON AB et al.: Abnormal activation of glycogen synthesis in fibroblasts from NIDDM subjects. Evidence for an abnormality specific to glucose metabolism. Diabetes (1993) 42:583–589.
  • SCHALIN-JANTTI C, HARKONEN M, GROOP LC: Impaired activation of glycogen synthase in people at increased risk for developing NIDDM. Diabetes (1992) 41:598–604.
  • GULLI G, FERRANNINI E, STERN M et al.: The metabolic profile of NIDDM is fully established in glucose-tolerant offspring of two Mexican-American NIDDM parents. Diabetes (1992) 41:1575–1586.
  • CARO JF, DOHM LG, PORIES WJ et al.: Cellular altera-tions in liver, skeletal muscle, and adipose tissue re-sponsible for insulin resistance in obesity and Type II diabetes. Diabet. Metab. Rev. (1989) 5:665–689.
  • KRUSZYNSKA YT, OLEFSKY JM: Cellular and molecular mechanisms of non-insulin dependent diabetes melli-tus. J. Invest. Med. (1996) 44:413–428.
  • HENRY RR, ABRAMS L, NIKOULINA S eta].: Insulin action and glucose metabolism in nondiabetic control and NIDDM subjects. Comparison using human skeletal muscle cell cultures. Diabetes (1995) 44:936–946.
  • YOUNGREN JF, GOLDFINE ID: The molecular basis of insulin resistance. Science and Medicine (1997) 4:18–27.
  • ROSSETTI L, FRONTONI S, DIMARCHI R et al: Metabolic effects of IGF-I in diabetic rats. Diabetes (1991) 40:444–448.
  • ROSEN OM: After insulin binds. Science (1988)237:1452–1458.
  • KAHN CR: Insulin action, diabetogenes, and the cause Type II diabetes. Diabetes (1994) 43:1066–1084.
  • ULLRICH A, BELL JR, CHEN EY et al: Human insulin re-ceptor and its relationship to the tyrosine kinase fam-ily of oncogenes. Nature (1985) 313:756–761.
  • YU K-T, CZECH MP: Tyrosine phosphorylation of the insulin receptor 0subunit activates the receptor-associated tyrosine kinase activity. J. Biol. Chem. (1984) 259:5277–5286.
  • HARING HU, KASUGA M, WHITE MF et al.: Phosphoryla-tion and dephosphorylation of the insulin receptor: evidence against an intrinsic phosphatase activity. Biochemistry (1984) 23:3298–3306.
  • KOWALSKI-CHAUVEL A, GAZZANO H, FEHLMANN M etDephosphorylation of the hepatic insulin recep-tor: absence of intrinsic phosphatase activity in puri-fied receptors. Biochem. Biophys. Res. Commun. (1983) 117:885–893.
  • FANTUS IG, AHMAD F, DERAGON G: Vanadate augmentsinsulin-stimulated insulin receptor kinase activity and prolongs insulin action in rat adipocytes. Evidence for transduction of amplitude of signaling into duration of response. Diabetes (1994) 43:375–383.
  • FANTUS IG, DERAGON G, LAI R et al.: Modulation of in-sulin action by vanadate: Evidence of a role for phos-photyrosine phosphatase activity to alter cellular signaling. Mol. Cell Biochem. (1995) 153:103–112.
  • ZHANG ZY: Protein-tyrosine phosphatases: Biological function, structural characteristics, and mechanism of catalysis. Grit. Rev. Biochem. Molec. Biol. (1998) 33:1–52.
  • ••Authoritative and up-to-date review of PTPases.
  • STOKER A, DUTTA P: Protein tyrosine phosphatases and neural development. Bioessays (1998) 20:463–472.
  • FISCHER EH, CHARBONNEAU H, TONKS NK: Protein ty-rosine phosphatases: a diverse family of intracellular and transmembrane enzymes. Science (1991) 253:401–406.
  • POT DA, DIXON JE: A thousand and two protein tyro-sine phosphatases. Biochim. Biophys. Acta (1992) 1136:35–43.
  • ZONDAG GC, MOOLENAAR WH: Receptor protein tyro-sine phosphatases: involvement in cell-cell interac-tion and signaling. Biochimie (1997) 79:477–483.
  • DESAI DM, SAP J, SCHLESSINGER J et al.: Ligand-mediated negative regulation of a chimeric transmem-brane receptor tyrosine phosphatase. Cell (1993) 73:541–554.
  • MAJETI R, BILWES AM, NOEL JP et al.: Dimerization-induced inhibition of receptor protein tyrosine phos-phatase function through an inhibitory wedge. Science (1998) 279:88–91.
  • BILWES AM, DEN HERTOG J, HUNTER T et al.: Structuralbasis for inhibition of receptor protein-tyrosine phosphatase-alpha by dimerization. Nature (1996) 382:555–559.
  • MAURO LJ, DIXON JE: 'Zip codes' direct intracellular protein tyrosine phosphatases to correct cellular 'a-ddress'. Trends Biochem. Sci. (1994) 19:151–155.
  • FENG GS, PAWSON T: Phosphotyrosine phosphatases with SH2 domains: regulators of signal transduction. Trends Genet. (1994) 10:54–58.
  • MYERS MG, MENDEZ R, SHIP et al.: The COOH-terminaltyrosine phosphorylation sites on IRS-1 bind SHP-2 and negatively regulate insulin signaling. J. Biol. Chem. (1998) 273:26908–26914.
  • CARPENTER LR, FARRUGGELLA TJ, SYMES A et al: En-hancing leptin response by preventing 5112-containing phosphatase 2 interaction with Ob recep-tor. Proc. Natl. Acad. Sci. USA (1998) 95:6061–6066.
  • KIM HK, HAWLEY TS, HAWLEY RG et al: Protein tyrosine phosphatase 2 (SHP-2) moderates signaling by gp130 but is not required for the induction of acute-phase plasma protein genes in hepatic cells. Mol Cell Biol (1998) 18:1525–1533.
  • SYMES A, STAHL N, REEVES SA et al.: The protein tyro-sine phosphatase SHP-2 negatively regulates ciliary neurotrophic factor induction of gene expression. Curr. Biol. (1997) 7:697–700.
  • HOF P, PLUSKEY S, DHEPAGANON S et al: Crystal struc-ture of the tyrosine phosphatase SHP-2. Cell (1998) 92:441–450.
  • BARFORD D, NEEL BG: Revealing mechanisms for 5H2 domain mediated regulation of the protein tyrosine phosphatase SHP-2. Structure (1998) 6:249–254.
  • SUGIMOTO S, WANDLESS TJ, SHOELSON SE et al.: Activa-tion of the SH2-containing protein tyrosine phos-phatase, SH-PTP2, by phosphotyrosine-containing peptides derived from insulin receptor substrate-1. J. Biol. Chem. (1994) 269:13614–13622.
  • ZHANG ZY: Structure, mechanism, and specificity of protein-tyrosine phosphatases. In: Current Topics in Cellular Regulation, (Vol. 35) Stadtman ER, Chock PB, (Eds.), Academic Press Inc, San Diego (1997):21–68.
  • FLINT AJ, TIGANIS T, BARFORD D et al.: Development of "substrate-trapping" mutants to identify physiological substrates of protein tyrosine phosphatases. Proc. Natl. Acad. Sci. USA (1997) 94:1680–1685.
  • GARTON AJ, FLINT AJ, TONKS NK: Identification ofp130(cas) as a substrate for the cytosolic protein tyro-sine phosphatase PTP-PEST. Mol. Cell Biol. (1996) 16:6408–6418.
  • AVRUCH J: Insulin signal transduction through protein kinase cascades. Mol. Cell Biochem. (1998) 182 (1-2):31–48.
  • SALTIEL AR: Diverse signaling pathways in the cellular actions of insulin. Amer. J. Physic)]. (1996) 33:E375–E385.
  • HOLMAN GD, KASUGA M: From receptor to trans-porter: insulin signalling to glucose transport. Diabe-tologia (1997) 40:991–1003.
  • WHITE MF: The insulin signalling system and the IRSproteins. Diabetologia (1997) 40:S2–S17.
  • DOWNWARD J: Mechanisms and consequences of acti- of protein kinase B/Akt. Curr. Opin. Cell Biol. (1998) 10:262–267.
  • YAMAUCHI K, MILARSKI KL, SALTIEL AR et al.: Protein-tyrosine-phosphatase SHPTP2 is a required positive ef-fector for insulin downstream signaling. Proc. Natl. Acad. Sci. USA (1995) 92:664–668.
  • MILARSKI KL, SALTIEL AR: Expression of catalytically in-active Syp phosphatase in 3T3 cells blocks stimulation of mitogen-activated protein kinase by insulin. J. Biol. Chem. (1994) 269:21239–21243.
  • LAVAN BE, FANTIN VR, CHANG ET et al.: A novel 160-kDaphosphotyrosine protein in insulin-treated embry-onic kidney cells is a new member of the insulin recep-tor substrate family. J. Biol. Chem. (1 9 9 7) 272:21403–21407.
  • FANTIN VR, SPARLING JD, SLOT JW et al.: Characteriza-tion of insulin receptor substrate 4 in human embry-onic kidney 293 cells. J. Biol. Chem. (19 9 8) 273:10726–10732.
  • HOLGADO-MADRUGA M, EMLET DR, MOSCATELLO DK et al.: A Grb2-associated docking protein in EGF- and insulin-receptor signalling. Nature (1996) 379:560–564.
  • ARAKI E, LIPES MA, PATTI ME et al: Alternative pathway of insulin signalling in mice with targeted disruption of the IRS-1 gene. Nature (1994) 372:186–190.
  • TAMEMOTO H, KADOWAKI T, TOBE K et al.: Insulin re-sistance and growth retardation in mice lacking insu-lin receptor substrate-1. Nature (1994) 372:182–186.
  • WITHERS DJ, GUTIERREZ JS, TOWERY H et al.: Disrup-tion of IRS-2 causes type 2 diabetes in mice. Nature (1998) 391:900–904.
  • LIOTTA AS, KOLE HK, FALES HM et al.: A synthetic tris-sulfotyrosyl dodecapeptide analogue of the insulin re-ceptor 1146-kinase domain inhibits tyrosine dephos-phorylation of the insulin receptor in situ. J. Biol. Chem. (1994) 269:22996–23001.
  • KOLE HK, LIOTTA AS, KOLE S et al.: A synthetic peptide derived from a COOH-terminal domain of the insulin receptor specifically enhances insulin receptor signal-ing. J. Biol. Chem. (1996) 27i:31619–31626.
  • OGIHARA T, SHIN BC, ANAI M et al.: Insulin receptor substrate (IRS)-2 is dephosphorylated more rapidly than IRS-1 via its association with phosphatidylinosi-tol 3-kinase in skeletal muscle cells. J. Biol. Chem. (1997) 272:12868–12873.
  • OMENS DM, MIKKERS HMM, VANDERZON GCM et al:Insulin-induced tyrosine dephosphorylation of paxil-lin and focal adhesion kinase requires active phospho-tyrosine phosphatase 1D. Biochem. J. (19 9 6) 3i8:609–614.
  • TOBE K, SABE H, YAMAMOTO T et al.: Csk enhancesinsulin-stimulated dephosphorylation of focal adhe-sion proteins. Mol. Cell Biol. (1996) 16:4765–4772.
  • ZOPPINI G, GALANTE P, ZARDINI M et al. Insulin in- tyrosine dephosphorylation of a 92 kDa protein suspended monocytes. J. Endocrinol Invest. (1998) 21:93–97.
  • GOLDSTEIN BJ, LI PM, DING WD, AHMAD F, ZHANG WR: of insulin action by protein tyrosine phos-phatases. In: Vitamins and Hormones - Advances in Re-search and Applications, (Vol. 54). Litwack G, (Ed.), Academic Press Inc, San Diego (1998)67–96.
  • ••Comprehensive review of PTPases in insulin action.
  • BYON JCH, KUSARI AB, KUSARI J: Protein-tyrosinephosphatase-1B acts as a negative regulator of insulin signal transduction. Mol. Cell Biochem. (1998) 182:101–108.
  • DRAKE PG, POSNER BI: Insulin receptor-associatedprotein tyrosine phosphatase(s): Role in insulin ac-tion. Mol. Cell Biochem. (1998) 182:79–89.
  • VOGEL W, LAMMERS R, HUANG J et al.: Activation of a phosphotyrosine phosphatase by tyrosine phospho-rylation. Science (1993) 259:1611–1614.
  • GOLDSTEIN BJ: Protein-tyrosine phosphatases and the regulation of insulin action. In: Diabetes Mellitus. LeRoith, Taylor SI, Olefsky J, (Eds.), Lippincott-Raven, Philadel-phia (1996):174–186.
  • DING W, ZHANG W-R, SULLIVAN K et al.: Identification of protein-tyrosine phosphatases prevalent in adipo-cytes by molecular cloning. Biochem. Biophys. Res. Comm. (1994) 202:902–907.
  • GOLDSTEIN BJ, ZHANG WR, HASHIMOTO N et al.: Ap-proaches to the molecular cloning of protein-tyrosine phosphatases in insulin-sensitive tissues. Mol. Cell Bio-chem. (1992) 109:107–113.
  • HASHIMOTO N, FEENER EP, ZHANG W-R et al.: Insulinreceptor protein-tyrosine phosphatases. J. Biol. Chem. (1992) 267:13811–13814.
  • LAMMERS R, BOSSENMAIER B, COOL DE et al: Differen-tial activities of protein tyrosine phosphatases in in-tact cells. J. Biol. Chem. (1993) 268:22456–22462.
  • LAMMERS R, MOLLER NPH, ULLRICH A: The transmem-brane protein tyrosine phosphatase alpha dephos-phorylates the insulin receptor in intact cells. FEBS Lett. (1997) 404:37–40.
  • ZHANG WR, LI PM, OSWALD MA et al.: Modulation of in-sulin signal transduction by eutopic overexpression of the receptor-type protein-tyrosine phosphatase LAR. Mol. Endocrinol. (1996) 10:575–584.
  • KULAS DT, ZHANG W-R, GOLDSTEIN BJ et al.: Insulin re-ceptor signaling is augmented by antisense inhibition of the protein tyrosine phosphatase LAR. J. Biol. Chem. (1995) 270:2435–2438.
  • MOONEY RA, KULAS DT, BLEYLE LA et al: The protein ty-rosine phosphatase LAR has a major impact on insulin receptor dephosphorylation. Biochem. Biophys. Res. Commun. (1997) 235:709–712.
  • KULAS DT, GOLDSTEIN BJ, MOONEY RA: The transmem-brane protein-tyrosine phosphatase LAR modulates signaling by multiple receptor tyrosine kinases. J. Biol. Chem. (1996) 271:748–754.
  • AHMAD F, GOLDSTEIN BJ: Functional association be-tween the insulin receptor and the transmembrane protein-tyrosine phosphatase LAR in intact cells. J. Biol. Chem. (1997) 272:448–457.
  • REN JM, LI PM, ZHANG WR et al: Transgenic mice defi-cient in the LAR protein-tyrosine phosphatase exhibit profound defects in glucose homeostasis. Diabetes (1998) 47:493–497.
  • FERRANNINI E, MARI A: How to measure insulin sensi-tivity. J. Hypertension (1998) 6:895–906.
  • KRUEGER NX, STREULI M, SAITO H: Structural diversity and evolution of human receptor-like protein tyrosine phosphatases. EMBO J (1990) 9:3241–3252.
  • ZHENG XM, WANG Y, PALLEN CJ: Cell transformationand activation of Pp 60 C-STC y • overexpression of a pro- tyrosine phosphatase. Nature (1992) 359:336–339.
  • MOLLER NP, MOLLER KB, LAMMERS R et al.: Selectivedown-regulation of the insulin receptor signal by protein-tyrosine phosphatases alpha and epsilon. J. Biol. Chem. (1995) 270:23126–23131.
  • JACOB KK, SAP J, STANLEY FM: Receptor-like protein-tyrosine phosphatase alpha specifically inhibits insulin-increased prolactin gene expression. J. Biol. Chem. (1998) 273:4800–4809.
  • CHARBONNEAU H, TONKS NK: 1002 Protein phos-phatases? Ann. Rev. Cell Biol. (1992) 8:463–493.
  • CHEN H, WERTHEIMER SJ, LIN CH et al.: Protein-tyrosine phosphatases PTP1B and Syp are modulators of insu-lin- stimulated translocation of GLUT4 in transfected rat adipose cells. J. Biol. Chem. (1997) 272:8026–8031.
  • KENNER KA, ANYANWU E, OLEFSKY JM et al.: Protein-tyrosine phosphatase 1B is a negative regulator of in-sulin- and insulin-like growth factor-I-stimulated sig-naling. J. Biol. Chem. (1996) 271:19810–19816.
  • AHMAD F, LI PM, MEYEROVITCH J etal.: Osmotic loading of neutralizing antibodies demonstrates a role for protein-tyrosine phosphatase 1B in negative regula-tion of the insulin action pathway. J. Biol. Chem. (1995) 270:20503–20508.
  • BANDYOPADHYAY D, KUSARI A, KENNER KA et al.: Protein-tyrosine phosphatase 1B complexes with the insulin receptor in vivo and is tyrosine-phosphorylated in the presence of insulin. J. Biol. Chem. (1997) 272:1639–1645.
  • SEELY BL, STAUBS PA, REICHART DR et al.: Protein tyro-sine phosphatase 1B interacts with the activated insu-lin receptor. Diabetes (1996) 45:1379–1385.
  • LIU F, CHERNOFF J: Protein tyrosine phosphatase 1B in-teracts with and is tyrosine phosphorylated by the epi-dermal growth factor receptor. Biochem. J. (1997) 327:139–145.
  • KENNER KA, HILL DE, OLEFSKY JM et al.: Regulation ofprotein tyrosine phosphatases by insulin and insulin-like growth factor I. J. Biol. Chem. (1993) 268:25455–25462.
  • MAEGAWA H, IDE R, HASEGAWA M et al.: Thiazolidinederivatives ameliorate high glucose-induced insulin resistance via the normalization of protein-tyrosine phosphatase activities. J. Biol. Chem. (1995) 270:7724–7730.
  • KUHNE MR, PAWSON T, LIENHARD GE et al.: The insulinreceptor substrate 1 associates with the 5112-containing phosphotyrosine phosphatase Syp. J. Biol. Chem. (1993) 268:11479–11481.
  • UGI S, MAEGAWA H, KASHIWAGI A et al.: Expression ofdominant negative mutant SHPTP2 attenuates phos-phatidylinositol 3'-kinase activity via modulation of phosphorylation of insulin receptor substrate-1. J. Biol. Chem. (1996) 271:12595–12602.
  • HAUSDORFF SF, BENNETT AM, NEEL BG et al.: Differentsignaling roles of SHPTP2 in insulin-induced GLUT1 expression and GLUT4 translocation. J. Biol. Chem. (1995) 270:12965–12968.
  • ARRANDALE JM, GOREWILLSE A, ROCKS S et al.: Insulinsignaling in mice expressing reduced levels of Syp. Biol. Chem. (1996) 271:21353–21358.
  • THE DIABETES CONTROL AND COMPLICATIONS TRIALRESEARCH GROUP : The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl. J. Med. (1993) 329:977–986.
  • RANDLE PJ, KERBEY AL, ESPINAL J: Mechanisms de-creasing glucose oxidation in diabetes and starvation: role of lipid fuels and hormones. Diabetes Metabol. Rev. (1988) 623:638. JD: Glucose fatty acid interactions in health and disease. Am. J. Clin. Nutr. (1998) 67:S500-S504. GM: Pathophysiology of insulin resistance in human disease. Physiol. Rev. (1995) 75:473-486. JE, ANDERSON RC, BELL PA et al.: Pharmacologi-cal strategies for reduction of lipid availability. Ann. NY Acad. Sci. (1997) 827:231–245.
  • BRESSLER R, JOHNSON DG: Pharmacological regulation of blood glucose levels in non-insulin- dependent dia-betes mellitus. Arch. Intern. Med. (1997) 157:836–848.
  • DAGOGOJACK S, SANTIAGO JV: Pathophysiology of Type 2 diabetes and modes of action of therapeutic in-terventions. Arch. Intern. Med. (1997) 157:1802–1817.
  • EDELMAN SV: Type II diabetes mellitus. Adv. Intern. Med. (1998) 43:449–500.
  • CHEN C: Troglitazone: An antidiabetic agent. Amer. J. Health Syst. Pharm. (1998) 55:905–925.
  • GROOP LC: Drug treatment of non-insulin-dependent diabetes mellitus. In: Textbook of Diabetes. Pickup JC, Wil-liams G, (Eds.), Blackwell, London (1998):38.1-38.18.
  • BAILEY CJ, WILLIAMS G, PICKUP JC: New drugs in the management of diabetes and its complications. In: Textbook of Diabetes. Pickup JC, Williams G, (Eds.), Black-well, London (1997):84.1-84.30.
  • PERRY C, PETRIE JR: Insulin-sensitising agents. Emerg. Drugs (1998) 3:247–260.
  • MACKAY AJ, PETRIE JR: Insulin and lipid metabolism: new developments in drug therapy. Exp. Opin. Invest. Drugs (1997) 6:665–675.
  • FUHLENDORFF J, RORSMAN P, KOFOD H et al.: Stimula-tion of insulin release by repaglinide and glibencla-mide involves both common and distinct processes. Diabetes (1998) 47:345–351.
  • FUJITANI S, OKAZAKI K, YADA T: The ability of a new hypoglycaemic agent, A-4166, compared to sulphony-lureas, to increase cytosolic Ca2+ in pancreatic beta-cells under metabolic inhibition. Br. J. Pharmacol. (1997) 120:1191–1198.
  • IKENOUE T, AKIYOSHI M, FUJITANI S et al.: Hypoglycae-mic and insulinotropic effects of a novel oral antidia-betic agent, (-)-N- (trans-4-isopropylcyclohexane carbonyl)-D-phenylalanine (A-4166). Br. J. Pharmacol. (1997) 120:137–145.
  • IKENOUE T, OKAZAKI K, FUJITANI S et al.: Effect of a new hypoglycemic agent, A-4166 [(-)-N-(trans-4- isopropyl-cyclohexanecarbony1)-D-phenylalanine], on post-prandial blood glucose excursion: comparison with voglibose and glibenclamide. Biol. Pharm. Bull. (1997) 20:354–359.
  • NAUCK MA, HOLST JJ, WILLMS B et al.: Glucagon-like peptide 1 (GLP-1) as a new therapeutic approach for Type 2-diabetes. Exp. Clin. Endocrinol. Diabetes (1997) 105:187–195.
  • DRUCKER DJ: Glucagon-like peptides. Diabetes (1998) 47:159–169.
  • HOLST JJ, DEACON CF: Inhibition of the activity of dipeptidyl peptidase IV as a treatment for Type 2 diabe-tes. Diabetes (1998) 47: 1663-1670.
  • DEACON CF, HUGHES TE, HOLST JJ: Dipeptidyl pepti-dase IV inhibition potentiates the insulinotropic effect of glucagon-like peptide 1 in the anesthetized pig. Dia-betes (1998) 47:764–769.
  • PEDERSON RA, WHITE HA, SCHLENZIG D et al.: Im-proved glucose tolerance in Zucker fatty rats by oral administration of the dipeptidyl peptidase IV inhibitor isoleucine thiazolidide. Diabetes (1998) 47:1253–1258.
  • SPIEGELMAN BM: PPAR-gamma: Adipogenic regulator and thiazolidinedione receptor. Diabetes (1998) 47:507–514.
  • MUKHERJEE R, DAVIES PJA, CROMBIE DL et al.: Sensitiza-tion of diabetic and obese mice to insulin by retinoid X receptor agonists. Nature (1997) 386:407–410.
  • LOWELL BB, FLIER JS: Brown adipose tissue, beta 3-adrenergic receptors, and obesity. Annu. Rev. Med. (1997) 48:307–316.
  • LIU XL, PERUSSE F, BUKOWIECKI LJ: Mechanisms of the antidiabetic effects of the beta(3)-adrenergic agonist CL-316243 in obese Zucker-ZDF rats. Amer. J. Physiol. (1998) 43:R1212–R1219.
  • BIEWENGA G, HAENEN GR, BAST A: The role of lipoic acid in the treatment of diabetic polyneuropathy. Drug Metab. Rev. (1997) 29:1025–1054.
  • JACOB S, STREEPER RS, FOGT DL et al: The antioxidant alpha-lipoic acid enhances insulin-stimulated glucose metabolism in insulin-resistant rat skeletal muscle. Diabetes (1996) 45:1024–1029.
  • ESTRADA DE, EWART HS, TSAKIRIDIS T et al.: Stimula-tion of glucose uptake by the natural coenzyme alpha-lipoic acid/thioctic acid: Participation of elements of the insulin signaling pathway. Diabetes (1996) 45:1798–1804.
  • STREEPER RS, HENRIKSEN EJ, JACOB S et al.: Differential effects of lipoic acid stereoisomers on glucose metabo-lism in insulin-resistant skeletal muscle. Amer. J. Physiol. (1997) 36:E185–E191.
  • TSAKIRIDIS T, EWART HS, RAMLAL T et al.: Alpha-lipoic acid stimulates glucose transport into muscle and adi-pose cells in culture: comparison with actions of insu-lin and dinitrophenol. In: Lipoic add in health and disease. Fuchs J, Packer L, Zimmer G, (Eds.), Dekker, New York (1998):87–98.
  • JACOB S, HENRIKSEN EJ, SCHIEMANN AL et al.: Enhance-ment of glucose disposal in patients with Type 2 diabe-tes by alpha-lipoic acid. Arzneimittel-Forschung (1995) 45:872–874.
  • JACOB S, HENRIKSEN EJ, TRITSCHLER HJ et al.: Improve-ment of insulin-stimulated glucose-disposal in Type 2 diabetes after repeated parenteral administration of thioctic acid. Exp. Clin. Endocrinol Diabetes. (1996) 104:284–288.
  • PELECH S: Organovanadium compounds for treatment of defective insulin signal transduction during diabe-tes. Signal Transduction Therapy. (1997) :1–35.
  • ORTMEYER HK, BODKIN NL, HANSEN BC et al.: In vivo D-chiroinositol activates skeletal muscle glycogen synthase and inactivates glycogen phosphorylase in rhesus monkeys. J. Nutr. Biochem. (1995) 6:499–503.
  • FONTELES MC, HUANG LC, LARNER J: Infusion of pH 2.0 D-chiro-inositol glycan insulin putative mediator nor-malizes plasma glucose in streptozotocin diabetic rats at a dose equivalent to insulin without inducing hypo-glycaemia. Diabetologia (1996) 39:731–734.
  • ORTMEYER HK, LARNER J, HANSEN BC: Effects of D-chiroinositol added to a meal on plasma glucose and insulin in hyperinsulinemic rhesus monkeys. Obes. Res. (1995) 3(4):6055–6085.
  • MULLER G, WIED S, CRECELIUS A et al.: Phosphoinositolglycan-peptides from yeast potently induce metabolic insulin actions in isolated rat adipo-cytes, cardiomyocytes, and diaphragms. Endocrinology (1997) 138:3459–3475.
  • STRALFORS P: Insulin second messengers. Bioessays (1997) 19:327–335.
  • PAK Y, PAULE CR, BAO YD et al. Insulin stimulates the of chiro-inositol-containing phospholip-ids in a rat fibroblast line expressing the human receptor. Proc. Natl. Acad. Sci. USA (1993) 90:7759–7763.
  • ROMERO G, LARNER J: Insulin mediators and the mechanism of insulin action. Adv. Pharmacol. (1993) 24:21–50.
  • STRAWN LM, SHAWVER LK: Tyrosine kinases in disease: overview of kinase inhibitors as therapeutic agents and current drugs in clinical trials. Exp. Opin. Invest. Drugs (1998) 7:553–573.
  • LAWRENCE DS, NIU J: Protein kinase inhibitors: the tyrosine-specific protein kinases. Pharmacol. Ther. (1998) 77:81–114.
  • WIDLANSKI TS, MYERS JK, STEC B et al: The road less travelled: taming phosphatases. Chem. Biol. (1997) 4:489–492.
  • BURKE TR, ZHANG ZY: Protein-tyrosine phosphatases: Structure, mechanism, and inhibitor discovery. Bio-polymers (1998) 47:225–241.
  • PANNIFER AD, FLINT AJ, TONKS NK et al.: Visualization of the cysteinyl-phosphate intermediate of a protein-tyrosine phosphatase by x-ray crystallography. J. Biol. Chem. (1998) 273:10454–10462.
  • UIUS YA, ZHAO Y, SULLIVAN M et al.: Identification of a second aryl phosphate-binding site in protein- tyro-sine phosphatase 1B: A paradigm for inhibitor design. Proc. Natl. Acad. Sci. USA (1997) 94:13420–13425.
  • RICE RL, RUSNAK JM, YOKOKAWA F et al.: A targeted li-brary of small-molecule, tyrosine, and dual-specificity phosphatase inhibitors derived from a rational core design and random side chain variation. Biochemistry (1997) 36:15965–15974.
  • HUYER G, LIU S, KELLY J et al.: Mechanism of inhibition of protein-tyrosine phosphatases by vanadate and pervanadate. J. Biol. Chem. (1997) 272:843–851.
  • TSIANI E, FANTUS IG: Vanadium compounds. Biological actions and potential as pharmacological agents. Trends Endocrinol. Metab. (1997) 8:51–58.
  • SEKAR N, LI JP, SHECHTER Y: Vanadium salts as insulin substitutes: Mechanisms of action, a scientific and therapeutic tool in diabetes mellitus research. Crit. Rev. Biochem. Molec. Biol. (1996) 31:339–359.
  • POSNER BI, FAURE R, BURGESS JAN et al.: Peroxovana-dium compounds. A new class of potent phosphotyro-sine phosphatase inhibitors which are insulin mimetics. J. Biol. Chem. (1994) 269:4596–4604.
  • WIJKANDER J, HOLST LS, RAHN T et al.: Regulation of protein kinase B in rat adipocytes by insulin, vanadate, and peroxovanadate - Membrane translocation in re-sponse to peroxovanadate. J. Biol. Chem. (1997) 272:21520–21526.
  • HEYLIGER CE, TAHILIANI AG, MCNEILL JH: Effect of vanadate on elevated blood glucose and depressed car-diac performance of diabetic rats. Science (1985) 227:1474–1477.
  • YALE JF, LACHANCE D, BEVAN AP et al. Hypoglycemic of peroxovanadium compounds in Sprague- and diabetic BB rats. Diabetes (1995) 44:1274–1279.
  • YAO J, BATTELL ML, MCNEILL JH: Acute and chronic re-sponse to vanadium following two methods of streptozotocin-diabetes induction. Can. J. Physic)]. Phar-macol. (1997) 75:83–90.
  • MEYEROVITCH J, ROTHENBERG P, SHECHTER Y et al.: Vanadate normalizes hyperglycemia in two mouse models of non-insulin-dependent diabetes mellitus. J. Clin. Invest. (1991) 87:1286–1294.
  • GOLDFINE AB, SIMONSON DC, FOLLI F et al.: In vivo and in vitro studies of vanadate in human and rodent dia-betes mellitus. Mol. Cell Biochem. (1995) 153:217–231.
  • HALBERSTAM M, COHEN N, SHLIMOVICH P et al.: Oral va-nadyl sulfate improves insulin sensitivity in NIDDM but not in obese nondiabetic subjects. Diabetes (1996) 45:659–666.
  • COHEN N, HALBERSTAM M, SHLIMOVICH P et al.: Oral va-nadyl sulfate improves hepatic and peripheral insulin sensitivity in patients with non-insulin-dependent dia-betes mellitus. J. Clin. Invest. (1995) 95:2501–2509.
  • BODEN G, CHEN XH, RUIZ J et al.: Effects of vanadyl sul-fate on carbohydrate and lipid metabolism in patients with non-insulin-dependent diabetes mellitus. Metabo-lism (1996) 45:1130–1135.
  • CUSI K, CUKIER S, DEFRONZO RA et al.: Metabolic effects of treatment with vanadyl sulfate in NIDDM. Diabetes (1997) 33:U17.
  • FANTUS IG, TSIANI E: Multifunctional actions of vana-dium compounds on insulin signaling pathways: Evi-dence for preferential enhancement of metabolic versus mitogenic effects. Mol Cell Biochem. (1998) 182:109–119.
  • BAND CJ, POSNER BI, DUMAS V et al.: Early signaling events triggered by peroxovanadium [bpV(phen)] are insulin receptor kinase (IRK)-dependent: Specificity of inhibition of IRK-associated protein tyrosine phos-phatase(s) by bpV(Phen). Mol. Endocrinol. (1997) 11 :1899–1910.
  • SHECHTER Y, LI JP, MEYEROVITCH J et al.: Insulin-like actions of vanadate are mediated in an insulin-receptor-independent manner via nonreceptor pro-tein tyrosine kinases and protein phosphotyrosine phosphatases. Mol. Cell Biochem. (1995) 153:39–47.
  • ELBERG G, HE ZB, LI JP et al.: Vanadate activates mem-branous nonreceptor protein tyrosine kinase in rat adipocytes. Diabetes (1997) 46:1684–1690.
  • SHISHEVA A, SHECHTER Y: Role of cytosolic tyrosine ki-nase in mediating insulin-like actions of vanadate in rat adipocytes. J. Biol. Chem. (1993) 268:6463–6469.
  • FANTUS IG, KADOTA S, DERAGON G eta].: Pervanadate [peroxide(s) of vanadate] mimics insulin action in rat adipocytes via activation of the insulin receptor tyro-sine kinase. Biochemistry (1989) 28:8864–8871.
  • CRANS DC, KERAMIDAS AD, HOOVER-LITTY H et al. Syn-, structure, and biological activity of a new peroxovanadium compound: Bisper-oxovanadium imidazole monoanion. J. Am. Chem. Soc. (1997) 119:5447–5448.
  • DOMINGO JL: Vanadium: A review of the reproductive and developmental toxicity. Reprod. Toxicol. (1996) 10:175–182.
  • YUEN VG, ORVIG C, MCNEILL JH: Effects of bis(malto-lato) oxovanadium(IV) are distinct from food restric-tion in STZ-diabetic rats. Am. J. PhysioL (1997) 35:E30–E35.
  • VERMA S, CAM MC, MCNEILL JH: Nutritional factors that that favorably influence the glucose/insulin system: Vanadium. J. Am. Coll. Nutr. (1998) 17:11–18.
  • WHITE MF, SHOELSON SE, KEUTMANN H et al: A cascade of tyrosine autophosphorylation in the beta-subunit activates the phosphotransferase of the insulin recep-tor. J. Biol. Chem. (1988) 263:2969–2980.
  • SHOELSON SE, WHITE MF, KAHN CR: Nonphosphorylat-able substrate analogs selectively block autophospho-rylation and activation of the insulin receptor, epidermal growth factor receptor, and pp60v-src ki-nases. J. Biol. Chem. (1989) 264:7831–7836.
  • RAMACHANDRAN C, AEBERSOLD R, TONKS NK et al.: Se-quential dephosphoryaltion of a multiply phosphory-lated insulin receptor peptide by protein tyrosine phosphatases. Biochemistry (1992) 31:4232–4238.
  • KOLE HK, GARANT MJ, KOLE S et al.: A peptide-based protein-tyrosine phosphatase inhibitor specifically enhances insulin receptor function in intact cells. J. Biol. Chem. (1996) 271:14302–14307.
  • KOLE HK, SMYTH MS, RUSS PL et al.: Phosphonate in-hibitors of protein-tyrosine and serine/threonine phosphatases. Biochem. J. (1995) 311:1025–1031.
  • BURKE TR,JR., KOLE HK, ROLLER PP: Potent inhibition of insulin receptor dephosphorylation by a hexamer containing the phosphotyrosyl mimetic f(2)Pmp. Biochem. Biophys. Res. Commun. (1994) 204:129–134.
  • CHEN L, WU L, OTAKA A et al.: Why is phosphono-difluoromethyl phenylalanine a more potent inhibi-tory moiety than phosphonomethyl phenylalanine toward protein-tyrosine phosphatases? Biochem. Bio-phys. Res. Commun. (1995) 216:976–984.
  • KOLE HK, AKAMATSU M, YE B et al.: Protein-tyrosine phosphatase inhibition by a peptide containing the phosphotyrosyl mimetic, L-0-malonyltyrosine. Bio-chem. Biophys. Res. Commun. (1995) 209:817–822.
  • BURKE TRJR., YE B, AKAMATSU M et al.: 4'-042-(2-fluoromalonyfil-L-tyrosine: a phosphotyrosyl mimic for the preparation of signal transduction inhibitory peptides. J. Med. Chem. (1996) 39:1021–1027.
  • TAYLOR SD, KOTORIS CC, DINAUT AN et al.: Potent non-peptidyl inhibitors of protein tyrosine phosphatase 1B. Bioorg. Med. Chem. (1998) 6:1457–1468.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.