229
Views
82
CrossRef citations to date
0
Altmetric
Drug Evaluation

Tirapazamine: a bioreductive anticancer drug that exploits tumour hypoxia

&
Pages 2889-2901 | Published online: 23 Feb 2005

Bibliography

  • KENNEDY AS, RALEIGH JA, PEREZ GM et al: Prolifera-tion and hypoxia in human squamous cell carcinoma of the cervix: first report of combined immunohisto-chemical assays. Int. J Radiat Oncol Biol. Phys. (1997) 37:897–905.
  • MOVSAS B, CHAPMAN JD, HORWITZ EM et al.: Hypoxicregions exist in human prostate carcinoma. Urology (1999) 53:11–18.
  • KNOCK TH, WEITMANN HD, FELDMANN HJ et al.:Intratumoral p02-measurements as predictive assay in the treatment of carcinoma of the uterine cervix. Radiother. Oncol. (1999) 53:99–104.
  • BRIZEL DM, DODGE RK, CLOUGH RW et al.: Oxygena-tion of head and neck cancer: changes during radiotherapy and impact on treatment outcome. Radiother. Oncol. (1999) 53:113–117.
  • HOCKEL M, SCHLENGER K, HOCKEL S et at: Hypoxic cervical cancers with low apoptotic index are highly aggressive. Cancer Res. (1999) 59:4525–4528.
  • HARTMANN A, KUNZ M, KOSTLIN S et al: Hypoxia-induced up-regulation of angiogenin in human malignant melanoma. Cancer Res. (1999) 59:1578–1583.
  • BRIZEL DM, SCULLY SP, HARRELSON JM et at: Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma. Cancer Res. (1996) 56:941–943.
  • BROWN JM, SIIM BG: Hypoxia specific cytotoxins in cancer therapy. Semin. RadiaL Oncol. (1996) 6:22–36.
  • DENNY WA, WILSON WR, HAY MP: Recent develop-ments in the design of bioreductive drugs. Br. J. Cancer (1996) 74 (Suppl. XXVII):32–38.
  • STRATFORD IJ, WORKMAN P: Bioreductive drugs into the next millennium. AntiCancer Drug Des. (1998) 13:519–528.
  • ROCKWELL S, KEYES SR, SARTORELLI AC: Preclinicalstudies of porfiromycin as an adjunct to radiotherapy. RadiaL Res. (1988) 1 1 6:100–113.
  • HAFFTY BG, SON YH, WILSON LD et al: Bioreductive alkylating agent porfiromycin in combination with radiation therapy for the management of squamous cell carcinoma of the head and neck. RadiaL Oncol. Investig. (1997) 5:235–245.
  • SENG F, LEY K: Simple synthesis of 3-amino-1,2,4-benzotriazine 1,4-dioxide. Angew. Chem. Int. Ed. (1972) 11:1009–1010.
  • SUZUKI H, KAWAKAMI T: A convenient synthesis of3-amino-1,2,4-benzotriazine 1,4-dioxide (5R4233) and related compounds via nucleophilic aromatic substi-tution between nitro arenes and guanidine base. Synthesis (1997) 8:855–857.
  • PRIYADARSINI KI, TRACY M, WARDMAN P: The one-electron reduction potential of 3-amino-1,2,4-benzotriazine 1,4-dioxide (tirapazamine) - a hypoxia-selective bioreductive drug. Free Radical Res. (1996) 25:393–399.
  • LADEROUTE K, RAUTH AM: Identification of two majorreduction products of the hypoxic cell toxin 3-amino-1,2,4-benzotriazine-1,4-dioxide. Biochem. Pharmacol (1986) 35:3417–3420.
  • LADEROUTE K, WARDMAN P, RAUTH AM: Molecular mechanisms for the hypoxia-dependent activation of 3-amino-1,2,4-benzotriazine-1,4-dioxide (SR 4233). Biochem. Pharmacol (1988) 37:1487–1495.
  • LLOYD RV, DULING DR, RUMYANTSKEVA GV, MASON RP, BRISDON PK: Microsomal reduction of 3-amino-1,2,4-benzotriazine-1,4-dioxide to a free radical. Mot. Pharmacol (1991) 40:440–445.
  • DANIELS JS, GATES KS, TRONCHE C, GREENBERG MM:Direct evidence for bimodal DNA damage induced by tirapazamine. Chem. Res. Tox. (1998) 11:1254–1257.
  • HWANG JT, GREENBERG MM, FUCHS T, GATES KS: Reaction of the hypoxia-selective antitumor agent tirapazamine with a C1'-radical in single-stranded and double-stranded DNA: The drug and its metabolites can serve as surrogates for molecular oxygen in radical-mediated DNA damage reactions. Biochemistry (1999) 38:14248–14255.
  • DANIELS JS, GATES KS: DNA cleavage by the antitumoragent 3-amino-1,2,4-benzotriazine-1,4-dioxide (SR 4233): evidence for involvement of the hydroxyl radical. J Amer. Chem. Soc. (1996) 1 1 8:3380–3385.
  • JONES GDD, WEINFELD M: Dual action of tirapazaminein the induction of DNA strand breaks. Cancer Res. (1996) 56:1584–1590.
  • •First report that tirapazamine can transfer oxygen to 'fix' the initially-formed DNA radicals, generating DNA breaks under hypoxia.
  • DORIE, M.J., KOVACS, M.S. GABALSKI et al: DNA dam agemeasured by the comet assay in head and neck cancer patients treated with tirapazamine. Neoplasia (1999) 1:461–467.
  • LIN PS, HO KC, YANG SJ: Tirapazamine (SR 4233)interrupts cell cycle progression and induces apoptosis. Cancer Lett. (1996) 105:249–255.
  • GILBERT MS, RUPNOW BA, RAMIREZ, DA et al.:Over-expression of Bc1-2 protects against apoptosis induced by the bioreductive cytotoxic drug 5R4233 (tirapazamine). J. Cell Death Differ. (1996) 3:215–222.
  • ZEMAN EM, BROWN JM, LEMMON MJ et al.: SR-4233: Anew bioreductive agent with high selective toxicity for hypoxic mammalian cells. Int. J. RadiaL Oncol Biol. Phys. (1986) 12:1239–1242.
  • •First report of the hypoxia-selective cytotoxicity of tirapazamine.
  • KOCH CJ: Unusual oxygen concentration dependence of toxicity of SR-4233, a hypoxic cell toxin. Cancer Res. (1993) 53:3992–3997.
  • •First report of the unique oxygen-dependence of the cytotoxicity of tirapazamine compared with other bioreductives.
  • LARTIGAU E, GUICHARD M: Does tirapazamine (SR-4233) have any cytotoxic or sensitizing effect on three human tumour cell lines at clinically relevant partial oxygen pressure? Int. j RadiaL Biol. (1995) 67:211–216.
  • WOUTERS BG, BROWN MJ: Cells at intermediate oxygen levels can be more important than the 'hypoxic fraction' in determining tumor response to fraction-ated radiotherapy. RadiaL Res. (1997) 147:541–550.
  • MARSHALL RS, RAUTH AM: Modification of the cytotoxic activity of mitomycin C by oxygen and ascorbic acid in Chinese hamster ovary cells and a repair-deficient mutant. Cancer Res. (1986) 46:2709–2713.
  • MARSHALL RS, RAUTH AM: Oxygen and exposure kinetics as factors influencing the cytotoxicity of porfiromycin, a mitomycin C analogue, in Chinese hamster ovary cells. Cancer Res. (1988) 48:5655–5659.
  • SIIM BG, ATWELL GJ, WILSON WR: Oxygen dependence of the cytotoxicity and metabolic activation of 4-alkylamino-5-nitroquinoline bioreductive drugs. Br. J. Cancer (1994) 70:596–603.
  • WILSON WR, MOSELEN JW, CLIFFE S et al: Exploiting tumor hypoxia through bioreductive release of diffusible cytotoxins: the cobalt(III)-nitrogen mustard complex SN24771. Int. J. Radial Oncol Biol. Phys. (1994) 29:323–327.
  • PETERS KB, TUNG JJ, BROWN JM: Tirapazamine: ahypoxia activated small cellisomerase II inhibitor. Proc. Amer. Assoc. Cancer Res. (2000) 41:284. Abstract 1807.
  • PATTERSON AV, SAUNDERS MP, CHINJE EC, PATTERSON LH, STRATFORD IJ: Enzymology of tirapazamine metabolism: a review. Anticancer Drug Design (1998) 13:541–573.
  • ••An excellent review of the enzymology of tirapazaminereduction.
  • WALTON MI, WORKMAN P: Enzymology of the reductive bioactivation of SR 4233. A novel benzotri-azine di-N-oxide hypoxic cell cytotoxin. Biochem. Pharmacol (1990) 39:1735–1742.
  • PATTERSON AV, ROBERTSON N, HOULBROOK S et al: The role of DT-diaphorase in determining the sensitivity of human tumor cells to tirapazamine (SR 4233). Int. J. Radial Oncol. Biol. Phys. (1994) 29:369–372.
  • RILEY RJ, WORKMAN P: Enzymology of the reduction of the potent benzotriazine-di-N-oxide hypoxic cell cytotoxin SR 4233 (WIN 59075) by NAD(P)H:(quinone acceptor) oxidoreductase (EC 1.6.99.2) purified from Walker 256 rat tumor cells. Biochem. Pharmacol (1992) 43:167–174.
  • KHAN S, O'BRIEN PJ: Molecular mechanisms oftirapazamine (SR 4233, Win 59075)-induced hepatocyte toxicity under low oxygen concentrations. Br. J. Cancer (1995) 71(4):780–785.
  • GARNER AP, PAINE MJ, RODRIGUEZ-CRESPO I et al:Nitric oxide synthases catalyze the activation of redox cycling and bioreductive anticancer agents. Cancer Res. (1999) 59:1929–1934.
  • WALTON MI, WOLF CR, WORKMAN P: The role of cytochrome P450 and cytochrome P450 reductase in the reductive bioactivation of the novel benzotriazine di-N-oxide hypoxic cytotoxin 3-amino-1,2,4-benzotriazine-1,4-dioxide (SR 4233, WIN 59075) by mouse liver. Biochem. Pharmacol (1992) 44:251–259.
  • PATTERSON AV, BARHAM HM, CHINJE EC, ADAMS GE, HARRIS AL, STRATFORD IJ: Importance of P450 reductase activity in determining sensitivity of breast tumour cells to the bioreductive drug, tirapazamine (SR 4233). Br. J. Cancer (1995) 72:1144–1150.
  • CHINJE EC, PATTERSON AV, SAUNDERS MP, LOCKYER SD, HARRIS AL, STRATFORD IJ: Does reductive metabo-lism predict response to tirapazamine (SR 4233) in human non-small cell lung cancer cell lines? Br. J. Cancer (1999) 81:1127–1133.
  • PATTERSON AV, SAUNDERS MP, CHINJE EC, TALBOT DC,HARRIS AL, STRATFORD IJ: Overexpression of human NADPH-cytochrome c (P450) reductase confers enhanced sensitivity to both tirapazamine (SR 4233) and RSU 1069. Br. J. Cancer (1997) 76:1338–1347.
  • SAUNDERS MP, PATTERSON AV, CHINJE EC, HARRIS AL,STRATFORD IJ: NADPH: cytochrome c (P450) reductase activates tirapazamine (5R4233) to restore hypoxic and oxic cytotoxicity in an aerobic resistant derivative of the A549 lung cancer cell line. Br. J. Cancer (2000) 82:651–656.
  • BROWN JM: 5R4233 (Tirapazamine): anew anticancer drug exploiting hypoxia in solid tumours. Br. J. Cancer (1993) 67:1163–1170.
  • •The hypothesis that the preponderance of double-strand DNA breaks seen is due to high local radical concentrations generated by nuclear-associated reductases.
  • BROWN JM: The hypoxic cell: A target for selective cancer therapy. Eighteenth Bruce F. Cain Memorial Award lecture. Cancer Res. (1999) 59:5863–5870.
  • EVANS JW, YUDOH K, DELAHOUSSAYE YM, BROWN JM:Tirapazamine is metabolized to its DNA-damaging radical by intranuclear enzymes. Cancer Res. (1998) 58:2098–2101.
  • DELAHOUSSAYE YM, EVANS JW, BROWN JM: Formationof the tirapazamine toxic free radical intermediate occurs through the nuclear matrix. Proc. AACR (2000) 41:479.
  • MCLAUGHLIN KJ, FAIBUSHEVICH AA, LUNTE CE: Microdialysis sampling with on-line microbore HPLC for the determination of tirapazamine and its reduced metabolites in rats. Analyst (1999) 125:105–110.
  • LIANG XZ, PALSMEIER RK, LUNTE CE: Dual-electrodeamperometric detection for the determination of SR4233 and its metabolites with microbore liquid chromatography. J. Pharm. Biomed. Anal. (1995) 14:113–119.
  • ROBIN H, SENAN S, WORKMAN P, GRAHAM MA: Development and validation of a sensitive solid-phase-extraction and high-performance liquid chromatography assay for the bioreductive agent tirapazamine and its major metabolites in mouse and human plasma for pharmacokinetically guided dose escalation. Cancer Chemother. Pharmacol. (1995) 36:266–270.
  • WALTON MI, WORKMAN P: Pharmacokinetics and bioreductive metabolism of the novel benzotriazine di-N-oxide hypoxic cell cytotoxin tirapazamine (WIN 59075; SR 4233; NSC 130181) in mice. J Pharm. Exp. Ther. (1993) 265:938–947.
  • GRAHAM MA, SENAN S, ROBIN H et al.: Pharmacoki-netics of the hypoxic cell cytotoxic agent tirapazamine and its major bioreductive metabolites in mice and humans - retrospective analysis of a pharmacokineti-cally guided dose-escalation strategy in a Phase I trial. Cancer Chemother. Pharmacol. (1997) 40:1–10.
  • PALSMEIER RK, LUNTE CE: Microdialysis sampling intumor and muscle: study of the disposition of 3-amino-1,2,4-benzotriazine-1,4-di-N-oxide (SR 4233). Life Sci. (1994) 55:815–825.
  • LEE AE, WILSON WR: Hypoxia-dependent retinaltoxicity of bioreductive anticancer prodrugs in mice. Toxicol. Appl. Pharmacol. (2000) 163:50–59.
  • •Observation that different bioreductive drugs show quite different levels of retinal toxicity, with that caused by tirapazamine being relatively low.
  • DURAND RE, OLIVE PL: Evaluation of bioreductivedrugs in multicell spheroids. Int. J. RadiaL Oncol. Phys. (1992) 22:689–692.
  • HICKS KO, FLEMING Y, SIIM BG, KOCH CJ, WILSON WR:Extravascular diffusion of tirapazamine - effect of metabolic consumption assessed using the multicel-lular layer model. Int. J RadiaL Oncol. Biol. Phys. (1998) 42:641–649.
  • KYLE AH, MINCHINTON Al: Measurement of deliveryand metabolism of tirapazamine to tumour tissue using the multilayered cell culture model. Cancer Chemother. Pharmacol. (1998) 43:213–220.
  • ZEMAN EM, HIRST VK, LEMMON MJ et al.: Enhancementof radiation-induced tumor cell killing by the hypoxic cell toxin SR 4233. Radiother. Oncol. (1988) 12:209-218. First demonstration of the enhancement of radiation-induced cell killing by tirapazamine.
  • BROWN JM, LEMMON MJ: Potentiation by the hypoxiccytotoxin 5R4233 of cell killing produced by fraction-ated irradiation of mouse tumors. Cancer Res. (1990) 50:7745–7749.
  • BROWN JM, LEMMON MJ: Tumor hypoxia can be exploited to preferentially sensitize tumors to fractionated irradiation. Int. J. RadiaL Oncol. Biol. Phys. (1991) 20:457–461.
  • BROWN JM, KOONG A: Therapeutic advantage of hypoxic cells in tumors: A theoretical study. J Nati Cancer Inst. (1991) 83:178–185.
  • DORIE MJ, MENKE D, BROWN JM: Comparison of theenhancement of tumor responses to fractionated irradiation by 5R4233 (tirapazamine) and by nicotina-mide with carbogen. Int. J. RadiaL Oncol. Biol. Phys. (1994) 28:145–150.
  • SHIBATA T, SHIBAMOTO Y, SASAI K. et al.: Comparisonof in vivo efficacy of hypoxic cytotoxin tirapazamine and hypoxic cell radiosensitizer KU-2285 in combina-tion with single and fractionated irradiation. Jap. Cancer Res. (1996) 87:98–104.
  • EL-SAID A, MENKE D, DORIE MJ, BROWN JM: Comparison of the effectiveness of tirapazamine and carbogen with nicotinamide in enhancing the response of a human tumor xenograft to fractionated irradiation. RadiaL Oncol. Inv. (1999) 7:163–169.
  • CARDINALE RM, DILLEHAY LE, WILLIAMS JA, TABASSI K,BREM H, LEE DJ: Effect of interstitial and/or systemic delivery of tirapazamine on the radiosensitivity of human glioblastoma multiforme in nude mice. RadiaL Oncol. Inv. (1998) 6:63–70.
  • YUAN X, TABASSI K, WILLIAMS JA: Implantablepolymers for tirapazamine treatments of experi-mental in tr acr an ial malignant glio m a. RadiaL Oncol. Inv. (1999) 7:218–230.
  • YAPP DTT, LLOYD DK, ZHU JL, LEHNERT S: Radiosensiti-zation of a mouse tumor model by sustained intra-tumoral release of etanidazole and tirapazamine using a biodegradable polymer implant device. Radiother. Oncol. (1999) 53:77–84.
  • DORIE MJ, BROWN JM: Tumor-specific, schedule-dependent interaction between tirapazamine (SR 4233) and cisplatin. Cancer Res. (1993) 53:4633–4636.
  • •First demonstration of the enhancement of cisplatin toxicity by tirapazamine.
  • KOVACS MS, HOCKING DJ, EVANS JW, SLIM BG, WOUTERS BG, BROWN JM: Cisplatin anti-tumour potentiation by tirapazamine results from a hypoxia-dependent cellular sensitization to cisplatin. Br. J Cancer (1999) 80:1245–1251.
  • SIEMANN DW, HINCHMAN CA: Potentiation of cisplatinactivity by the bioreductive agent tirapazamine. Radiother. Oncol. (1998) 47:215–220.
  • WOUTERS BG, WANG LH, BROWN JM: Tirapazamine: Anew drug producing tumor specific enhancement of platinum-based chemotherapy in non-small cell lung cancer. Ann. Oncol. (1999) 10 (Suppl. 5):29–33.
  • LANGMUIR VK, ROOKER JA, OSEN M, MENDONCA HL, LADEROUTE KR: Synergistic interaction between tirapazamine and cyclophosphamide in human breast cancer xenografts. Cancer Res. (1994) 54:2845–2847.
  • SIEMANN DW: The in situ tumour response to combinations of cyclophosphamide and tirapazamine. Br. J Cancer (1996) (Suppl. 27):65–69.
  • FRIERY OP, GALLAGHER R, MURRAY MM et al.: Enhance-ment of the anti-tumour effect of cyclophosphamide by the bioreductive drugs AQ4N and tirapazamine. Br. J. Cancer (2000) 82:1469–1473.
  • HOLDEN SA, TEICHER BA: Combinations of TNP-470 orSR-4233 with antitumor alkylating agents in EMT-6 spheroids and monolayers. Int. J. Oncol. (1995) 7:777–781.
  • LARTIGAU E, GUICHARD M: The effect of tirapazamine(SR-4233) alone or combined with chemotherapeutic agents on xenografted human tumours. Br. J Cancer (1996) 73:1480–1485.
  • DORIE MJ, BROWN JM: Modification of the antitumoractivity of chemotherapeutic drugs by the hypoxic cyto toxic agent tirapazamine. Cancer Chemother. Pharmacol (1997) 39:361–366.
  • WEITMAN S, MANGOLD G, MARTY J et al: Evidence ofenhanced in vivo activity using tirapazamine with paclitax el and paraplatin regimens against the MV-522 human lung cancer xenograft. Cancer Chemother. Pharmacol (1999) 43:402–408.
  • BREMNER JC, BRADLEY JK, ADAMS GE, NAYLOR MA, SANSOM JM, STRATFORD IJ: Comparing the anti-tumor effect of several bioreductive drugs when used in combination with photodynamic therapy (PDT). Int. J. Rad. Oncol Biol Phys. (1994) 29:329–332.
  • BREMNER JC, STRATFORD IJ, BOWLER J, ADAMS GE: Bioreductive drugs and the selective induction of tumour hypoxia. Br. J. Cancer (1990) 61:717–721.
  • SUN J-R, BROWN JM: Enhancement of the antitumoreffect of flavone acetic acid by the bioreductive cytotoxic drug SR 4233 in a murine carcinoma. Cancer Res. (1989) 49:5664–5670.
  • EDWARDS HS, BREMNER JCM, STRATFORD IJ: Inductionof hypoxia in the KHT sarcoma by tumour necrosis factor and flavone acetic acid. Int. J RadiaL Biol. (1991) 59:419–432.
  • CHAPLIN DJ, PETTIT GR, PARKINS CS, HILL SA: Antivas-cular approaches to solid tumour therapy: evaluation of tubulin binding agents. Br. J. Cancer (1996) 74 (Suppl. 27):86–88.
  • CLIFFE S, TAYLOR ML, RUTLAND M et al: Combining bioreductive drugs (SR 4233 or SN 23862) with the vaso active agents flavone acetic acid or 5,6-dimethylxanthenone acetic acid. Int. J. RadiaL Oncol. Biol. Phys. (1994) 29:373–377.
  • LASH CJ, LI AE, RUTLAND M, BAGULEY BC, ZWI LJ, WILSON WR: Enhancement of the anti-tumour effects of the antivascular agent 5,6-dimethylxanthenone-4-acetic acid (DMXAA) by combination with 5-hydroxytryptamine and bioreductive drugs. Br. J. Cancer (1998) 78:439–445.
  • SIIM BG, LAUX WT, RUTLAND MD et al.: Scintigraphic imaging of the hypoxia marker 99mTechnetium-labeled 2,2'-(1,4-diaminobutane)bis(2-methy1-3-butanone) dioxime (99mTc-labeled HL-91; Prognox): non-invasive detection of tumor response to the anti-vascular agent 5,6-dimethylxanthenone-4-acetic acid. Cancer Res. (2000). In Press.
  • JAMESON MB, THOMPSON PI, BAGULEY BC et al: Phase Ipharmacokinetic and pharmacodynamic study of 5, 6-dimethylxanthenone-4-acetic acid (DMXAA), a novel antivascular agent. Proc. Au CR (2000) 41 :Abstract 705.
  • SENAN S, RAMPLING R, GRAHAM MA et al.: Phase landpharmacokinetic study of tirapazamine (SR-4233) administered every three weeks. Clin. Cancer Res. (1997) 3:31–38.
  • DOHERTY N, HANCOCK SL, KAYE S et al.: Musclecramping in Phase I clinical trials of tirapazamine (SR 4233) with and without radiation. Int. J RadiaL Oncol Biol. Phys. (1994) 29:379–382.
  • SHULMAN LN, BUSWELL L, RIESE N et al: Phase I trial ofthe hypoxic cell cytotoxin tirapazamine with concur-rent radiation therapy in the treatment of refractory solid tumors. Int. J. RadiaL Oncol Biol. Phys. (1999) 44:349–353.
  • LEE DJ, TROTTI A, SPENCER S et al.: Concurrenttirapazamine and radiotherapy for advanced head and neck carcinomas -a Phase II study. Int. J. Radial Oncol Biol. Phys. (1998) 42:811–815.
  • DEL ROWE J, SCOTT C, WERNER-WASIK M et al.: Single-arm, open-label Phase II study of intravenously administered tirapazamine and radiation therapy for glioblastoma multiforme. J. Clin. Oncol. (2000) 18:1254–1259.
  • BROWN JM, WANG L-H: Tirapazamine: laboratory datarelevant to clinical activity. AntiCancer Drug Des. (1998) 13:529–539.
  • AGHAJANIAN C, BROWN C, O'FLAHERTY C eta].: Phase Istudy of tirapazamine and cisplatin in patients with recurrent cervical cancer. Gynecol. Oncol. (1997) 67:127–130.
  • JOHNSON CA, KILPATRICK D, VONROEMELING R et al:Phase I trial of tirapazamine in combination with cisplatin in a single dose every 3 weeks in patients with solid tumors. J Clin. Oncol (1997) 15:773–780.
  • BEDIKIAN AY, LEGHA SS, ETON 0 et al.: Phase II trial oftirapazamine combined with cisplatin in chemotherapy of advanced malignant melanoma. Ann. Oncol (1997) 8:363–367.
  • BEDIKIAN AY, LEGHA SS, ETON 0 et al.:Phase II trial ofescalated dose of tirapazamine combined with cisplatin in advanced malignant melanoma. Anticancer Drugs (1999) 10:735–739.
  • MILLER VA, NG KK, GRANT SC et al.: Phase II study of the combination of the novel bioreductive agent, tirapazamine, with cisplatin in patients with advanced non-small cell lung cancer. Ann. Oncol. (1997) 8:1269–1271.
  • TREAT J, JOHNSON E, LANGER C et al: Tirapazamine with cisplatin in patients with advanced non-small cell lung cancer - a Phase II study. J. Clin. Oncol (1998) 16:3524–3527.
  • GATZEMEIER U, RODRIGUEZ G, TREAT J et al.: Tirapazamine-cisplatin - the synergy. Br. J. Cancer (1998) 77 (Suppl. 4):15–17.
  • VON PAWEL J, VON ROEMELING R, GATZEMEIER U et al.: Tirapazamine plus cisplatin versus cisplatin in advanced non-small cell lung cancer: A report of the international CATAPULT I study group. J. Clin. Oncol (2000) 18:1351–1359.
  • ••Detailed review of clinical data, concluding thattirapazamine significantly enhances the activity of cisplatin in non-small cell lung cancer.
  • RISCHIN D, HICKS R, PETERS L et al: PET evaluation of hypoxia and response in locally advanced head and neck cancer treated on a Phase I trial of radiotherapy, tirapazamine and cisplatin (10th NCI-EORTC Symposium). Ann. Oncol. (1998) 9 (Suppl. 2):126.
  • PETERS LJ, RISCHIN D, HICKS RJ et al.: Extraordinary tumor control in Phase I trial of concurrent tirapazamine cisplatin and radiotherapy for far advanced head and neck cancer. Int. J. Radial-. Oncol. Biol. Phys. (1999) 45:148–149.
  • KIM C, PINTO HA, TATE D et al.: Tirapazamine, cisplatin and fluorouracil as induction chemotherapy and simultaneous chemoradiotherapy for organ preserva-tion in advanced head and neck cancer. Proc. ASCO (1998) 17:395a.
  • SIIM BG, MENKE DR, DORIE MJ et al: Tirapazamine-induced cytotoxicity and DNA damage in transplanted tumors: relationship to tumor hypoxia. Cancer Res. (1997) 57:2922–2928.
  • LE CHEVALIER T, GATINEAU M, DANIEL C et al: Phase II study of the combination of vinorelbine, cisplatin and tirapazamine in advanced non-small cell lung cancer (NSCLC). Proc. ASCO (1999):1894a.
  • NG K, TREAT J, O'DWYER P et al: A Phase I trial of the addition of paclitaxel to tirapazamine (TPZ) and cisplatin in patients with advanced non-small cell lung cancer (NSCLC). Proc. ASCO (1998) 17:496a.
  • AQUINO VM, WEITMAN SD, WINICK NJ, BLANEY SM, BERNSTEIN ML: Phase I study of tirapazamine and cyclophosphamide in children with refractory solid tumours. Proc. ASCO (2000):787a.
  • PAZDUR R, DIAZ-CANTON E, REDDY S et al: Phase I study of intravenously administered tirapazamine (WIN 59075) plus cyclophosphamide (9th NCI-EORTC Symposium). Ann. Oncol (1996) 7 (Suppl. 1):98.
  • PRAGER TC, KELLAWAY J, ZOU YL, URSO RG, MCINTYRE S, BEDIKIAN AY: Evaluation of ocular safety - tirapazamine plus cisplatin in patients with metastatic melanomas. Anticancer Drugs (1998) 9:515–524.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.