40
Views
19
CrossRef citations to date
0
Altmetric
Review

Therapeutic potential of G-protein coupled receptor kinases in the heart

&
Pages 545-554 | Published online: 23 Feb 2005

Bibliography

  • DOHLMAN HG, THORNER J, CARON MG, LEFKOWITZ RJ:Model systems for the study of seven-transmembrane-segment receptors. Ann. Rev. Biochem. (1991) 60:653–688.
  • LEFKOWITZ RJ: G-protein coupled receptors III. New roles for receptor kinases and 6-arrestins in receptor signaling and desensitization. J. Biol. Chem. (1998) 273:18677–18680.
  • INGLESE J, FREEDMAN NJ, KOCH WJ, LEFKOWITZ RJ: Structure and mechanism of the GRKs. J. Biol. Chem. (1993) 268:23735–23738.
  • ••A comprehensive review of the biochemistry of the GRKfamily.
  • UNGERER M, BOHM M, ELCE JS, ERDMANN E, LOHSE MJ: Altered expression of 6-adrenergic receptor kinase and 61-adrenergic receptors in the failing human heart. Circulation (1993) 87:454–463.
  • ••First report of altered 0ARK1 expression in heart disease.
  • UNGERER M, KESSEBOHM K, KRONSBEIN K, LOHSE MJ, RICHARDT G: Activation of 6-adrenergic receptor ki-nase during myocardial ischemia. Circ. Res. (1996) 79:455–460.
  • CHOI DJ, KOCH WJ, HUNTER JJ, ROCKMAN HA: Mecha-nism of 6-adrenergic receptor desensitization in car-diac hypertrophy is increased 6-adrenergic receptor kinase. J. Biol. Chem. (1997) 272:17223–17229.
  • PING P, ANZAI T, GAO M, HAMMOND HK: Adenylyl cy-clase and G-protein coupled receptor kinase expres-sion during development of heart failure. Am. J. Physic)]. (1997) 273:H707–H717.
  • URASAWA K, YOSHIDA I, TAKAGI C et al.: Enhanced ex-pression of 6-adrenergic receptor kinase 1 in the hearts of cardiomyopathic Syrian hamsters, BI053.58. Biochem. Biophys. Res. Commun. (1996) 219:26–30.
  • BRODDE OE: 01 and 02 adrenoceptors in the human heart: properties, function and alterations in chronic heart failure. Pharmacol Rev. (1991) 43:203–242.
  • FREEDMAN NJ, LIGGET SB, DRACHMAN DE, PEI G, CA-RON MG, LEFKOWITZ RJ: Phosphorylation and desensi-tization of the human 61-adrenergic receptor: involvement of GRKs and cAMP-dependent protein ki-nase. J. Biol. Chem. (1995) 270:17953–1796.
  • PITCHER JA, INGLESE J, HIGGINS JB et al.: Role of 07 subunits of G-proteins in targeting the 6-adrenergic re-ceptor kinase to membrane-bound receptors. Science (1992) 257:1264–1267.
  • ••Classical paper describing the Gordependent regulation of0ARK1.
  • TOUHARA K, KOCH WJ, HAWES BE, LEFKOWITZ RJ: Mu- tational analysis of the pleckstrin homology domain of the 6-adrenergic receptor kinase. Differential ef-fects on G07 and phosphatidylinositol 4,5-bisphosphate binding. J. Biol. Chem. (1995) 270:17000–17005.
  • KOCH WJ, INGLESE J, STONE WC, LEFKOWITZ RJ: The binding site for the 137 subunits of heterotrimeric G-proteins on the 6-adrenergic receptor kinase. J. Biol. Chem. (1993) 268:8256–8260.
  • BENOVIC JL, ONORATO JJ, ARRIZA JL et al.: Cloning, ex-pression, and chromosomal localization of 6-adrene-rgic receptor kinase 2. A new member of the receptor kinase family. J. Biol. Chem. (1991) 266:14939–14946.
  • DAAKA Y, PITCHER JA, RICHARDSON M, STOFFEL RH, ROBISHAW JD, LEFKOWITZ RJ: Receptor and GB), isoform-specific interactions with GRKs. Proc. Natl. Acad. ScL USA (1997) 94:2180–2185.
  • •Describes evidence for specific Gorregulation between I3ARK1 and GRK3.
  • ISHII K, CHEN J, ISHII M et al.: Inhibition of thrombin re-ceptor signaling by a G-protein coupled receptor ki-nase. Functional specificity among G-protein coupled receptor kinases. J. Biol. Chem. (1994) 269:1125–1130.
  • PREMONT RT, KOCH WJ, INGLESE J, LEFKOWITZ RJ: Iden-tification, purification, and characterization of GRK5, a member of the family of GRKs. J. Biol. Chem. (1994) 269:68322–68341.
  • KUNAPULI P, ONORATO JJ, HOSEY MM, BENOVIC JL: Ex-pression, purification, and characterization of the GRK5. J. Biol. Chem. (1994) 269:1099–1105.
  • KUNAPULI P, GUREVICH VV, BENOVIC JL: Phospholipid-stimulated autophosphorylation acti-vates the G-protein Coupled Receptor Kinase GRK5. J. Biol. Chem. (1994) 269:10209–10212.
  • PITCHER JA, FREDERICKS ZL, STONE WC et al.: Phospha-tidylinositol 4,5-biphosphate (P1P2)-enhanced GRK (GRK) activity: location, structure, and regulation of the P1P2 binding site distinguishes the GRK subfami-lies. J. Biol. Chem. (1996) 271:24907–24913.
  • PRONIN AN, SATPAEV DK, SLEPAK VZ, BENOVIC JL: Regulation of GRKs by calmodulin and localization of the calmodulin binding domain. J. Biol. Chem. (1997) 272:18273–18280.
  • CHUANG TT, PAOLUCCI L, DEBLASI A: Inhibition of GRKsubtypes by Ca2±/calmodulin. J. Biol. Chem. (1996) 271:28691–28696.
  • CHUANG TT, LEVINE H III, DEBLASI A: Phosphorylationand activation of 0-adrenergic receptor kinase by pro-tein kinase C. J. Biol. Chem. (1995) 270:18660–18665.
  • •First report on the regulation of I3ARK1 by PKC.
  • WINSTEL R, FREUND S, KRASEL C, HOPPE E, LOHSE MJ:Protein kinase crosstalk: membrane targeting of the 0-adrenergic kinase by protein kinase C. Proc. Natl. Acad. ScL USA (1996) 93:2105–2109.
  • PRONIN AN, BENOVIC JL: Regulation of the G-proteincoupled receptor kinase GRK5 by protein kinase C. J. Biol. Chem. (1997) 272:3806–3812.
  • AKHTER SA, MILANO CA, SHOTWELL KF et al: Trans-genic mice with cardiac overexpression of a1B-adrenergic receptors. In vivo al-adrenergic receptor-mediated regulation of 0-adrenergic signaling. J. Biol. Chem. (1997) 272:21253–21259.
  • KOCH WJ, ROCKMAN HA, SAMAMA P et al.: Cardiac func-tion in mice overexpressing the 0-adrenergic receptor kinase or a BARK inhibitor. Science (1995) 268:1350–1353.
  • ••Definitive proof of I3ARK1's action on cardiac OARs in vivoand the finding that OARKct expression improves cardiac function.
  • JABER M, KOCH WJ, ROCKMAN HA et al.: Essential role of I3ARK1 in cardiac development and function. Proc. Natl. Acad. Sci. USA (1996) 93:12974–12979.
  • •Demonstration that 3ARK1 is essential for normal cardiac development.
  • ROCKMAN HA, CHOI DJ, AKHTER SA et al: Control ofmyocardial contractile function by the level of I3ARK1 in gene targeted mice. J. Biol. Chem. (1998) 293:18180–18184.
  • ROCKMAN HA, CHOI DJ, RAHMAN NU, AKHTER SA, LEFKOWITZ RJ, KOCH WJ: Receptor-specific in vivo de-sensitization by the GRK-5 in transgenic mice. Proc. Natl. Acad. ScL USA (1996) 93:9954–9959.
  • OPPERMANN M, FREEDMAN NJ, ALEXANDER RW, LEFKOWITZ RJ: Phosphorylation of the type 1A angio-tensin II receptor by GRKs and protein kinase C. J. Biol. Chem. (1996) 27:13266–13272.
  • IACCARINO G, ROCKMAN HA, SHOTWELL KF, TOMHAVE ED, KOCH WJ: Myocardial overexpression of GRK3 in transgenic mice: evidence for in vivo selectivity of GRKs. Am. J. Physiol. (1998) 275:H1298–H1306.
  • ECKHART AD, DUNCAN SJ, AKHTER SA, KOCH WJ: Spe-cific myocardial interactions in vivo between GRKs and ais-adrenergic receptors. Circulation (1998) 98:329. (Abstract).
  • MILANO CA, DOLBER PC, ROCKMAN HA et al.: Myocar-dial expression of a constitutively active ais-adrene-rgic receptor in transgenic mice induces cardiac hypertrophy. Proc. Natl. Acad. ScL USA (1994) 91:10109–10113.
  • DIVIANI D, LATTION AL, LARBI N et al.: Effect of differentGRKs on phosphorylation and desensitization of the a 0-adrenergic receptor. J. Biol. Chem. (1996) 271:5049–5058.
  • UNGERER M, PARRUTI G, BOHM M et al.: Expression of0-arrestins and 0-adrenergic receptor kinases in the failing human heart. Circ. Res. (1994) 74:206–213.
  • BRISTOW MR, GINSBURG R, MINOBE W et al.: Decreasedcatecholamine sensitivity and 0-adrenergic receptor density in failing human hearts. New Engl. J. Merl. (1982) 307:205–211.
  • •Classical study describing for the first time 0-adrenergic sig-nalling abnormalities of failing human myocardium.
  • AKHTER SA, SKAER CA, KYPSON AP et al.: Restoration of 0-adrenergic signaling in failing cardiac ventricular myocytes via adenoviral-mediated gene transfer. Proc. Natl. Acad. Sci. USA (1997) 94:12100–12105.
  • •Demonstration that inhibition of I3ARK1 can restore dys-functional I3AR signalling to normal in myocytes isolated from failing hearts.
  • MAURICE JP, SHAH A, KYPSON AP et al.: Molecular 0-a-drenergic signaling abnormalities in failing rabbits hearts after infarction. Am. J. Physiol. (1999). In Press.
  • ANDERSON KM, ECKHART AD, WILLETTE RN, KOCH WJ: The myocardial 0-adrenergic system in spontaneously hypertensive heart failure (SHHF) rats. Hypertension (1999) 33:402–407.
  • HASKING GJ, ESLER MD, JENNINGS GJ, BURTON D, JOHNS JA, KORNER PI: Norepinephrine spillover to plasma in patients with congestive heart failure: evi-dence of increased overall and cardiorenal sympa-thetic nervous activity. Circulation (1986) 73:615–621.
  • MEREDITH IT, EISENHOFER G, LAMBERT GW, DEWAR EM, JENNINGS GL, ESLER MD: Cardiac sympathetic ac-tivity in congestive heart failure: evidence for in-creased norepinephrine release and preserved neuronal uptake. Circulation (1993) 88:136–145.
  • RUNDQVIST B, ELAM M, BERGMANN-SVERRISDOTTIR Y, EISENHOFER G, FRIBERG P: Increased cardiac adrener-gic drive precedes generalized sympathetic activation in human heart failure. Circulation (1997) 95:169–175.
  • SIGURDSSON A: Neurohormonal activation in patients with acute myocardial infarction or chronic conges-tive heart failure. With special reference to treatment with angiotensin converting enzyme inhibitors. Blood Press. Suppl. (1995) 1:1–45.
  • IACCARINO G, TOMHAVE ED, LEFKOWITZ RJ, KOCH WJ: Reciprocal regulation of 9ARK1 by the 9-adrenergic re-ceptor functional state in the heart. Circulation (1998) 98: 1783-1789.
  • ••Data presented which provides evidence that a possiblemechanism of the beneficial effects of I3-blockers in CHF is the reduction of myocardial I3ARK1 expression and activity.
  • PING P, GELZER-BELL R, ROTH DA, KIEL D, INSEL PA, HAMMOND HK: Reduced 9-adrenergic receptor activa-tion decreases G-protein expression and 9-adrenergic receptor kinase activity in porcine heart. J. Clin. Invest. (1995) 95:1271–1280.
  • IACCARINO G, DOLBER PC, LEFKOWITZ RJ, KOCH WJ: 9ARK1 levels in catecholamine-induced myocardial hypertrophy: regulation by 13 but not cci adrenergic stimulation. Hypertension (1999) 33:396–401.
  • PACKER M, BRISTOW MR, COHN JN et al.: The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. New Engl. J. Merl. (1996) 334:1349–1355.
  • PENELA P, RUIZ-GOMEZ A, RAMOS-RUIZ R, SARNAGO S,ELORZA A., MAYOR F JR: Mechanism of regulation of the G-protein coupled receptor kinase 2. Naunyn-Schmiedeberg Arch. Pharmacol. (1998) 357:R17. (Abstract).
  • ECKHART AD, ANDERSON KM, GRISWOLD MC, ROCK-MAN HA, KOCH WJ: Adenoviral-mediated gene transfer of a 9-adrenergic receptor kinase inhibitor reverses functional uncoupling in failing cardiomyocytes iso-lated from SHHF rat hearts. Circulation (1998) 98:736. (Abstract).
  • ARBER S, HUNTER JJ, ROSS J JR et al. MLP-deficient mice exhibit a disruption of cardiac cytoarchitectural or-ganization, dilated cardiomyopathy, and heart failure. Cell (1997) 88 393–403
  • ROCKMAN HA, CHIEN K, CHOI DJ et al.: 9-adrenergic re- ceptor kinase 1 inhibitor prevents the development of myocardial failure in gene targeted mice. Proc. NatI Acad. Sci. USA (1998) 95:7000–7005.
  • ••The first in vivo demonstration that cardiac expression of theI3ARKct could attenuate the development of cardiomyopa-thy and heart failure in novel gene targeted mice.
  • AKHTER SA, EKHART AD, ROCKMAN HA, SHOTWELL KF, LEFKOWITZ RJ, KOCH WJ: In vivo inhibition of elevated myocardial 9ARK activity in hybrid transgenic mice restores normal 9-adrenergic signaling and function. Circulation, (1999). In Press.
  • •Study definitively demonstrating that the mechanism of 13ARKct action in the heart is the inhibition of enhanced 13ARK1 activity.
  • DRAZNER MH, KOCH WJ, LEFKOWITZ RJ: Potentiation of9-adrenergic signaling by gene transfer. Proc. Assoc. Am. Physic. (1997) 109:220–227.
  • IACCARINO G, LEFKOWITZ RJ, KOCH WJ: Myocardial G-protein coupled receptor kinases: Implications for heart failure therapy. Proc. Assoc. Am. Physic. (1999). In Press. Walter J Koch t & Guido Iaccarino tAuthor for correspondence Duke University Medical Center, Room 472, MSRS, Research Drive, Durham, NC 27710, USA Tel.: +1 919 684 3007; Fax: +1 919 684 5714; Email: [email protected]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.