23
Views
7
CrossRef citations to date
0
Altmetric
Review

Role of oxidatively modified low density lipoproteins and anti-oxidants in atherothrombosis

Pages 527-544 | Published online: 23 Feb 2005

Bibliography

  • GERRITY RG: The role of the monocyte in atherogene-sis. I. Transition of blood-borne monocytes into foam cells in fatty lesions. Am. J. Pathol. (1981) 103:181–190.
  • SCHAFFNER T,TAYLOR K, BARTUCCI EJ et al: Arterial foam cells with distinctive immunomorphologic and histochemical features of macrophages. Am. J. Pathol (1980) 100:57–80.
  • BROWN MS, GOLDSTEIN JL: Lipoprotein metabolism in the macrophage: implications for cholesterol deposi-tion in atherosclerosis. Ann. Rev. Biochem. (1983) 52:223–261.
  • ROSS R: The pathogenesis of atherosclerosis: an up-date. New Engl. J. Med. (1986) 314:488–500.
  • ROSS R: The pathogenesis of atherosclerosis: an up-date: a perspective for the 1990's. Nature (1993) 362:801–809.
  • DAVIES MJ, RICHARDSON PD, WOOLF N, KATZ DR,MANN J: Risk of thrombosis in human atherosclerotic plaques: role of extracellular lipid, macrophage, and smooth muscle cell content. Br. Heart J. (1993) 69:377–381.
  • ESTERBAUER H, JURGENS G, QUEHENBERGER Q, KOL-LER E: Autooxidation of human low density lipopro-tein: loss of polyunsaturated fatty acids and vitamin E and generation of aldehydes. J. Lipid Res. (1987) 28:495–509.
  • STEINBRECHER UP, PARTHASARATHY S, LEAKE DS,WITZTUM JL, STEINBERG D: Modification of low density lipoprotein by endothelial cells involves lipid peroxi-dation and degradation of low density lipoprotein phospholipids. Proc. Natl. Acad. ScL USA (1984) 81:3883–3887.
  • SAVENKOVA ML, MUELLER DM, HEINECKE JW: Tyrosylradical generated by myeloperoxidase is a physiologi-cal catalyst for the initiation of lipid peroxidation in low density lipoprotein. J. Biol. Chem. (1994) 269:20394–20400.
  • LYNCH SM, MORROW JD, ROBERTS LJII, FRET B: Formation of non-cyclooxygenase-derived prostanoids (F2-isoprostanes) in plasma of low density-lipoprotein exposed to oxidative stress in vitro. J. Clin. Invest. (1994) 93:998–1004.
  • •Suggests a relation between oxidative stress in endothelium, prostaglandin synthesis and LDL oxidation.
  • HABERLAND ME, FONG D, CHENG L: Malondialdehyde- altered protein occurs in atheroma of Watanabe heri-table hyperlipidemic rabbits. Science (1988) 241:215–218.
  • YLA-HERTTUALA S, PALINSKI W, ROSENFELD ME et al: Evidence for the presence of oxidatively modified low density lipoprotein in atherosclerotic lesions of rabbit and man. J. Clin. Invest. (1989) 84:1086–1095.
  • HOLVOET P, PEREZ G, ZHAO Z et al.: Malondialdehyde-modified low density lipoproteins in patients with atherosclerotic disease. J. Clin. Invest. (1995) 95:2611–2619.
  • HOFF HF, O'NEIL J: Lesion-derived low density lipopro-tein and oxidized low density lipoprotein share a labil-ity for aggregation, leading to enhanced macrophage degradation. Arterioscler. Thromb. Vasc. Biol. (1991) 11:1209–1222.
  • YLA-HERTTUALA S, PALINSKI W, BUTLER SW et al: Rabbit and human atherosclerotic lesions contain IgG that recognizes epitopes of oxidized LDL. Arterioscler. Thromb. Vasc. Biol. (1994) 14:32–40.
  • PALINSKI W, ORD VA, PLUMP AS et al.: ApoE-deficient mice are a model of lipoprotein oxidation in athero-genesis. Demonstration of oxidation-specific epitopes in lesions and high titers of autoantibodies to malondialdehyde-lysine in serum. Arterioscler. Thromb. Vasc. Biol. (1994) 14:605–616.
  • HOLVOET P, THEILMEIER G, SHIVALKAR B, FLAMENG W,COLLEN D: LDL hypercholesterolemia is associated with accumulation of oxidized LDL, atherosclerotic plaque growth and compensatory vessel enlargment in coronary arteries of miniature pigs. Arterioscler. Thromb. Vasc. Biol. (1998) 18:415–422.
  • •Atherosclerotic lesions that develop in coronary arteries of LDL hypercholesterolaemic pigs are very similar to human atherosclerotic lesions. Both intimal growth andremodelling determine the degree of coronary stenosis and spontaneous plaque ruptures do occur.
  • SHIMANO H, YAMADA N, ISHIBASHI S et al: Oxidation-labile subfraction of human low density lipoprotein isolated by ion-exchange chromatography. J. Lipid Res. (1991) 32:763–773.
  • BERLINER JA, TERRITO MC, SEVANIAN A et al.: Minimallymodified low density lipoprotein stimulates monocyte endothelial interactions. J. Clin. Invest. (1990) 85:1260–1266.
  • LAVY A, BROOK GJ, DANKNER G, BEN-AMOTZ A, AVI-RAM M: Enhanced in vitro oxidation of plasma lipopro-teins derived from hypercholesterolemic patients. Metabolism (1991) 40:794–799.
  • CHAIT A, BRAZG RL, TRIBBLE DL, KRAUSS RM: Suscepti-bility of small, dense, low-density lipoproteins to oxi-dative modification in subjects with the atherogenic lipoprotein phenotype, pattern B. Am. J. Med. (1993) 94:350–356.
  • •Small, dense LDL particles that are more susceptible to oxi-dation in patients at increased risk for atherosclerotic cardio-vascular disease.
  • DEJAGER S, BRUCKERT E, CHAPMAN MJ: Dense low den-sity lipoprotein subspecies with diminished oxidative resistance predominate in combined hyperlipidemia. J. Lipid Res. (1993) 34:295–308.
  • O'KEEFE JH JR, LAVIE CJ JR, MCCALLISTER BD: Insights into the pathogenesis and prevention of coronary ar-tery disease. Mayo Clin. Proc. (1995) 70:69–79.
  • SALONEN JT, YLA-HERTTUALA S, YAMAMOTO R et al.: Autoantibody against oxidized LDL and progression of carotid atherosclerosis. Lancet (1992) 339:883–887.
  • HOLVOET P, DONCK J, LANDELOOS M et al.: Correlationbetween oxidized low density lipoproteins and von Willebrand factor in chronic renal failure. Thromb. Haemost. (1996) 76:663–669.
  • HOLVOET P, STASSEN JM, VAN CLEEMPUT J, COLLEN D,VANHAECKE J: Correlation between oxidized low den-sity lipoproteins and coronary artery disease in heart transplant patients. Arterioscler. Thromb. Vasc. (1998) 18:100–107.
  • HOLVOET P, VANHAECKE J, JANSSENS S, VAN DE WERF F,COLLEN D: Oxidized LDL and malondialdehyde-modified LDL in patients with acute coronary syn-dromes and stable coronary artery disease. Circulation (1998) 98:1487–1494.
  • •Suggests different mechanisms for oxidative modification of LDL in patients with CAD. These mechanisms may be de-pendent on or independent of lipid peroxidation. Protein oxidative modification in the absence of lipid peroxidation may reflect oxidative stress in endothelial cells and/or plate-let activation.
  • HOLVOET P, PEREZ G, ZHAO Z et al.: Malondialdehyde- modified low density lipoproteins in patients with atherosclerotic disease. J. Clin. Invest. (1995) 95:2611–2619 .
  • CARLOS TM, HARLAN JM: Membrane proteins involved in phagocyte adherence to endothelium. Immunol. Rev. (1990) 114:5–28.
  • LEHR HA, BECKER M, MARKLUND SL et al.: Superoxide-dependent stimulation of leukocyte adhesion by oxi-datively modified LDL in vivo. Arterioscler. Thromb. Vasc. Biol. (1992) 12:824–829.
  • YLA-HERTTUALA S, LIPTON BA, ROSENFELD ME etal.: Ex-pression of monocyte chemoattractant protein 1 in macrophage-rich areas of human and rabbit athero-sclerotic lesions. Proc. Natl. Acad. Sci. USA (1991) 88:5252–5256.
  • RAJAVASHISTH TB, ANDALIBI A, TERRITO MC et al.: In-duction of endothelial cell expression of granulocyte and macrophage colony-stimulating factors by modi-fied low-density lipoproteins. Nature (1990) 344:254–257.
  • ISHIBASH S, INABA T, SHIMANO H et al.: Monocyte colony-stimulating factor enhances uptake and degra-dation of acetylated low density lipoproteins and cho-lesterol esterification in human monocyte-derived macrophages. J. Biol. Chem. (1990) 265:14109–14117.
  • STIKO-RAHM A, HULTGARDH-NILSSON A, REGNSTROM J, HAMSTEN A, NILSSON J: Native and oxidized LDL en-hances production of PDGF AA and the surface expres-sion of PDGF receptors in cultured human smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. (1992) 12:1099–1109.
  • LINDNER V, LAPPI DA, BAIRD A, MAJACK RA, REIDY MA: Role of basic fibroblast growth factor in vascular le-sion formation. Circ. Res. (1991) 68:106–113.
  • CHIN JH, AZHAR S, HOFFMAN BB: Inactivation of endo-thelial derived relaxing factor by oxidized lipopro-teins. J. Clin. Invest. (1992) 89:10–18.
  • BOULANGER CM, TANNER FC, BEA ML et al.: Oxidized low density lipoproteins induce mRNA expression and release of endothelin from human and porcine endothelium. Circ. Res. (1992) 70:1191–1197.
  • WEISSER B, LOCHER R, MENGDEN T, VETTER W: Oxida-tion of low density lipoprotein enhances its potential to increase intracellular free calcium concentration in vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. (1992) 12:231–236.
  • LICHTLEN PR, HUGENHOLTZ PG, RAFFLENBEUL W et al: Retardation of angiographic progression of coronary artery disease by nifedipine. Results of International Nifedipine Trial on Antiatherosclerotic Therapy (IN-TACT). Lancet (1990) 335:1109–1113.
  • TSELEPIS AD, DENTAN C, KARABINA SA, CHAPMAN MJ, NINIO E: PAF-degrading acetylhydrolase is preferen-tially associated with dense LDL and VHDL-1 in human plasma. Catalytic characteristics and relation to the monocyte-derived enzyme. Arterioscler. Thromb. Vasc. Biol. (1995) 15:1764–1773.
  • GAWAZ M, NEUMANN FJ, OTT I, SCHIESSLER A, SCHOMIG A: Platelet function in acute myocardial infarction treated with direct angioplasty. Circulation (1996) 93:229–237.
  • DIACOVO TG, PURI KD, WARNOCK RA, SPRINGER TA,VON ANDRIAN UH: Platelet-mediated lymphocyte de-livery to high endothelial venules. Science (1996) 273:252–255.
  • LEHR HA, OLOFSSON AM, CAREW TE eta].: P-selectin me-diates the interaction of circulating leukocytes with platelets and microvascular endothelium in response to oxidized lipoprotein in vivo. Lab. Invest. (1994) 71:380–386.
  • GODYNA S, DIAZ-RICART M, ARGRAVES WS: Fibulin-1 mediates platelet adhesion via a bridge of fibrinogen. Blood (1996) 88:2569–2577.
  • KUIJPER PH, GALLARDO TORRES HI, VAN DER LINDEN JA et al.: Platelet-dependent primary hemostasis pro-motes selectin- and integrin-mediated neutrophil ad-hesion to damaged endothelium under flow conditions. Blood (1996) 87:3271–3281.
  • FARBER HW, BARNETT HF: Differences in prostaglan-din metabolism in cultured aortic and pulmonary arte-rial endothelial cells exposed to acute and chronic hypoxia. Circ. Res. (1991) 68:1446–1457.
  • LYNCH SM, MORROW JD, ROBERTS UN, FREI B: Forma-tion of non-cyclooxygenase-derived prostanoids (F2-isoprostanes) in plasma and low density lipopro-tein exposed to oxidative stress in vitro. J. Clin. Invest. (1994) 93:998–1004.
  • MORROW JD, AWAD JA, BOSS HJ, BLAIR IA, ROBERTS LJ: Non-cyclooxygenase-derived prostanoids (F2-is-oprostanes) are formed in situ on phospholipids. Proc. Natl. Acad. ScL USA (1992) 89:10721–1075.
  • MORROW JD, ROBERTS LJ:. The isoprostanes. Current knowledge and directions for future research. Bio-chem. Pharmacol (1996) 51:1–9.
  • SATO Y, ASADA Y, MARUTSUKA K, HATAKEYAMA K, SU-MIYOSHI A: Tissue factor induces migration of cultured aortic smooth muscle cells. Thromb. HaemosL (1996) 75:389–392.
  • LEWIS JC, BENNETT CAIN AL, DEMARS CS et al.: Proco-agulant activity after exposure of monocyte-derived macrophages to minimally oxidized low density lipo-protein. Co-localization of tissue factor antigen and nascent fibrin fibers at the cell surface. Am. J. Pathol (1995) 147:1029–1040.
  • •Suggests association between oxidative modification of LDL and thrombosis.
  • ABUMIYA T, YAMAGUCHI T, TERASAKI T et al.: De-creased plasma tissue factor pathway inhibitor activity in ischemic stroke patients. Thromb. Haemost. (1995) 74:1050–1054.
  • JANG Y, GUZMAN LA, LINCOFF AM et al.: Influence of blockade at specific levels of the coagulation cascade on restenosis in a rabbit atherosclerotic femoral ar-tery injury model. Circulation (1995) 92:3041–3050.
  • LESNIK P, DENTAN C, VONICA A, MOREAU M, CHAPMAN MJ: Tissue factor pathway inhibitor activity associated with LDL is inactivated by cell- and copper-mediated oxidation. Arterioscler. Thromb. Vasc. Biol. (1995) 15:1121–1130.
  • WETS JR, PITAS RE, WILSON BD, RODGERS GM: Oxidizedlow-density lipoprotein increases cultured human en-dothelial cell tissue factor activity and reduces protein C activation. FASEB J (1991) 5:2459–2465.
  • LOSKUTOFF DJ, VAN AKEN BE, SEIFFERT D: Abnormali-ties in the fibrinolytic system of the vascular wall asso-ciated with atherosclerosis. Ann. New York Acad. Sci. (1995) 748:177–183.
  • ROBBIE LA, BOOTH NA, BROWN AJ, BENNETT B: Inhibi-tors of fibrinolysis are elevated in atherosclerotic plaque. Arterioscler. Thromb. Vasc. Biol. (1996) 16:539–545.
  • PADRO T, EMEIS JJ, STEINS M, SCHMID KW, KIENAST J:Quantification of plasminogen activators and their in-hibitors in the aortic vessel wall in relation to the pres-ence and severity of atherosclerotic disease. Arterioscler. Thromb. Vasc. Biol. (1995) 15:893–902.
  • KUGIYAMA K, SAKAMOTO T, MISUMI I et al.: Transfer-able lipids in oxidized low-density lipoprotein stimu-late plasminogen activator inhibitor-1 and inhibit tissue-type plasminogen activator release from endo-thelial cells. Circ. Res. (1993) 73:335–343.
  • TRIBBLE DL, VAN DEN BERG JJ, MOTCHNIK PA et al.: Oxi-dative susceptibility of low density lipoprotein sub-fractions is related to their ubiquinol-10 and alpha-tocopherol content. Proc. Natl. Acad. Sci. USA (1994) 91:1183–1187.
  • ALLEVA R, TOMASETTI M, BATTINO M et al.: The roles ofcoenzyme Q10 and vitamin E on the peroxidation of human low density lipoprotein subfractions. Proc. Natl. Acad. Sci. USA (1995) 92:9388–9391.
  • REAVEN PD, KHOUW A, BELTZ WF, PARTHASARATHY S,WITZTUM JL: Effect of dietary antioxidant combina-tions in humans. Protection of LDL by vitamin E but not by beta-carotene. Arterioscler. Thromb. Vasc. (1993) 13:590–600.
  • SPARROW CP, DOEBBER TW, OLSZEWSKI J et al: Lowdensity lipoprotein is protected from oxidation and the progression of atherosclerosis is slowed in cholesterol-fed rabbits by the antioxidant N,N'-diphenyl-phenylenediamine. J. Clin. Invest. (1992) 89:1885–1891.
  • SANTANAM N, PARTHASARATHY S: Paradoxical actionsof antioxidants in the oxidation of low density lipo-protein by peroxidases. J. Clin. Invest. (1995) 95:2594–2600.
  • BJORKHEM I, HENRIKSSON-FREYSCHUSS A et al: The an-tioxidant butylated hydroxytoluene protects against atherosclerosis. Arterioscler. Thromb. Vasc. Biol. (1991) 11:15–22.
  • SELLEY ML, CZETI AL, MCGUINESS JA, ARDLIE NG: Dipy-ridamole inhibits the oxidative modification of low density lipoprotein. Atherosclerosis (1994) 111:91–97.
  • KERRY NL, ABBEY M: Red wine and fractionated phe-nolic compounds prepared from red wine inhibit low density lipoprotein oxidation in vitro. Atherosclerosis (1997) 135:93–102.
  • O'BRIEN C, LUO M: The effects of glicazide and other sulfonylureas on low-density lipoprotein oxidation in vitro. Metabolism (1997) 46 (Suppl. 12):22–25.
  • HORAKOVA L, STOLC S: Antioxidant and pharmacody-namic effects of pyridoindole stobadine. Gen. Pharma-col. (1998) 30:627–638.
  • KAPIOTIS S, HERMANN M, HELD I et al.: Genistein, the dietary-derived angiogenesis inhibitor, prevents LDL oxidation and protects endothelial cells from damage by atherogenic LDL. Arterioscler. Thromb. Vasc. Biol. (1997) 17:2868–2974.
  • PARTHASARATHY S, YOUNG SG, WITZTUM JL, PITTMAN RC, STEINBERG D: Probucol inhibits oxidative modifi-cation of low density lipoprotein. J. Clin. Invest. (1986) 77:641–644.
  • NOGUCHI N, OKIMOTO Y, TSUCHIYA J et al.: Inhibition of oxidation of low-density lipoprotein by a novel anti-oxidant, B0-653, prepared by theoretical design. Arch. Biochem. Biophys. (1997) 347:141–147.
  • CYNSHI 0, KAWABE Y, SUZUKI T et al: Antiatherogenic effects of the antioxidant B0-653 in three different ani-mal models. Proc. Natl. Acad. Sci. USA (1998) 95:10123–10128.
  • BEAUGHARD M, CHEVALIER A, DURENG G et al.: In vitrocalcium antagonistic and antioxidant effects of Org 13061 and its enantiomers, new potential antiathero-sclerotic compounds. Fund. Clin. Pharmacol (1997) 11:416–426.
  • YASUHARA M, SAITO K, KUBOTA H, OHMIZU H, SUZUKI T: Inhibitory effect of a new ureidophenol derivative T-2591 on LDL oxidation and ACAT activity. Biol. Pharm. Bull. (1997) 20:1056–1060.
  • RATTAN AK, ARAD Y: Inhibition of LDL oxidation by a new estradiol receptor modulator compound LY-139478, comparative effect with other steroids. Athero-sclerosis (1998) 136:305–314.
  • FRUEBIS J, BIRD DA, PATTISON J, PALINSKI W: Extent of antioxidant protection of plasma LDL is not a predic-tor of the antiatherogenic effect of antioxidants. J. Lipid Res. (1997) 38:2455–2464.
  • •There is no direct relation between the reduction of the in vitro oxidisability of LDL by an anti-oxidant and its anti-atherogenic effect.
  • MATA P, VARELA 0, ALONSO R et al.: Monounsaturated and polyunsaturated n-6 fatty acid-enriched diets modify LDL oxidation and decrease human coronary smooth muscle cell DNA synthesis. Arterioscler. Thromb. Vasc. Biol. (1997) 17:2088–2095.
  • LEE C, BARNETT J, REAVEN PD: Liposomes enriched in oleic acid are less susceptible to oxidation and have less proinflammatory activity when exposed to oxidiz-ing conditions. J. Lipid Res. (1998) 39:1239–1247.
  • REAVEN P, GRASSE B, BARNETT J: Effect of antixodants alone and in combination with monounsaturated fatty acid-enriched diets on lipoprotein oxidation. Arteri-osier. Thromb. Vasc. Biol. (1996) 16:1465–7142.
  • •Consumption of oleate rich diet in combination with anti-oxidant supplementation may result in a more efficient prevention of LDL oxidation than anti-oxidant supplementa-tion alone.
  • SORENSEN NS, MARCKMANN P, HOY CE, VAN DUYVEN-VOORDE W, PRINCEN HM: Effect of fish-oil-enriched margarine on plasma lipids, low-density-lipoprotein particle composition, size, and susceptibility to oxida-tion. Am. J. Gun. Nutr. (1998) 68:235–241.
  • DABBAGH AJ, SHWAERY GT, KEANEY JF JR, FRET B: Effectof iron overload and iron deficiency on atherosclero-sis in the hypercholesterolemic rabbit. Arterioscler. Thromb. Vasc. Biol. (1997) 17:2638–2645.
  • MULLER K, CARPENTER KL, MITCHINSON MJ: Cell-mediated oxidation of LDL: comparison of different cell types of the atherosclerotic lesion. Free Rad. Res. (1998) 29:207–220.
  • AVIRAM M, FUHRMAN B: LDL oxidation by arterial wall macrophages depends on the oxidative status in the lipoprotein and in the cells: role of prooxidants vs. an-tioxidants. Mol. Cell. Biochem. (1998) 188:149–159.
  • ROSENBLAT M, AVIRAM M: Macrophage glutathione content and glutathione peroxidase activity are in-versely related to cell-mediated oxidation of LDL: in vi-tro and in vivo studies. Free Rad. Biol. Med. (1998) 124:305–317.
  • IULIANO L, COLAVITA AR, CAMASTRA C et al: Protectionof low density lipoprotein oxidation at chemical and cellular level by the antioxidant drug dipyridamole. Br. J. Pharmacol (1996) 119:1438–1446.
  • PARTHASARATHY S, FONG LG, QUINN MT, STEINBERG D: Oxidative modification of LDL: comparison be-tween cell-mediated and copper-mediated modifica-tion. Eur. Heart J. (1990) (Suppl. 0:83–87.
  • DIAZ MN, FRET B, VITA JA, KEANEY JF JR: Antioxidantsand atherosclerotic heart disease. New Engl. J. Med. (1997) 337:408–416.
  • CARPENTER KL, VAN DER VEEN C, HIRD R et al: The ca-rotenoids beta-carotene, canthaxanthin and zeaxan-thin inhibit macrophage-mediated LDL oxidation. FEBS Lett. (1997) 401:262–266.
  • AVIRAM M, FUHRMAN B: Polyphenolic flavonoids in-hibit macrophage-mediated oxidation of LDL and at-tenuate atherogenesis. Atherosclerosis (1998) (Suppl.):S45–S50.
  • UIZ DA SILVA E, TSUSHIDA T, TERAO J: Inhibition ofmammalian 15-lipoxygenase-dependent lipid peroxi-dation in low-density lipoprotein by quercetin and quercetin monoglucosides. Arch. Biochem. Biophys. (1998) 349:313–320.
  • HOGG N, STRUCK A, GOSS SP et al.: Inhibition ofmacrophage-dependent low density lipoprotein oxi-dation by nitric-oxide donors. J. Lipid Res. (1995) 36:1756–1762.
  • TANGIRALA RK, CASANADA F, MILLER E et al.: Effect ofthe antioxidant N,N'-diphenyl 1,4,phenylenediamine (DPPD) on atherosclerosis in apoE-deficient mice. Ar-terioscler. Thromb. Vasc. Biol. (1995) 15:1625–1630.
  • NAGANO Y, NAKAMURA T, MATSUZAWA Y et al.: Probu-col and atherosclerosis in the Watanabe heritable hyperlipidemic rabbit: long-term antiatherogenic ef-fect and effects on established plaques. Atherosclerosis (1992) 92:131–140.
  • CHANG MY, SASAHARA M, CHAIT A, RAINES EW, ROSS R: Inhibition of hypercholesterolemia-induced athero-sclerosis in the nonhuman primate by probucol. II. Cellular composition and proliferation. Arterioscler. Thromb. Vasc. Biol. (1995) 15:1631–1640.
  • XIU RJ, FREYSCHUSS A, YING X et al.: The antioxidant butylated hydroxytoluene prevents early cholesterol-induced microcirculatory changes in rabbits. J. Clin. Invest. (1994) 93:2732–2737.
  • HOSHIDA S, YAMASHITA N, IGARASHI J et al: Long-term probucol treatment reserves the severity of myocar-dial injury in watanabe heritable hyperlipidemic rab-bits. Arterioscler. Thromb. Vasc. Biol. (1997) 17:2801–2807.
  • DONETTI E, SOMA MR, BARBERI L et al.: Dual effects ofthe antioxidants agents probucol and carvedilol on proliferative and fatty lesions in hypercholestero-lemic rabbits. Atherosclerosis (1998) 141:45–51.
  • PARKER RA, SABRAH T, CAP M, GILL BT: Relation of vas-cular oxidative stress, alpha-tocopherol, and hyper-cholesterolemia to early atherosclerosis in hamsters. Arterioscler. Thromb. Vasc. Biol. (1995) 15:349–358.
  • KLEINVELD HA, HAK-LEMMERS HL, HECTORS MP et al.: Vitamin E and fatty acid intervention does not attenu-ate the progression of atherosclerosis in Watanabe heritable hyperlipidemic rabbits. Arterioscler. Thromb. Vasc. Biol. (1995) 15:290–297.
  • SUN YP, ZHU BQ, SIEVERS RE et al.: Effects of antioxi-dant vitamins C and E on atherosclerosis in lipid-fed rabbits. Cardiology (1998) 89:189–194.
  • BOCAN TM, MUELLER SB, BROWN EQ et al.: Antiathero-sclerotic effects of antioxidants are lesion-specific when evaluated in hypercholesterolemic New Zealand white rabbits. Exp. Mol. Pathol. (1992) 57:70–83.
  • SCHWENKE DC, BEHR SR: Vitamin E combined with se-lenium inhibits atherosclerosis in hypercholestero-lemic rabbits independently of effects on plasma cholesterol concentrations. Circ. Res. (1998) 83:366–377.
  • HAYEK T, FUHRMAN B, VAYA J et al.: Reduced progres-sion of atherosclerosis in apolipoprotein E-deficient mice following consumption of red wine, or its poly-phenols quercetin or catechin, is associated with re-duced susceptibility of LDL to oxidation and aggregation. Arterioscler. Thromb. Vasc. Biol. (1997) 17:2744–2752.
  • RIMM EB, STAMPFER MJ, ASCHERIO A et al.: Vitamin E consumption and the risk of coronary heart disease in men. New Engl. J. Med. (1993) 328:1450–1456.
  • STAMPFER MJ, HENNEKENS CH, MANSON JE et al.: Vita-min E consumption and the risk of coronary disease in women. New Engl. J. Med. (1993) 328:1444–1449.
  • STEPHENS NG, PARSONS A, SCHOFIELD PM et al. Ran- domised controlled trial of vitamin E in patients with coronary disease: Cambridge Heart Antioxidant Study (CHAOS). Lancet (1996) 347:781–786.
  • MILLER ER 3RD, APPEL LJ, LEVANDER OA, LEVINE DM: The effect of antioxidant vitamin supplementation on traditional cardiovascular risk factors. J. Cardiovasc. Risk (1997) 4:19–24.
  • KUSHI LH, FOLSOM AR, PRINEAS RJ et al.: Dietary anti-oxidant vitamins and death from coronary heart dis-ease in postmenopausal women. New Engl. J. Med. (1996) 334:1156–1162.
  • HODIS HN, MACK WJ, LABREE L et al.: Serial coronary angiographic evidence that antioxidant vitamin intake reduces progression of coronary artery atherosclero-sis. J. Am. Med. Assoc. (1995) 273:1849–1854.
  • RAAL FJ, AREIAS AJ, PILCHER GJ, JOFFE BI, SEFTEL HC: Lack of effect of high dose vitamin E on xanthoma re-gression in homozygous familial hypercholestero-lemia. Atherosclerosis (1994) 107:213–219.
  • AZEN SP, QIAN D, MACK WJ et al.: Effect of supplemen-tary antioxidant vitamin intake on carotid arterial wall intima-media thickness in a controlled clinical trial of cholesterol lowering. Circulation (1996) 94:2369–2372.
  • KEITH M, GERANMAYEGAN A, SOLE MJ et al.: Increased oxidative stress in patients with congestive heart fail-ure. J. Am. Coll. Cardiol. (1998) 31:1352–1356.
  • MOSCA L, RUBENFIRE M, MANDEL C et al.: Antioxidant nutrient supplementation reduces the susceptibility of low density lipoprotein to oxidation in patients with coronary artery disease. J. Am. Coll. Cardiol. (1997) 30:392–339.
  • HALEVY D, THIERY J, NAGEL D et al.: Increased oxida-tion of LDL in patients with coronary artery disease is independent from dietary vitamins E and C. Arterio-scler. Thromb. Vasc. Biol. (1997) 17:1432–1437.
  • WILLIAMS JC, FORSTER LA, TULL SP et al.: Dietary vitamin E supplementation inhibits thrombin-induced platelet aggregation, but not monocyte adhesiveness, in pa-tients with hypercholesterolemia. Int. J. Exp. Pathol. (1997) 78:259–266.
  • RAPOLA JM, VIRTAMO J, RIPATTI S et al.: Randomised trial of alpha-tocopherol and beta-carotene supple-ments on incidence of major coronary events in men with previous myocardial infarction. Lancet (1997) 349:1715–1720.
  • RAPOLA JM, VIRTAMO J, RIPATTI S et al.: Effects of alpha tocopyherol and beta carotene supplements on symp-toms, progression, and prognosis of angina pectoris. Heart (1998) 79:454–458.
  • DAVI G, CIABATTONI G, CONSOLI A etal.: In vivo forma-tion of 8-iso-prostaglandin F2a and platelet activation in diabetes mellitus. Effects of improved metabolic control and vitamin E supplementation. Circulation (1999) 99:224–229.
  • COMINACINI L, GARBIN U, FRATTA PASINI A eta].: Trogli-tazone reduces LDL oxidation and lower plasma E-selectin concentration in NIDDM patients. Diabetes (1998) 47:130–133.
  • WALLDIUS G, ERIKSON U, OLSSON AG et al: The effect of probucol on femoral atherosclerosis: the Probucol Quantitative Regression Swedish Trial (PQRST). Am. J. Cardiol. (1994) 74:875–883.
  • JIALAL I, GRUNDY SM: Preservation of the endogenous antioxidants in low density lipoprotein by ascorbate but not probucol during oxidative modification. J. Clin. Invest. (1991) 87:597–601.
  • JOHANSSON J, OLSSON AG, BERGSTRAND L et al: Lower-ing of HDL2b by probucol partly explains the failure of the drug to affect femoral atherosclerosis in subjects with hypercholesterolemia. A Probucol Quantitative Regression Swedish Trial (PSRST) Report. Arterioscler. Thromb. Vasc. Biol. (1995) 15:1049–1056.
  • TARDIF JC, COTE G, LESPERANCE J et al.: Probucol and multivitamins in the prevention of restenosis after coronary angioplasty. Multivitamins and probucol study group. New Engl. J. Med. (1997) 337:365–372.
  • RODES J, COTE G, LESPERANCE J et al.: Prevention of res-tenosis after angioplasty in small coronary arteries with probucol. Circulation (1998) 97:429–436.
  • SALONEN R, NYSSONEN K, PORKKALA-SARATAHO E, SA-LONEN JT: The Kuopio Atherosclerosis Prevention Study (KAPS): effect of pravastatin treatment on lipids, oxidation resistance of lipoproteins, and atheroscle-rotic progression. Am. J. Cardiol. (1995) 76:34C–39C.
  • CHEN MF, HSU HC, LEE YT: Short-term treatment with low-dose pravastatin attenuates oxidative susceptibil-ity of low-density lipoprotein in hypercholestero-lemic patients. Cardiovasc. Drugs Ther. (1997) 11:787–793.
  • VAZQUEZ M, ZAMBON D, HERNANDEZ Y eta].: Lipopro-tein composition and oxidative modification during therapy with gemfibrozil and lovastatin in patients with combined hyperlipidaemia. Br. J. Clin. Pharmacol (1998) 45:265–269.
  • NEUNTEUFL T, KOSTNER K, KATZENSCHLAGER R et al.: Additional benefit of vitamin E supplementation to simvastatin therapy on vasoreactivity of the brachial artery of hypercholesterolemic men. J. Am. Coll. Car-diol. (1998) 32:711–716.
  • MAGGI E, MARCHESI E, COVINI D et al.: Protective ef-fects of carvedilol, a vasodilating beta-adrenoceptor blocker, against in vivo low density lipoprotein oxida-tion in essential hypertension. J. Cardiovasc. Pharma-col. (1996) 27:532–538.
  • MOSER M, FRISHMAN W: Results of therapy with carve-dilol, a beta-blocker vasodilator with antioxidant properties, in hypertensive patients. Am. J. Hypertens. (1998) 11:15S–22S.
  • MACKNESS MI, ARROL S, ABBOTT C, DURRINGTON PN: Protection of low-density lipoprotein against oxida-tive modification by high-density lipoprotein associ-ated paraoxonase. Atherosclerosis (1993) 104:129–135.
  • •Suggests a plausible mechanism for the inverse relation be-tween HDL and LDL oxidation.
  • MACKNESS MI, ARROL S, DURRINGTON PN: Par-aoxonase prevents accumulation of lipoperoxides in low-density lipoprotein. FEBS Lett. (1991) 286:152–154.
  • MACKNESS MI, DURRINGTON PN: HDL, its enzymes and its potential to influence lipid peroxidation. Atheroscle-rosis (1995) 115:243–253.
  • WATSON AD, NAVAB M, HAMA SY et al: Effect of platelet activating factor-acetylhydrolase on the formation and action of minimally oxidized low density lipopro-tein. J. Clin. Invest. (1995) 95:774–782.
  • AMBROSIO G, ORIENTE A, NAPOLI C et al.: Oxygen radi-cals inhibit human plasma acetylhydrolase, the en-zyme that catabolizes platelet-activating factor. J. Clin. Invest. (1994) 93:2408–2416.
  • SUGATANI J, MIWA M, KOMIYAMA Y, ITO S: High-density lipoprotein inhibits the synthesis of platelet-activating factor in human vascular endothelial cells. J. Lipid Mediat. Cell. Signal (1996) 13:73–88.
  • BOWRY VW, STANLEY KK, STOCKER R: High density lipoprotein is the major carrier of lipid hydroperox-ides in human blood plasma from fasting donors. Proc. Natl. Acad. Sci. USA (1992) 89:10316–10320.
  • MATER JA, BARENGHI L, PAGANI F et al.: The protective role of high-density lipoprotein on oxidized-low-density-lipoprotein-induced U937/endothelial cell in-teractions. Eur. j Biochem. (1994) 221:35–41.
  • COCKERILL GW, RYE KA, GAMBLE JR, VADAS MA, BAR- TER PJ High-density lipoproteins inhibit cytokine-induced expression of endothelial cell adhesion molecules. Arterioscler. Thromb. Vasc. Biol. (1995) 15:1987–1994.
  • MATSUDA Y, HIRATA K, INOUE N et al: High density lipoprotein reverses inhibitory effect of oxidized low density lipoprotein on endothelium-dependent arte-rial relaxation. Circ. Res. (1993) 72:1103–1109.
  • GALLE J, OCHSLEN M, SCHOLLMEYER P, WANNER C: Oxi-dized lipoproteins inhibit endothelium-dependent vasodilation. Effects of pressure and high-density lipo-protein. Hypertension (1994) 23:556–564.
  • RUBBA P, MANCINI M: Lipid-lowering treatment: effects on endothelial dysfunction. Curr. Opin. Lipidol. (1995) 6:348–353.
  • AMELI S, HULTGARDH-NILSSON A, CERCEK B et al.: Re-combinant apolipoprotein A-I Milano reduces intimal thickening after balloon injury in hypercholestero-lemic rabbits. Circulation (1994) 90:1935–1941.
  • DE GEEST B, ZHAO Z, COLLEN D, HOLVOET P: Effects of adenovirus-mediated human apo A-I gene transfer on neointima formation after endothelial denudation in apo E deficient mice. Circulation (1997) 96:4349-4356. Paul Holvoet Center for Molecular and Vascular Biology, University of Leuven, Campus Gasthuisberg, 0.3,LN Herestraat 49, B-3000 Leuven, Belgium Tel.: +32 16 345772; Fax: +32 16 345990; Email: [email protected]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.