115
Views
34
CrossRef citations to date
0
Altmetric
Review

Antifungal peptides: potential candidates for the treatment of fungal infections

Pages 273-299 | Published online: 24 Feb 2005

Bibliography

  • GEORGOPAPADAKOU N, WALSH T: Antifungal agents: chemotherapeutic targets and immunologic strate-gies. Antimicrob. Agents Chemother. (1996) 40:279–291.
  • SHAT Y: Molecular recognition between membrane-spanning polypeptides. TIBS (1995) 20:460–464.
  • ••Excellent review on the interaction of peptides withmembranes.
  • HUGOSSON M, ANDREU D, BOMAN HG, GLASER E:Antibacterial peptides and mitochondrial presequences affect mitochondrial coupling, respira-tion and protein import. Eur. J. Biochem. (1994) 223:1027–1033.
  • HELMERHORST EJ, BREEUWER P, VAN'T HOF W: Thecellular target of histatin 5 on Candida albicans is the energized mitochondira. J. Biol. Chem. (1999) 274:7286–7291.
  • BECHINGER B: Structure and functions of channel-forming peptides: magainins, cecropins, mellitin and alamethicin. J. Membrane Biol. (1997) 156:197–211.
  • PEYPOUX F, GUINAND M, MICHEL G et al: Isoelement de l'acide 3-amino 12-methyl tétradécanoique a partir de l'iturine, antibiotique de Bacillus subtilis. Tetrahedron (1973) 29: 3455–3459.
  • BESSON F, PEYPOUX M, QUENTIN J, MICHEL G: Action of antifungal peptolipids from Bacillus subtilis on the cell membrane of Saccharomyces cerevisiae. J. Antibiot. (1984) 37:172–177.
  • LATOUD C, PEYPOUX F, MICHEL G: Action of iturin A, an antifungal antibiotic from Bacillus subtilis on the yeast Saccharomyces cerevisiae. Modification of membrane permiability and lipid composition. J. Antibiot. (1987) 40:1588–1595.
  • THIMON L, PEYPOUX F, MAGET-DANA R, MICHEL G: Surface-active properties of antifungal lipopeptides produced by Bacillus subtilis. J. Antibiot. (1992) 69:92–93.
  • PEYPOUX F, GIUNAND M, MICHEL G, DELCAMBRE L, DASB, LEDERER E: Structure of iturine A, a peptidolipid antibiotic from Bacillus subtilis. Biochemistry (1978)17:3992–3996.
  • KLICH M, LAX A, BLAND J: Inhibition of some mycotoxi-genic fungi by iturin A, a peptidolipid produced by Bacillus subtilis. Mycopathologia (1991) 116:77–80.
  • CLAIRBOIS J, DELCAMBRE L: A propos d'essais cliniques et biologiques sur l'iturine, antifongique noveau. Arch. Belg. Derm. Syph.(1958) 14:63.
  • BLOQUIAUX S, DELCAMBRE L: Essais de traitment de dermatomucoses par l'iturine. Arch. Belg. Derm. Syph. (1956) 12:224.
  • LANDY M, WARREN G, ROSEMAN S, COLIO L: Bacillo-mycin, an antibiotic from Bacillus subtilis, active against pathogenic fungi. Proc. Soc. Exp. Biol Med. (1948) 67:539–541.
  • MHAMMEDI A, PEYPOUX F, BESSON F, MICHEL G: Bacillomycin F, a new antibiotic of iturin group. Isolation and characterization. J. Antibiot. (1982) 35:306–311.
  • LATOUD C, PEYPOUX F, MICHEL G, GENET R, MORGAT J:Interactions of antibiotics of the iturin group with human erythrocytes. Biochem. Biophys. Acta. (1986) 856:526–535.
  • SINDEN S, DEVAY J, BACKMAN P: Properties of syringo-mycin, a wide spectrum antibiotic and phytotoxin produced by Pseudomonas syringae, and its role in the bacterial canker disease of peach trees. Physiol Pl. Path. (1971) 1:199–213.
  • SEGRE A, BACHMAN R, BALLIO A et al: The structure of syringomycins Al, E, and G. FEBS Lett. (1989) 255:27–31.
  • DE LUCCA A, JACKS T, TAKEMOTO J et al.: Fungal lethality, binding, and cytotoxicity of syringomycin-E. Antimicrob. Agents Chemother. (1999) 43:371–373.
  • ADETUYI F, ISOGAI A, DI GIOGRIO D, BALLIO A, TAKEMOTO J: Saprophytic Pseudomonas syringae strain M1 of wheat produces cyclic lipodepsipeptides. FEBS Microbiol. Lett. (1995) 131:63–67.
  • •Shows the potent antifungal, syringomycin-E, is not a phytotoxin as previously thought.
  • SORENSEN K, WANSTROM A, ALLEN S, TAKEMOTO J: Efficacy of syringomycin E in a murine model of vaginal candidiasis. j Antibiot. (1998) 51:743–749.
  • •An ointment of syringomycin controlled vaginal candidiasis in a murine model.
  • FEIGN A, TAKEMOTO J, WAMGSPA R, TEETER J, BRAND J: Properties of voltage-gated ion channels formed by syringomycin-E in planar lipid bilayers. J. Membr. Biol. (1996) 149:41–47.
  • BLASKO K, SCHAGINA L, AGNER G, KAULIN Y, TAKEMOTO J: Membrane sterol composition modulates the pore forming activity of syringomycin-E in human red blood cells. Biochim. Biophys. Acta (1998) 1373:163–169.
  • WANGSPA R, TAKEMOTO J: Role of ergosterol in growth inhibiton of Saccharomyces cerevisiae by syringo-mycin E. FEMS Microbiol. Lett. (1998) 167:215–220.
  • SORENSEN K, KIM K-H, TAKEMOTO J: In vitro antifungal and fungicidal activities and erythrocyte toxicities of Agents Chemother. (1996) 40:2710-2713. TOKUMURA T, HORIE T: Kinetics of nikkomycin Z degradation in aqueous solution and in plasma. Biol. Pharm. Bull. (1997) 20:577–580.
  • HARRISON L, TEPLOW D, RINALDI M, STROBEL G: Pseudomycins, a family of novel peptides from Pseudomonas syringae possessing broad-spectrum antifungal activity. J. Gen. Microbiol. (1 9 9 1) 137:2857-2865.
  • OITA S, HORITA M, YANAGI S: Purification and proper-ties of a new chitin-binding antifungal CB-1 from Bacillus lecheniformis M-4. BioscL Biotech. Biochem. (1996) 60:481–483.
  • LEBBALDI M, GALVEZ A, MAQUEDA M, MARTINEZ-BUENO M, VALDIVIA E: Fungicin M-4: a narrow spectrum peptide antibiotic from Bacillus licheni-formis M-4. J. Appl. Bacteriol (1994) 77:49–53.
  • GALVEZ A, MAQUEDA M, MARTINEZ-BUENO M, LEBBADI M, VALDIVIA E: Isolation and physico-chemical charac-terization of an antifungal and antibacterial peptide produced by Bacillus licheniformis A 12. AppL Microbiol. Biotechnol. (1993) 38:438–442.
  • PERGAMENT I, CARMELLI S: Schizotrin A: novel antimi-crobial cyclic peptide from a cyanobacterium. Tetrahe-dron Lett. (1973) 35:8473–8476.
  • LEE C, KIM S, HYUN B, SUH J, YON C, KIM C, LIM Y, KIM C.Cepacidine A, a novel antifungal antibiotic produced by Pseudomonas cepacia. I. Taxonomy, production, isolation, and biological activity. J. Antibiot. (1994) 47:1402–1405.
  • LIM Y, SUH J-W, KIM S, HYUN B, KIM C, LEE C: CepacidineA, a novel antifungal antibiotic produced by Pseudo-monas cepacia. II. Physicochemical properties and structure elucidation. J. Antibiot. (1994) 47:1406–1416.
  • IWAMOTO T, FUJIE A, TSURUMI Y, NITTA K, HASIMOTOS, OKUHARA M: FR900403, a new antifungal antibiotic produced by a Kernia sp. J. Antibiot. (1990) 53:1183–1185.
  • CHAPMAN T, KINSMAN 0, HOUSTON J: Chitin biosyn-thesis in Candida albicans grown in vitro and in vivo and its inhibiton by nikkomycin Z. Antimicrob. Agents Chemother. (1992) 36:1909–1914.
  • HOHNE H: Nikkomycin, em n neuer hemmstoff der mikrobiellen chitin synthese. Ph. D. dissertation. (1974) Universtat Tubingen. Tubingen, Germany.
  • McCARTHY P, NEWMAN D, NISBET L, KINGBURY W: Relative rates of transport of peptidyl drugs by Candida albicans. Antimicrob. Agents Chemother. (1985) 28:494–499.
  • McCARTHY P, TROKE P, GULL K: Mechanism of action ofnikkomycin and the peptide transport system of Candia albicans. J. Gen. Microbic)]. (1985) 131:775–780.
  • MONETON P, SARTHOW P, Le GAFFIC F: Transport andhydrolysis of peptides in Saccharomyces cerevisiae. J. Gen. Microbiol (1986) 132:2147–2153.
  • TARIQ V, DEVELIN P: Sensitivity of fungi to nikkomycinZ. Fungal Genet. Biol. (1996) 20:4–11.
  • HECTOR R, ZIMMER B, PAPPAGIANIS D: Evaluation ofnikkomycins X and Z in murine models of coccidio-mycosis, histoplasmosis, and blastomycosis. Antimi-crol Agents Chemother. (1990) 34:587–593.
  • CLEMONS K, STEVENS D: Efficacy of nikkomycin Z against experimental pulmonary blastomycosis. Antimicrob. Agents Chemother. (1997) 41:2026–2028.
  • ROOS U, MATTERN S, SCHREMPF H, BORMANN C: Histidine aminotransferase activity in Streptomyces tendae and its correlation with nikkomycin produc-tion. ELMS Microbiol Lett. (1992) 97:185–190.
  • SUSZUKI S, ISONO K, NAGATSU J, MIZUTANI T, KAWASHIMA Y, MIZUNO T: A new antibiotic, polyoxin A. J. Antibiot. (1965) 18:131.
  • ISONO K, ASAHI K, SUZUKI S: Studies on polyoxins, antifungal antibiotics. XIII. The structure of polyoxins. J. Am. Chem. Soc. (1969) 91:7490–7505.
  • HORI M, EGUCHI J, KAKIKI K, MISATO T: Studies of themode of actions of polyoxins. VI. Effect of polyoxin B on the chitin synthesis in polyoxin-resistant strains of Alternaria kikuchiana. J. Antibiot. (1974): 27:260–266.
  • HORI M, KAKIKI K, MISATO T: Interaction betweenpolyoxin and active center of chitin synthetase. Agric. Biol. Chem. (1974) 38:699–705.
  • BECKER J, COVERT N, SHENBAGAMURTHI P, STEINFELDA, NAIDER F: Polyoxin D inhibits the growth of zoopathogenic fungi. Antimicrob. Agents Chemother. (1983) 23:926–929.
  • GOTTLIEB S, ALTBOUM Z, SAVAGE D, SEGAL E: Adhesion of Candida albicans to epithelial cells effect of polyoxin D. Mycopathologia (1991) 115:197–216.
  • DEBONA M, GORDEE R: Antibiotics that inhibit fungalcell wall development. Ann. Rev. Microbic)]. (1994) 48:471–497.
  • KURTZ M, DOUGLAS C: Lipopeptide inhibitors of fungal glucan synthesis. Antimicrob. Agents Chemother. (1997) 35:79–86.
  • ••Excellent recent review on the important echinocandinpeptide class and their analogues.
  • TURNER W, CURRENT W: Echinocandin antifungal agents. In: Biotechnology of Antibiotics. 2nd Edition. WR Strohl (Ed.), Marcel Dekker, Inc., New York (1997):315–334.
  • ••Another excellent and recent review on the natural andsemisynthetic echinocandins.
  • NYFELER R, KELLER-SCHIERLEIN W: Stoffwechselpro-duckte von microorganismen 143. Mitteilung. Echino-candinB, em n neuartiges polypeptid-antibioticum aus Asp ergillus nidulans var. echinulatus: Isolierung und bausteine. Helv. Chim. Acta (1974) 57:2459–2477.
  • KELLER-JUSLIN C, HUHN M, LOOSLI H, PETCHER T, WEBER H, VON WARTBURG A: Strucktur des cyclopeptid-antibiotikums (=echinocandin B). Tetrahedron Lett. (1976) 46:4147–4150.
  • TRABER R, KELLER-JUSLIN C, LOOSLI H, HUHN M, VON WARTBURG A: Cyclopeptide-antibiotika aus Aspergillus arten. Structur der echinocandine C und D. HeIv. Chim. Acta (1979) 62:1252–1267.
  • BENZ F, KNUESEL F, NUESCH J: Echinocandin B, emn neuartigues polypeptid antibioticum aus Aspergillus nidulans var echinlatus: Isolierung and Baudsteine. HeIv. Chim. Acta (1985) 57:2459–2477.
  • BALKOVEC J, BLACK R, HAMMOND M et al.: Synthesis, stability, and biological evaluation of a new echino-candin lipopeptide. Discovery of a potential clinical agent for the treatment of systemic candidiasis and Pneumocystis carinii pneumonia. J. Med. Chem. (1992) 35:194–198.
  • SCHMATZ D, ROMANCHECK M, PITTARELLI L, SCHWARTZ R, FROMTLING R: Treatment of Pneumo-cystis carinii pneumonia with 1,3-13-glucan synthesis inhibitors. Proc. Natl. Acad. ScL USA (1990) 87:5950–5954.
  • FROMTLING R, ABRUZZO G: L-671,329, a new antifungal agent. III. In vitro activity, toxicology, and efficacy in comparison to aculeacin. J. Antibiot. (1989) 42:174–178.
  • SCHMATZ D, ROMANCHECK M, PITTARELLI L, SCHWARTZ R, FROMTLING R: Treatment of Pneumo-cystis carinii pneumonia with 1,3-6-glucan synthesis inhibitors. Proc. Nati Acad. ScL USA (1990) 87:5950–5954.
  • MIZUNO K, YAGI A, SATOI S et al.: Studies on aculeacin. I. Isolation and characterization of aculaecin A. J. Antibiot. (1977) 30:297–302.
  • SATOI S, YAGI A, ASANO K, MIZUNO K, WATANABE T: Studies of aculeacin. II. Isolation and characterization of aculeacins B, C, D, E, F, and G. J. Antibiot. (1977) 30:303–307.
  • MIZOGUCHI J, SAITO T, MIZUNO K, HAYANO K: On the mode of action of a new antifungal antibiotic, aculeacin A: inhibition of cell wall synthesis in Saccha-romyces cerevisiae. J. Antibiot. (1977) 30:308–313.
  • ROY K, MUKHOPADHYAY T, REDDY G, DESIKAN K, GANGULI B: Mulundocandin, a new lipopeptide antibi-otic. I. Taxonomy, fermentation, isolation, and charac-terization. J. Antibiot. (1987) 40:275–280.
  • IWAMOTO T, FUJI A, NITTA K, HASIMOTO S, OKUHARA M, KOHSAKA M: WF11899A, B, and C, novel antifungal lipopeptides. II. Biological propeties. j Antibiot. (1994) 47:1092–1097.
  • IWAMOTO T, FUJIE A, SAKAMOTO S: WF11899A, B, and C, novel antifungal lipopetides. I. Taxonomy, fermen-tation, isolation and physico-chemical properties. J. Antibiot. (1994) 47:1084–1091.
  • TAKESAKO K, IKAI K, HARUNA F: Aureobasidins, new antifungal antibiotics: taxonomy, fermentation, isolation, and properties. J. Antibiot. (1991) 44:919–924.
  • ENDO M, TAKESAKO K, KATO I, YAMAGUCHI H: Fungicidal action of aureobasidin A, a cyclic depsipep-tide antifungal antibiotic, against Saccharomyces cerivisiae. Antimicrob. Agents Chemother. (1997) 41:672–676.
  • NAGEIC M, NAGEIC E, BALTISBURGER J, WELL G, LESTER R, DICKSON R: Sphingolipid synthesis as a target for antifungal drugs. J. Biol. Chem. (1997) 272:9807–9817.
  • TAKESAKO K, KURODA H, INOUE T, HARUNA F, YOSHIKAWA Y, KATO I: Biological properties of aureobasidin A, a cyclic depsipeptide antifungal antibiotic. J. Antibiot. (1993) 46:1414–1420.
  • •Shows aureobasidin A is more active against murine candidiasis than the echinocandins, fluconazole and amphotericin V with low toxicity and can be administered orally.
  • TAKESAKO K, KURODA H, KATO I, HIRATANI T, UCHIDA K, YAMAGUCHI H: Aureobasidins, a new family of antifungal antibiotics: Isolation, structure, and biological properties. In: Recent Progress in Antifungal Chemotherapy. Yamaguchi H et al. (Eds.), Marcel Dekker, Inc., New York (1992):501–503.
  • ARAI T, MIKAMI Y, FUKUSHIMA T, UTSUMI T, YAZAWA K: A new antibiotic, leucinostatin, derived from Penicil-Hum lilacium. j Antibiot. (1973) 26:1606–1612.
  • FUKUSHIMA K, ARM T, MORI Y, TSUBOI M, SUZUKI M: Studies on peptide antibiotics, leucinostatins. I. Separation, physico-chemical properties and biological activities of leucinostatins A and B. J. Antibiot. (1983) 36:1606–1612.
  • RADICS L, KATJAR-PERADY M, CASINO VI C, ROSI C, RICCI M, TUTTOBELO L: Leucinostatins H and K, two novel peptide antibiotics with tertiary amino-oxide terminal group from Paecilomyces mar quandii. Isolation, structure and biological activity. J. Antibiot. (1987) 40:714–716.
  • ROSSI C, TUTTOBELO L, RICCI M, CASINOVI C, RADICS L: Leucinostatin D, a novel peptide from Paecilomyces marquandii. J. Antibiot. (1987) 40:130–132.
  • MORI Y, SUZUKI K, FUKUSHIMA K, ARAI T: Structure of leucinostatin B, an uncoulper of mitochondria. J. Antibiot. (1983) 36:1084–1086.
  • SAITO M, BEPPU T, ARIMA K: Properties and structure of a peptide antibiotic no. 1907. Agric. Biol. Chem. (1980) 44:3037–3040.
  • FUJI K, FUJITA E, TAKAISHI Y, FUJITA T, ARITA I, KOMATSU M, HIRASUKA N: New antibiotics, tricho-phyns A and B: isolation and biological activity. Experi-entia (1978) 34:237–239.
  • FUJITA K, TAKAISHI Y, OKUMURA A et al.: New peptide antibiotics, trichopolyns I and II, from Trichoderma polysporum. J. Chem. Soc. Chem. Commun. (1981) 585–587.
  • GRAFE U, IHN I, RITZAU M: Helioferins: novel antifungal lipopetides Mycogone rosea: screening, isolation, structure, and biological properties. J. Antibiot. (1995) 48:128–133.
  • BROEKAERT W, CAMMUE B, DE BOLLE M, THEVISSEN, DE SAMBLANX G, OSBORN R: Antimicrobial peptides from plants. Critical Rev. Plant Sci. CRC Press, Boca Raton, Florida, USA (1997) 16:297–323.
  • ••Thorough coverage of the different classes of plantpeptides. De Lucca 291
  • GARCIA-OLMEDO F, MOLINA A, ALAMILLO J, RODRIGUEZ-PALENZUELA P: Plant defense peptides. Biopolymers (1998) 47:479–491.
  • ••Recent, concise review of the molecular biology, structure,and biological properties of plant antimicrobial peptides.
  • FANT F, VRANKEN W, MARTINS J, BORREMANS F: Solution conformation of Raphanus sativus antifungal protein 1 (Rs-AFP1) byIHNMR. Resonance assignment, secondary structure and global fold. Bull. Soc. Chim. Belg. (1997) 106:51–57.
  • FANT F, VRANKEN W, BROEKAERT W, BORREMANS F: Determination of the three-dimensional solution structure of Raphanus sativusantifungal protein 1 by 111 NMR. j Mol. Biol. (1998) 279:257–270.
  • TERRAS F, SCHOOFS H, DE BOLLE M: Analysis of two novel plant antifungal proteins from radish (Raphanus sativus L.) seeds. J. Biol. Chem. (1992) 267:15301–15309.
  • TERRAS F, TORREKENS S, VAN LEUVEN F et al.: A new family of basic cysteine-rich plant antifungal proteins Brassicaceae species. FEBS Lett. (1993) 316:233–240.
  • OSBORN R, DE SAMBLANX G, THEVISSEN et al. :s Isolation and characterization of plant defensins from seeds of Asteraceae, Fabaceae, Hippocastanaceae, and Saxifragaceae. FEBS Lett. (1995) 368:257–262.
  • TERRAS F, EGGERMONT K, KOVALEVA et al.: Small cysteine-rich antifungal proteins from radish: their role in host defense. Plant Cell (1995) 7:573–588.
  • THEVISSEN K, GHAZI A, DE SAMBLANX G, BROWNLEE C,OSBORN R, BROEKAERT W: Fungal membrane responses induced by plant defensins and thionins. J. Biol. Chem. (1996) 271:15018–15025.
  • THEVISSEN K, OSBORN R, ACLAND D, BROEKAERT W:Specific, high affinity binding sites for an antifungal plant defensin on Neurospora crassa hyphae and microsomal membranes. J. Biol. Chem. (1997) 272:32176–32181
  • DE LUCCA A, JACKS T, BROEKAERT W: Fungicidal andbinding properties of three plant peptides. Mycopa-thologia (1999) 40:87–91.
  • CAMMUE B, DE BOLLE M, TERRAS F et al.: Isolation andcharacterization of a novel class of plant antimicrobial peptides from Mirabalisjalapa L. seeds. J. Biol. Chem. (1992) 267:2228–2233.
  • DE BOLLE M, OSBORN R, GODERIS I eta].: Antimicrobial peptides from Mirabilis jalapa and Amaranthus caudatus: expression, processing, localization, and biological activity in transgenic tobacco. Plant Mol. (1996) 31:993–1008.
  • SHAO F, HU Z, XIONG Y, HUANG Q, WANG C, ZHU R, WANG D: A new antifungal peptide from the seeds of Phytolacca americana: characterization, amino acid sequence and cDNA cloning. Biochim. Biophys. Acta (1999) 1430:262–268.
  • ROBERTS W, SELITRENIKOFF C: Zeamatin, an antifungal protein made from maize with membrane- permiabilizing activity. J. Gen. MicrobioL (1991) 40:1771–1778.
  • DUVICK J, ROOD T, RAO A, MARSHAK D: Purificationand characterization of a novel antimicrobial peptide from miaze (Zea mays L.) kernals. J. Biol. Chem. (1992) 287:18814–18820.
  • HUYNH Q, BORGMEYER J, ZOBEL J: Isolation and characterization of a 22 kDa protein with antifungal properties from maize seeds. Biochem. Biophys. Res. Commun. (1992) 182:1–5.
  • BRIUX M, JIMENEZ M, SANTORA J et al.: Solution structure of 7-1-P thionins from barley and wheat endosperm determined by 1HNMR: a structural motif common to toxic arthropod proteins. Biochemistry (1993) 132:715–724.
  • BRUIX M, GONZALES C, SANTORO J eta].: HNMR studies on the structure of a new thionin from barley endosperm. Biopolymers (1995) 36:751–763.
  • MOLINA A, GOY P, FRAILE A, SANCHEZ-MONGE R, GARCIA-OLMEDO F: Inhibition of bacterial and fungal plant pathogens by thionins of types land II. Plant Sci. (1993) 92:169–177.
  • TERRAS F, SCHOOFS H, THEVISSEN K et al.: Syngergistic enhancement of the antifungal activity of wheat and barley thionins by radish and oilseed rape 2s albumins and by barley trypsin inhibitors. Plant Physic)]. (1993) 103:1311–1319.
  • MOLINA A, SEGURA A, GARCIA-OLMEDO F: Lipid transfer proteins (nsLTPs) from barley and maize leaves are potent inhibitors bacterial and fungal plant pathogens. FEBS Lett. (1993) 316:119–122.
  • BLOCHET J, CHEVALIER C, FOREST E et al.: Complete amino acid sequence of puroindoline, a new basic and cystine-rich protein with a unique tryptophan-rich domain, isolated from wheat endosperm by TritonX-114 phase partitioning. FEBS Lett. (1993) 329:336–340.
  • OKADA T, YOSHIZUMI H, TERASHIMA Y: A lethal toxic substance for brewing yeast in wheat and barley. Agric. Biol. Chem. (1970) 34:1084–1088.
  • KRAGH K, NIELSEN J, NIELSEN K, DREBOLDT S, MIKKELSEN J: Characterizations and localization of new antifungal cysteine-rich proteins from Beta vulgaris. Mol. Plant-Microbe Interact. (1995) 8:424–434.
  • ARONDEL V, KADER J: Lipid transfer in plants. Experi-entia (1990) 46:579–585.
  • MOLINA A, SEGURA A, GARCIA-OLMEDO F: Lipid transfer proteins (nsLTPs) from barley and maize leaves are potent inhibitors of bacterial and fungal plant pathogens. FEBS Lett. (1993) 316:119–122.
  • CAMMUE B, THEVISSEN K, HENDRICKS M et al.: A potent antimicrobial protein of onion (Allium cepa L.) seeds showing sequence homology to plant lipid transfer proteins. Plant Physiol. (1995) 109:445–455.
  • TASSIN S, BROEKAERT W, MARION D: Solution structure of Ace-AMP1, apotent antimicrobial protein extracted from onion seeds. Structure analogies with plant nonspecific lipid transfer proteins. Biochem. (1998) 37:3623–3637.
  • TAILOR R, ACLAND D, ATTENBOROUGH S et al: A novel family of small cysteine-rich antimicrobial peptides from seed of Impatiens balsamina is derived from a single precursor protein. J. Biol. Chem. (1997) 272: 24480–24487.
  • PATEL S, OSBORN R, THORNTON J: Structure studies of Impatiens balsamina antimicrobial protein (1b-AMP1). Biochem. (1998) 27:983–990.
  • VAN PARIJS J, BROEKAERT W, GOLDSTEIN I, PEUMANS W: Hevein: an antifungal protein from rubber-tree (Hevea brasiliensis) latex. Planta (1991) 183:258–264.
  • BROEKAERT W, MARTEN, W, TERRAS F et al: Antimicro-bial peptides from Amaranthus caudatus seeds with sequence homology to the cysteine/glycine-rich domain of chitin-binding proteins. Biochemistry (1992) 31:4308–4314.
  • KOO J, LEE S, CHUN H, CHEONG Y et al: Two hevein homologs isolated from the seed of Pharbitis nil L. exhibit potent antifungal activity. Biochim. Biophys. Acta (1998) 1382:80–90.
  • NIELSEN K, NIELSEN J, MADRID S, MIKKELSEN: Charac-terization of a new antifungal chitin-binding peptide from sugar beet leaves. Plant Physic)]. (1997) 113:83–91.
  • HEJGAARD J, JACOBSEN S, BJORN S, KRAGH K: Antifungal activity of chitin-binding PR-4 type proteins from barley grain and stressed leaf. FEBS Lett. (1992) 307:389–392.
  • MORENO M, SEGURA A, GARCIA-OLMEDO F: Pseudothionin-Stl, a potato peptide active against potato pathogens. Eur. J. Biochem. (1994) 223:135–139.
  • SEGURA A, MORENO M, MADUERO F, MOLINO A, GARCIA-OLMEDO F: Snakin-1, a peptide from potato that is active against plant pathogens. Mot. Plant-Microbe Interactions (1999) 12:16–23.
  • DIGEL M, MOREL A, LAYER H, BIERMANN J, VOELTER W: Peptidalkaoide aus Discaria febrifuga Mart. Hoppe Seylers Z. Physiol. Chem. (1983) 364: 1641–1643.
  • GOURNELIS D, LASKARIS G, VERPOORTE R: Cyclopep-tide alkaloids. Natl. Prod. Rep. (1997) 14:75–82.
  • PANDAY V, DEVI S: Biologically active cyclopeptide alkaliods from Rhamnaceae plants. Planta Med. (1990) 56:649–650.
  • ZASLOFF M: Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characteriza-tion of two active forms and partial cDNA sequence of a precursor. Proc. Natt Acad. Sci. (1987) 84:549–5463.
  • CHEN H-C, BOMAN H, MORELL J, HUANG C: Synthetic magainin analogues with improved antimicrobial activity. FEBS Lett. (1988) 236:462–466.
  • TYLER E, ANATHARMAIAH G, WALKER D, MISHRA V, PALGUNACHAN M, SEGREST J: Molecular basis for procarkaryotic specificity of magainin-induced lysis. Biochemistry (1995) 34:4393–4401.
  • MOR A, NGUYEN V, DELFOUR A, MIGLIORE-SAMOUR D, NICOLAS P: Isolation, amino acid sequence of dermaseptin, a novel antimicrobial peptide of amphibian skin. Biochemistry (1991) 30:8824–8830.
  • HANI K, NICOLAS P, MOR A: Structure-function relation-ships of antimicrobial dermaseptins. In: Proceedings of the 23rd European Peptide Symposium. Maia HLS (Ed.), Escom, Leiden, The Netherlands (1990:47–49.
  • MOR A, HANI K, NICOLAS P: The vertebrate peptide antibiotics dermaseptins have overlapping structural features but target specific organisms. J. Biol. Chem. (1994) 269:31635–31641.
  • POUNY Y, RAPAPORT D, MOR A, NICOLAS P, SHAI Y: Interaction of antimicrobial dermaseptin and its fluorescently labeled analogues with phospholipid membranes. Biochemistry (1992) 31:12416–12423.
  • STRAHILEVITZ J, MOR A, NICOLAS P, SHAI Y: Spectrum of activity and assembly of dermaseptin-b and its precursor from in phospholipid membranes. Biochemistry (1994) 33:10951–10960.
  • DE LUCCA A, BLAND J, JACKS T, GRIMM C, WALSH T: Fungicidal and binding properties of the natural peptides cecropin B and dermaseptin. Med. Mycol (1998) 36:291–298.
  • VOULDOUKIS I, SHAI Y, NICOLAS P, MOR A: Broad spectrum antibiotic activity of skin-PYY. FEBS Lett. (1996) 380:237–240.
  • STEINER H, HULTMARK D, ENGSTROM A, BENNICH H, BOMAN H: Sequence and specificity of two antibacte-rial proteins involved in insect immunity. Nature (1981) 292:246–248.
  • BOMAN H, HULTMARK D: Cell-free immunity in insects. Ann. Rev. Microbiol (1987) 41:103–126.
  • DE LUCCA A, BLAND J, JACKS T, GRIMM C, CLEVELAND T, WALSH T: Fungicidal activity of cecropin A. Antimicrob. Agents Chemother. (1997) 41:481–483.
  • KINI R, EVANS H: A common cytolytic region in myotoxins, heomlysins, cardiolysins and antibacte-rial peptides. Int. J. PepL Protein Res. (1989) 34:277–286.
  • CHRISTENSEN B, FINK J, MERRIFIELD R, MAUZERALL D: Channel-forming properties of cecropins and related model compounds incorporated into planar lipid membranes. Proc. Natl. Acad. Sci. USA (1988) 85:5072–5076.
  • REED W, ELZER P, ENRIGHT F, JAYNES J, MORREY J, WHITE K: Interleukin 2 promoter/enhancer controlled expression of a synthetic cecropin-class lytic peptide in transgenic mice and subsequent resistance to Brucella abortus. Transgenic Res. (1997) 6:337–347.
  • ••Paper describes the transgenic expression of a cecropin-class peptide in mice resulting in protection against Brucella abortus.
  • MOORE A, DEVINE D, BIBBY M: Preliminary experi-mental anticancer activity of cecropins. PepL Res. (1994) 7:265–269.
  • WADE D, MERRIFIELD R, BOMAN H: Effects of cecropin and mellitin analogs and hybrids on pro-and eukary-otic cells. In: Peptides:Chemistly, Structure, And Biology. Proceedings of the 1 1 th Peptide Symposium. Rivier JE and Marshall (Eds.), Escom, Leiden, The Netherlands (1989):120–121.
  • POTSEP K, NORMARK S, BOMAN H: The origins of cecropins; implications from synthetic peptides derived from ribosomal protein Li. FEBS Lett. (1999) 451:249–252.
  • FEHLBAUM P, BULET P, MICHAUT L, LAGUEX N, BROEKAERT W, HETRU C, HOFFMAN J: Insect immunity. Septic injury of Drosophila induces the synthesis of a potent antifungal peptide with sequence homology to plant antifungal peptides. J. Biol. Chem. (1994) 269:33159–33163.
  • MICHAUT L, FEHLBAUM P, MONIATTE M, VAN DORSSE-LAER A, RECHART J-M, BULET P: Determination of the disulfide array of the first inducible antifungal peptide from insects: drosomycin from Drosophila melanogaster. FEES Lett. (1996) 395:6–10.
  • LEMAITRE B, REICHHART J, HOFFMANN J: Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. Proc. Natl. Acad. Sci. USA (1997) 94:14614–14619.
  • MEISTER M, LEMAITRE B, HOFFMANN J: Antimicrobial peptide defense in Drosophila. Bioassays (1997) 19:1019–1026.
  • LANDON C, SODANO P, HETRU C, HOFFMANN J, PTAK M: Solution structure of drosomycin, the first inducible antifungal protein from insects. Protein Sci. (1997) 6:1878–1884.
  • FEHLBAUM P, BULET P, CHERNYCH S et al: Structure-activity analysis of thanatin, a 21-residue inducible insect defense peptide with sequence homology to frog skin antimicrobial peptides. Proc. Nail Acad. Sci. USA (1996) 93:1221–1225.
  • MANDARD N, SODANO P, LABBE H et al.: Solution structure of thanatin, a potent bactericidal and fungicidal insect peptide, determined from proton two-dimensional nuclear magnetic resonance data. Eur. j Biochem. (1998) 256:404–410.
  • LAMBERTY M, ADES S, UTTENWEILER-JOSEPH S: Isolation from the lepidopteran Heliothis virescens, of a novel insect defensin with potent antifungal activity. J. Biol. Chem. (1999) 274:9320–9326.
  • LEVASHINA E, OHRESSER S, BULET P, REICHHART J, HETRU C, HOFFMANN J: Metchnikowin, a novel immune-inducible proline-rich peptide from Drosophila with antibacterial and antifungal proper-ties. Eur. j Biochem. (1995) 233:694–700.
  • LEVASHINA E, OHRESSER S, LEMAITRE B, IMLER J: Two distinct pathways can control expression of the gene encoding the Drosophila antimicrobial peptide metchnikowin. j Mol Biol. (1998) 278:515–527.
  • LEE S, MOON H-J, KURATA S, NATORI S, LEE B: Purifica-tion and cDNA cloning of an antifungal protien from the hemolymph of Holotrichia diomorphia larvae. Pharm. Bull. (1995) 18:1049–1052.
  • IIJIMA R, KURATA S, NATORI S: Purification, characteri-zation, and cDNA cloning of an antifungal protein from the hemolymph of Sarcophaga peregrina (flesh fly) larvae. J. Biol. Chem. (1993) 268:12055–12061.
  • BEWLEY C, HE H, WILLIAMS D, FAULKNER D: Aciculitins A-C: cytotoxic and antifungal cyclic peptides from the lithisid sponge, Aciculites orientalis. J. Am. Chem. Soc. (1996) 118:4314–4321.
  • BEWLEY C, DEBITUS C, FAULKNER D: Microscleroder-mins A and B. Antifungal cyclic peptides from the lithistid sponge, Microscleroderma sp. J. Am. Chem. Soc. (1994) 116:7631–7636.
  • BEWLEY C, FAULKNER D: Theonegramide, an antifungal glycopeptide from the Phililline lithistid sponge Theonella swinhoeL J. Org. Chem: (1994) 59:4849–4852.
  • PETTIT G, KAMAN° Y, HERALD C et al.: The isolation and structure of a remarkable marine animal antineo-plastic constituent: dolastatin 10. J. Am. Chem. Soc. (1987) 109:6883–6885.
  • PETTIT R, PETTIT G, HAZEN K: Specific activities of dolastatin 10 and peptide derivatives against Crypto-coccus neoformans. Antimicrob. Agents Chemother. (1998) 42:2961–2965.
  • FRANKMOLLE W, LARSEN L, CAPLAN F: Antifungal cyclic peptides from the terrestrial blue- green alga Anabaena laxa. I. Isolation and biological properties. Antibiot. (1992) 45:1451–1457.
  • FRANKMOLLE W, KNOBEL G, MOORE R, PATTERSON G: Antifungal cyclic peptides from the terrestrial bllue-green alga Anabaena laxa. II. Structures of laxaphycins A, B, D, and E. J. Antibiot. (1992) 45:1458–1466.
  • SAITO T, KAWABATA S, SHIGENAGA T et al.: A novel big defensin identified in horseshoe crab hemocytes: Isolation, amino acid sequence, and antibacterial activity. J. Biochem. (1995) 117:1131–1137.
  • KAWABATA S, NAGAYAMA R, HIRATA M et al.: Tachycitin, a small granular component in horseshoe crab hemocytes, is an antimicrobial protein with chitin-binding activity. J. Biochem. (1996) 120: 1253–1260.
  • EISENHAUER P, HARWIG S, SZLAREK D, GANZ T, SELSTED M, LEHRER R: Purificaton and antimicrobial properties of three defensins from rat neutrophils. Infect. Immun. (1989) 57:2021–2027.
  • GANZ T, SELSTED M, LEHRER R: Defensins. Eur. J. Haematol. (1990) 44:1–8.
  • SELSTED M, HARWIG S: Purification, primary structure, and antimicrobial activities of a guinea pig neutrophil defensin. (1987) Infect. Immun. 55: 2281–2286.
  • SELSTED M, HARWIG S, GANZ T, SCHILLING J, LEHRER R: Primary structures of three human neutrophil defensins. j Clin. Invest. (1985) 76:1436–1439.
  • WHITE S, WIMLEY W, SELSTED M: Structure, function, and membrane integration of defensins. Curr. Opin. Struct. Biol. (1995) 5:521–527.
  • LEHRER R, BARTON A, DAHER K, HARWIG S, GANZ T, SELSTED M: Interaction of human defensins with Escherichia coli. Mechanism of action. J. Clin. Invest. (1989) 84:553–561.
  • LEHRER R, SZKLAREK D, GANZ T, SELSTED M: Correla-tion of binding of rabbit granulocyte peptides to Candida albicans with candidacidal activity. Infect. Immun. (1985) 49:207–211.
  • PATTERSON-DELAFIELD J, SZKLAREK D, MARTINEZ R, LEHRER R: Microbicidal cationic proteins of rabbit alveolar macrophages: amino acid composition and functional attributes. Infect. Immun. (1981) 31:723–731.
  • GERA J, LICHENSTEIN A: Human neutrophil peptide defensins induce single strand DNA breaks in target cells. CellImmunol. (1991) 138:108–120.
  • GANZ T, SELSTED M, SZKLAREK D et al.: Defensins. Natural peptide antibiotics of human neutrophils. J. Clin. Invest. (1985) 76:1427–1435.
  • LEHRER R, GANZ T, SELSTED M: Defensins: endogenous antibiotic peptides of animal cells. Cell (1991) 64:229–230.
  • LEHRER R, LICHTENSTEIN A, GANZ T: Defensins:antimi-crobial and cytotoxic peptides of mammalian cells. Ann. Rev. Immunol. (1993) 11:105–128.
  • ••Thorough review of the biochemistry, antimicrobial proper-ties, cytotoxicity and molecular biology of mammalian defensins.
  • KAGAN B, GANZ T, LEHRER R: Defensins: a family of antimicrobial and cytotoxic peptides. Toxicology (1994) 87:131–149.
  • ••Covers the structural features, gene organisation andexpression, sites of function, and mechanistic models of mammalian defensins.
  • SELSTED M, OUELLLETTE A: Defensins in granules of phagocytic and non-phagocytic cells. Trends Cell Biol. (1995) 5:114–119.
  • LEHRER R, GANZ T: Endogenous vertibrate antibiotics. Defensins, protegrins, and other cysteine-rich antimi-crobial peptides. In: Microbilal Pathogenesis and Immune Response II. Ades EW, Morse SA, Rest RF (Eds.), Annals of The New York Academy of Sciences, New York, USA (1996) 797:228–239.
  • LEHRER R, GANZ T, SZKLAREK D, SELSTED M: Modula-tion of the in situ candidiacial activity of human neutrophil defensins by target cell metabolism and divalent cations. J. Clin. Invest. (1988) 81:1829–1835.
  • SELSTED M, SZKLAREK D, GANZ T, LEHRER R: Activity of rabbit leukocyte peptides against Candida albicans. Infect. Immun. (1985) 49:202–206.
  • LEHRER R, SZKLAREK D, GANZ T, SELSTED M: Synergistic effect of rabbit granulocyte peptides to Candida albicans. Infect. Immun. (1986) 52:902–904.
  • ALCOULOUMBRE M, GHARINOUM M, IBRAHIM A, SELSTED M, EDWARDS J: Fungicidal properties of defensin NP-1 and activity against Cryptococcus neoformans in vitro. Antimicrob. Agents Chem other. (1993) 37:2628–2632.
  • LEVITZ S, SELSTED M, GANZ T, LEHRER R, DIAMOND G: In vitro killing of spores and hyphae of Aspergillus fumigatus and Rhizopus aryzae by rabbit neutrophil cationic peptides and bronchoalveolar macrophages. J. Infect. Dis. (1986) 154:483–489.
  • SEGAL G, LEHRER R, SELSTED M: In vitro effect of phagocyte cationic peptides on Coccidioides immitis. J. Infect. Dis. (1985) 151:890–894.
  • SCHWAB I, DRIES D, CULLOR J et al.: Corneal storage medium preservation with defensins. Cornea (1992) 11:370–375.
  • SELSTED M, TANG Y-Q, MORRIS W et al: Purification, primary structures, and antibacterial activities of 6-defensins, a new family of antimicrobial peptides from bovine neutrophils. J. Biol. Chem. (1993) 268:6641–6648.
  • DIAMOND G, ZASLOFF M, ECK H, BRASSEUR M, MALOY W, BEVINS C: Tracheal antimicrobial peptide, a cysteine-rich peptide from mammalian tracheal mucosa: Peptide isolation and cloning of a cDNA. Proc. Natl. Acad. Sci. USA (1991) 88:3952–3956.
  • HARWIG S, SWIDEREK K, KOKRYAKOV V et al.: Gallinacins: cysteine-rich antimicrobial peptides of chicken leukocytes. FEBS Lett. (1994) 342:281–285.
  • AUMELAS A, MANGONI M, ROUMESTAND C et al.: Synthesis and solution structure of the antimicrobial peptide protegrin-1. (1996) Eur.J. Biochem. 237: 575–583.
  • HARWIG S, SWIDEREK K, LEE T, LEHRER R: Determina-tion of of disulfide bridges in PG-2, an antimicrobial peptide from porcine leukocytes. J. PepL Res. (1995) 3:207–215.
  • KOKRYKOV V, HARWIG S, PANYUTICH E et al.: Protegrins: leukocyte antimicrobial peptides that combine features of corticostatic defensins and tachyplesins. FEBS Lett. (1993) 327:231–236.
  • HARWIG S, WARING L, YANG H, CHO Y, TAN L, LEHRER R: Intramolecular disulfide bonds enhance the antimi-crobial and lytic activities of protegrins at physio-logical sodium chloride concentrations. Eur. J. Biochem. (1996) 240:352–357.
  • MAGONI M, AUMELAS A, CHAMET P et al.: Change in membrane permiability induced by protegrin 1: implication of disulfide bridges for pore formation. FEBS Lett. (1996) 383:93–98.
  • CHO Y, TURNER J, DIHN N-G, LEHRER R: Activity of protegrins against yeast-phase Candida albicans. Infect. Immun. (1998) 66:2486–2493.
  • LEVY 0, WEISS J, ZAREMBER K, 001 C, ELSBACH P: Antibacterial 15-kDa isoforms (pl5s) are members of a novel family of leukocyte proteins. J. Biol. Chem. (1993) 268:6058–6063.
  • STORICI P, DEL SAL G, SCHNEIDER C, ROMEO D: cDNA sequence of an antibiotic dodecapeptide from neutro-phils. FEBS Lett. (1992) 314:187–190.
  • ZANETTI M, DEL SAL G, STORICI P, SCHNIEDERC, ROMEO D: The cDNA of the neutrophil antibiotic Bac5 predicts a pro-sequence homologous to a cysteine proteinase inhibitor that is common to other neutrophil antibi-otics. J. Biol. Chem. (1993) 268:522–526.
  • LAWYER C, PAT S, WATEBE M et al.: Antimicrobial activity of a 13-amino acid tryptophan-rich peptide derived from a putative porcine precursor protein of a novel family of antibacterial peptides. FEBS Lett. (1996) 390:95–98.
  • BULLEN J: The significance of iron in infection. Rev. Infect. Dis. (1981) 3:1127–1138.
  • REITER B: The biological significance of lactoferrin. Int. J. Tissue React. (1983) 5:87–96.
  • BELLAMY W, TAKASE M, YAMAUCHI K, WAKABAYASHI H, KAWASE K, TOMITA M: Identification of the bacteri-cidal domain of lactoferrin. Biochem. Biophys. Acta (1993) 1121:130–136.
  • TOMITA M, BELLAMY W, TAKASE M, TAMAUCHI K, WAKABAYASHI H, KAWASE K: Potent antimicrobial peptides generated by pepsin digest of lactoferrin. Daily Sci. (1991) 74:4137–4142.
  • YAMAUCHI K, TOMITA GIEHL T, ELLISON R: Antibacte-rial activity of lactoferrin and a pepsin-derived lactoferrin peptide fragment. (1993) 61:791–728.
  • BELLAMY W, WAKABAYASHI H, TAKASE M, KAWASE K, SHIMAMURA S, TOMITA M: Killing of Candida albicans by lactoferricin B, a potent antimicrobial peptide derived from the N-terminal region of bovine lactoferrin. Med. Microbic)]. Immunol. (1993) 182:97–105.
  • BELLAMY W, WAKABAYASHI H, TAKASE M, KAWASE K, SHIMAMURA S, TOMITA M. Role of cell-binding in the antibacterial mechanism of lactoferricin B. J. Appl. Bacteriol. (1993) 75:478–484.
  • BAUM B, BIRD J, MILLAR D, LOGTON R: Studies on histidine-rich polypeptides from human parotid saliva. Arch. Biochem. Biophys. (1976) 177:427–436.
  • HAY D: Fractionation of human parotid salivary proteins and the isolation of of a histidine-rich acidic peptide which shows high affinity for hydroxyapatite surfaces. Arch. Oral Biol. (1975) 20:533–558.
  • OPPENHEIM F, XU T, MCMILLIAN F et al.: Histatins, a novel family of histidine-richproteins in human parotid secretion. J. Biol. Chem. (1988) 263:7472–7477.
  • OPPENHEIM F, XU T, Mc MILLIAN F et al.: Histatins, a novel family of hitatine-rich proteins, in human paratid secretion. Isolation, characterization, primary structure, and fungistatic effects on Candida albicans. J. Biol. Chem. (1988) 263: 7472–7477.
  • RAMALINGAM K, GURURAJA T, RAMASUBBU N, LEVINE M: Stabilization of helix by side-chain interactions in histatin-derived peptides: role in candidacidal activity. Biochem. Biophys. Res. Commun. (1996) 225:47–53.
  • BREWER D, HUNTER H, LAJOIE G: NMR studies of the antimicrobial salivary peptides histatin 3 and histatin 5 in aqueous and nonaqueous solutions. Biochem. Biol. (1998) 76:247–256.
  • EDGERTON M, KOSHLUKOVA S, LO T, CHRZAN B, STRAUBINGER R, RAJ P: Candidacidal activity of salivary histaints. Identification of a histatin 5-binding protein on Candida albicans. J. Biol. Chem. (1998) 273:20438–20447.
  • KOSHLUKOVA S, LLOYD T, ARAUJO M, EDGERTON M. Salivary histatin 5 induces non-lytic release of ATP from Candida albicans leading to cell death. J. Biol. Chem. (1999) 274:18872–18879.
  • HELMERHORST E, REIJNDERS, VAN'T HOF W et al: Amphotericin B- and fluconazole-resistant Candida spp., Aspergillus fumigatus, and other emerging pathogenic fungi are susceptible to basic antiftmgal peptides. Antimicrob. Agents Chemother. (1999) 43:702–704.
  • •Results indicate histatin 5, in vitro, is effective against amphotericin B and fluconazole-resistant C. albicans, A. fumigatus and C. neoformans.
  • WHITE T, MARR K, BOWDEN R: Clinical, cellular, and molecular factors that contribute to antiftmgal drug resistance. Clin. Microbiol. Rev. (1998) 11:382–402.
  • TSAI H, BOBEK L: Human salivary histatin-5 exerts potent fungicidal activity against Cryptococcus neofromans. Biochim. Biophys. Acta (1997) 1336:367–369.
  • BRANT E, SANTARPIA R, POLLOCK J: The role of pH in salivary histidine- rich polypeptide antiftmgal germ tube inhibitory activity. Oral Micorbiol. Immunol (1990) 5:336–339.
  • BEAULIEU D, TANG J, ZECKNER D, PARR T: Correlation of cilofungin in vivo efficacy with its activity against Aspergillus fumigatus (1,3)-13-D-glucan synthase. FEMS Microbiol Lett. (1990) 108:133–138.
  • GORDEE R, ZECKNER D, ELLIS L, THAKKER A, HOWARD L: In vitro and in vivo anti-Candida activity and toxicology of LY12019. J. Antibiot. (1984) 37:1054–1065.
  • GORDEE R, ZECKNER D, HOWARD L, ALBORN W, DEBONO M: Anti-Candida activity and toxicology of LY121019, a novel polypeptide antiftmgal antibiotic. Ann. NY Acad. Sci. (1988) 544:294–301.
  • TAFT C, STARK T, SELITRENNIKOFF C: Cilofungin (LY121019) inhibits Candida albicans (1,3)-6-D-glucan synthase activity. Antimicrob. Agents Chemother. (1988) 32:1901–1903.
  • DENNING D, STEPHANS D: Efficacy of cilofungin alone and in combination with amphotericin B in a murine model of disseminated aspergillosis. Antimicrob. Agents Chemother. (1991) 35:1329–1333.
  • PFALLER M, GORDEE R, GERARDEN T, YU M, WENZEL R: Fungicidal activity of cilofungin (LY121019) alone and in combination with anticapsin or other antifungal agents. Eur.j Clin. Microbic)]. Infect. Dis. (1989) 8:564–567.
  • ROUSE M, TALLAN B, STECKELBERG J, HENRY N, WILSON W: Efficacy of cilofungin therapy administered by continous intravenous infusion for experimental disseminated candidiasis in rabbits. Antimicrob. Agents Chemother. (1992) 36:56–58.
  • SPITZER E, TRAVIS S, KOBAYASHI G: Comparitive in vivo activity of LY121019 and amphotericin B against isolates of Candida species. Eur. J. Clin. Microbiol Infect. Dis. (1988) 7:80–81.
  • WALSH T, LEE J, KELLY P, BACHER J et al: Antifungal effects of the nonlinear pharmacokinetics of cilofungin, a 1,3-13-glucan synthetase inhibitor, during continous and intermittent intravenous infusions in treatment of experimental disseminated candidiasis. Antimicrob. Agents Chemother. (1991) 35:1321–1328.
  • MCINTYRE K, GALGIANI J: pH and other effects on the antifungal activity of cilofungin (LY121019). Antimi-crob. Agents Chemother. (1989) 33:731–735.
  • ZAMBIAS R, HAMMOND M, HECK J et al: Preparation of structure-activity relationships of simplified analogues of the antifungal agent cilofungin: a total synthesis approach. J. Med. Chem. (1992) 35:2843–2855.
  • DOEBBELING B, FINE B, PFALLER M, SHEETZ C, STOKES J, WENZEL R: Acute tubular necrosis (ATN) and anion-gap acidosis during drug therapy with cilofungin (LY121019) in polyethylene glycol (PEG). Abstracts of the 30th Interscience Conference on Antimicrobial Agents and Chemotherapy. Washington, DC (1990):581.
  • FROMTLING R: LY-303366, echincandin antifungal. Drugs Future (1994) 19:338–342.
  • KARLOWSKY J, HARDING G, ZELENITSKY Set al: In vitro kill curves of a new semisynthetic echinocandin, LY303366, against fluconazole-sensitive and -resistant Candida species. Antimicrob. Agents Chemother. (1997) 41:2576–2578.
  • GREEN L, MARDER P, MANN L, CHIO L-C, CURRENT W: LY303366 exhibits rapid and potent fungicidal activity in flow cytometric assays of yeast viability. Antimicrob. Agents Chemother. (1999) 43:830–835.
  • KRISHNARAO T, GALGIANI J: Comparison of the in vitro activities of the echinocandin LY303366, the pneumo-candidn MK-0991, and Fluconazole against Candida species and Cryptococcus neoformans. Antimicrob. Agents Chemother. (1997) 41:1957–1960.
  • DEBONO M: The echinocandins: antifungal targets to the fungal cell wall. Exp. Opin. Invest. Drugs (1994) 3:821–829.
  • VERWEIJ P, OAKLEY K, MORRISSEY J, MORRISSEY G, DENNING D: Efficacy of LY303366 against amphotericin B-susceptible and -resistant Asp ergillus fumigatus in a murine model of aspergillosis. Antimi-crob. Agents Chemother. (1998) 42:873–878.
  • •The semisynthetic echinocandin LY303366 is effective against amphotericin-susceptible and -resistant A. fumigatus in mice.
  • PETRAITIS V, PETRAITENE R, GROLL A: Antifungal efficacy, safety, and single-dose pharmacokinetics of LY303366, a novel echinocandin B, in experimental pulmonary aspergillosis in persistently neutropenic rabbits. Antimicrob. Agents Chemother. (1998) 42:2898–2905.
  • •LY303366 improved survival and decreased pulmonary injury without toxicity of invasive pulmonary aspergillosis in persistently neutropenic rabbits.
  • ERNST M, KLEPSER M, WOLFE E, PFALLER M: Antifungal dynamics of LY303366, an investigational echino-candin B analog, against Candida ssp. Diagn. Microbic)]. Infect. Dis. (1996) 26:125–131.
  • MAKI K, MORISHITA Y, IGUCHI Y et al.: In vitro antifungal activity of FK 463, a novel water-soluble echinocandin-like lipopeptide. Abstracts of the 38th Interscience Conference on Antimicrobial Agents and Chemotherapy. San Diego, USA (1998):F–141.
  • NISHIYAMA Y, UCHIDA K, YAMAGUCHI H: A morpho-logical study of the antifungal action of FK 463, a novel echinocandin-like lipopeptide. Abstracts of the 39th Interscience Conference on Antimicrobial Agents and Chemotherapy. San Francisco, USA (1999) 156.
  • MATSUNOTO S, WAKAI Y, MAKI K et al.: Efficacy of FK 463, a novel water-soluble echinocandin-like lipopep-tide in murine models of disseminated candidiasis. Abstracts of the 38th Interscience Conference on Antimicro-bial Agents and Chemotherapy. San Diego, USA (1998):F–142.
  • WAKI Y, MATSUMOTO S, MAKI K et al.: Efficacy of FK 463, a novel water-soluble echinocandin-like lipopep-tide, in murine models of pulmonary aspergillosis. Abstracts of the 38th Interscience Conference on Antimicro-bial Agents and Chemotherapy. San Diego, USA (1998):F–143.
  • SUZUKI S, TERAKAWA M, YOKOBAYASHI F, FUJIWARA F, HATA T: Pharmacokinetics of FK 463, a novel water-soluble echinocandin-like lipopeptide, in animals. Abstracts of the 38th Intel-science Conference on Antimicro-bial Agents and Chemotherapy. San Diego, USA (1998):F–144.
  • ITO M, KIRAMOUCHI T, NOZU R et al.: Prophylactic effect of FK 463, a novel antifungal lipopeptide, against Pneumocystis carinii infection in SCID mice. Abstracts of the 39'' Intel-science Conference on Antimicrobial Agents and Chemotherapy. San Francisco, USA (1999) 2343.
  • PETRAITIS V, PETRAITIENE R, LEGUIT R et al.: Combina-tion antifungal therapy with FK 463 plus amphotericin B in treatment of experimental pulmonary aspergil-losis. Abstracts of the 39th Interscience Conference on Antimicrobial Agents and Chemotherapy. San Francisco, USA (1999):2003.
  • AZUMA J, YAMAMOTO I, OGURA M eta].: Phase I study of FK 463, a new antifungal agent, in healthy adult male volunteers. Abstracts of the 39th Intel-science Conference on Antimicrobial Agents and Chemotherapy. San Diego, USA. (1998):F–146.
  • PETTENGELL K, MYNHARDT J, KLUYTIS T, SONI P: A multicenter study to determine the minimal effective dose of FK 463 for the treatment of esophageal candidiasis in 'IN-positive patients. Abstracts of the 39th Interscience Conference on Antimicrobial Agents and Chemotherapy. San Francisco, USA (1999):1421.
  • ••FK 463 was effective in combating esophageal candidiasis inAIDS patients.
  • SCHMATZ D, POWLES M, MCFADDEN D et al.: New semisynthetic pneumocandins with improved effica-cies against Pneumocystis carinii in the rat. Antimi-crob. Agents Chemother. (1995) 39:1320–1323.
  • BALKOVEC J, BLACK R, HAMMOND M et al.: Synthesis, stability, and biological evaluation of a new echino-candin lipopeptide. Discovery of a potential clinical agent for the treatment of systemic candidiasis and Pneumocystis carinii pneumonia. J. Med. Chem. (1992) 35:194–198.
  • •L-693,989, an analog of pneumocandin A, was effective at low dosage in an animal models of P. carinii pneumonia and candidiasis.
  • FLATTERY A, ABRUZZO G, GILL C, SMITH J, BARTIZAL K: New model of oropharyngeal and gastrointestinal colonization by Candida albicans in CDT T-cell-deficient mice for evaluation of antifungal agents. Antimicrob. Agents Chemother. (1996) 40:1604–1609.
  • BOUFFARD F, ZAMBIAS R, DROPINSKI J et al.: Synthesis and antifungal activity of novel cationic pneumo-candin B. derivatives. J. Med. Chem. (1994) 37:222–225.
  • •Introduction of charged amino groups to the core of pneumocandin B provided water soluble compounds with improved efficacy.
  • BARTIZAL K, SCOTT T, ABRUZZO G: In vitro evaluation of the pneumocandin antifungal agent L-733,560, a new water-soluble hybrid of L-705,589 and L-731,373. Antimicrob. Agents Chemother. (1995) 39:1070–1076.
  • MARTINEZ-SUAREZ J, RODRIGUEZ-TUDELA J: In vitro activities of semisynthetic pneumocandin L-733,560 against fluconazole-resistant and susceptible Candida albicans isolates. Antimicrob. Agents Chemother. (1996) 40:1277–1279.
  • ABRUZZO G, FLATTERY A, GILL C et al: Evaluation of water-soluble pneumocandin analogs L-733560, L-705589, and L-731373 with mouse models of dissemi-nated aspergillosis, candidiasis, and cryptococcosis. Antimicrob. Agents Chemother. (1995) 39:1077–1081.
  • KURTZ M, BERNARD E, EDWARDS F et al: Aerosol and parental pneumocandins are effective in a rat model of pulmonary aspergillosis. Antimicrob. Agents Chemother. (1995) 39:1784–1789.
  • ZAMBIAS R, JAMES C, ABRUZZO G et al.: Lipopeptide antifungal agents: amine conjugates of the semi-synthetic pneumocandins L-731,373 and L-733,560. Bioorg. Med. Chem. Lett. (1997) 7:2021–2026.
  • BARCHIESI F, SCHIMIZZI A, FOTHERGILL A, SCALISE G, RINALDI M: In vitro activity of the new echinocandin antifungal, MK-0991, against common and uncommon clinical isolates of Candida species. Eur. J. Clin. Microbiol. Infect. Dis. (1999) 18:302–304.
  • ABRUZZO G, FLATTERY A, GILL C, SMITH J, KROPP H, BARTIZAL K: Evaluation of the echinocandin MK-0991 (L-743,872) efficacy in mouse models of disseminated aspergillosis, candidiasis, and cryptococcosis. Antimi-crob. Agents Chemother. (1997) 41:2333–2338.
  • •MK-0991 is highly effective in vivo against Candida, Aspergillus, Histoplasma and P. carinii.
  • POWLES M, LIBERATOR P, ANDERSON J et al.: Efficacy of MK-991 (L-743,872), a semisynthetic pneumocandin, in murine models of Pneumocystis carinii Antimicrob. Agents Chemother. (1998) 42:1985–1989.
  • NAJVAR L, GRAYBILL J, MONTALBO E, BARCHIESI F, LUTHER M: Evaluation of L-743,872 (872) in the treatment of murine histoplasmosis. Abstracts of the 36th Intel-science Conference on Antimicrobial Agents and Chemotherapy. New Orleans, USA (1996):F43.
  • BARTIZAL K, GILL C, ABRUZZO G et al: In vitro preclinical evaluation studies with the echinocandin antifungal MK-0991 (L-743,872). Antimicrob. Agents Chemother. (1997) 41:2326–2332.
  • HADJI R, THOMPSON R, SUNDELOF J et al.: Preliminary animal pharmocokinetics of the parenteral antifungal agent MK-0991 (L-743,872). Antimicrob. Agents Chemother. (1997) 41:2339–2344.
  • DEL POETA M, SCHELL W, PERFECT J: In vitro antifungal activity of pneumocandin L-743,872 against a variety of clinically important molds. Antimicrob. Agents Chemother. (1997) 41:1835–1836.
  • MARCO F, PFALLER M, MESSER S, JONES R: Activity of MK-0991 (L-743,872), a new echinocandin, compared with those of LY303366 and four other antifungal agents tested against blood stream isolates of Candida spp. Diagn. Microbiol. Infect. Dis. (1998) 31:33–37.
  • ESPINEL-INGROFF A. Comparison of in vitro activities of the new triazole 5C1156592 and the echinocandins MK-0991 (L-743,872) and LY303366 against opportun-istic filamentous and dimorphic fungi and yeasts. J. Clin. Microbiol. (1998) 36:2950–295556.
  • LIM E, WONG P, FADEM M, MOTCHNIK P, BAKALINSKY M, LITTLE R: Fungicidal activity of synthetic peptides derived from bactericidal/permiability-increasing protein. Abstracts of the 36th Interscience Conference on Antimicrobial Agents and Chemotherapy. (1996) New Orleans:F185.
  • APPENZELLER L, LIM E, WONG P: In vivo antifungal activity of optimized domain III peptides from bacteri-cidal/permiability-increasing protein (BPD. Abstracts of the 36th Intel-science on Antimicrobial Agents and Chemotherapy. (1996) New Orleans:F187.
  • ABRAHAMSON S, WONG P, LIM E et al.: Mechanism of action of XMP antifungal peptides: factors which influence activity and subcellular characterization. Abstracts of the 37th Intel-science Conference on Antimicro-bial Agents and Chemother. (1997) Toronto, Canada:C104.
  • LITTLER, LIME, WONG P et al.: IIMP antifungal peptides demonstrate enhanced selectivity and oral availability. Abstracts of the 38th Intel-science Conference on Antimicrobial Agents and Chemotherapy. (1998) San Diego,USA F183.
  • •XMP.503 has fungicidal properties and is orally available.
  • LEE D, PARK J-H, SHINS et al.: Design of novel analogue peptides with potent fungicidal but low hemolytic activity based on the cecropin A-mellitin hybrid structure. Biochem. Mol. Biol. (1997) 43:489–498.
  • CAVALLARIN L, ANDREU D, SAN SEGUNDO B: Cecropin A-derived peptides are potent inhibitors of fungal plant pathogens. Mol. Plant-Microbe Interact. (1998) 11:218–227.
  • CHO Y, TURNER J, DINH N-G, LEHRER R: Activity of protegrins against yeast-phase Candida albicans. Infect. Immun. (1998) 66:2486–2493.
  • HEIDLER S, RADDING J: The AUR1 gene in Saccharo-myces cerevisiae encodes dominant resistance to the antifungal agent aureobasidin A (LY295337). Antimi-crob. Agents Chemother. (1995) 39:2765–2769.
  • HASHIDA-OKADO T, OGAWA A, ENDO M, YASUMOTO R, TAKESAKO K, KATO I: AUR1, a novel gene conferring aureobasidin resistance on Saccharomyces cerevisiae: a study of defective morphologies in Aurl-depleted cells. Mol. Gen. Genet. (1996) 251:236–244.
  • KURODA M, HASHIDA-OKADO T, YASUMOTO R, GOMI K, KATO I, TAKESAKO K: An aureobasidin A resistance gene isolated from Aspergillusis a homolog of AUR1, a gene responsible for inositol phosphorylceramide (IPC) synthase activity. Mol. Gen. Genet. (1999) 261:290–296.
  • HOUGHTEN R: The broad utility of soluble peptide libraries for drug discovery. Gene (1993) 137:7–11.
  • SUN E, COHEN F: Computer-assisted drug discovery-a review. Gene (1993) 137:127–132.
  • BLONDELLE S, HOUGHTEN R: Novel antimicrobial compounds identified using synthetic combinatorial library technology. Trends Biotechnol (1996) 14:60–65.
  • BLONDELLE S, TAKAHASHI E, DINH K, HOUGHTEN R: The antimicrobial activity of hexapeptides derived from synthetic combinatorial libraries. (1995) 78:39–46.
  • REED J, EDWARDS D, GONZALES C: Synthetic peptide combinatorial libraries: a method for the identifica-tion of bioactive peptides against phytopathogenic fungi. Mol. Plant-Microbe Interact. (1997) 10:537–549.
  • HONG S, OH J, KWON M et al.: Identification and charac-terization of novel antimicrobial decapeptides generated by combinatorial chemistry. Antimicrob. Agents. Chemother. (1998) 42:2534–2541.
  • HONG S, OH J, LEE K: In vitro antifungal activity and cytotoxicity of a novel membrane-active peptide. Antimicrob. Agents Chemother. (1999) 43: 1704–1707.
  • HANSON L, PERLMAN A, CLEMONS K, STEVENS D: Synergy between cilofungin and amphotericin B in a murine model of candidiasis. Antimicrob. Agents Chemother. (1991) 35:1334–1337.
  • ••Combination of LY121019 with amphotericin B eliminated C. albicans in spleens of mice with disseminated candidiasis.
  • SUGAR A, GOLDANI L, PICARD M: Treatment of murine invasive candidiasis with amphotericin B and cilofungin: evidence for enhanced activity with combination therapy. Antimicrob. Agents Chemother. (1991) 35:2128–2130.
  • DENNING D, STEVENS D: Efficacy of cilofungin alone and in combination with amphotericin B in a murine model of disseminated aspergillosis. Antimicrob. Agents Chemother. (1991) 35:1329–1333.
  • BULO A, BRADLEY S, KAUFFMAN: The effect of cilofungin (LY 121019) in combination with amphotericin B or flucytosine against Candida species. Mycoses (1989) 32:151–157.
  • PFALLER M, GORDEE R, GERARDEN T, YU M, WENZEL R: Fungicidal activity of cilofungin alone and in combina-tion with anticapsin or other antifungal agents. Eur. J. Clin. Microbiol. Infect. Dis: (1989) 8:564–567.
  • WAKBAYASHI H, OKUTOMI T, ABE S, HAYASAWA H, TOMITA M, YAMAGUCHI H: Enhanced anti-Candida activity of neutrophils and azole antifungal agents in the presence of lactoferricin-related compounds. Adv. Exp. Med. Biol. (1998) 443:229–237.
  • WAKABAYASHI H, ABE S, OKUTOMI T, TANSHO S, KAWASE K, YAMAGUCHI H: Cooperative anti-Candida effects of lactoferrin or its peptides in combination with azole antifungal agents. Microbiol. Immunol. (1996) 40:821–825.
  • WAKABAYASHI H, ABE S, TERAGUCHI S, HAYASAWA H, YAMAGUCHI H: Inhibition of hyphal growth azole-resistant strains of Candida albicans by triazole antifungal agents in the presence of lactoferrin-related compounds. Antimicrob. Agents Chemother. (1998) 42:1587–1591.
  • LI R, RINALDI M: In vitro antifungal activity of nikkomycin Z in combination with fluconazole or itraconazole. Antimicrob. Agents Chemother. (1999) 43:1401–4105.
  • BORGMYER J, SMITH C, KHAI HUTNK Q: Isolation and characterization of a 25 kDa antifungal protein from flax seeds. Biochem. Biophys. Res. Comm. (1992) 187:480–487.
  • DEMARSH P, SUCOLOSKI S, FREY C: The hematoregula-tory peptide, SK&F 107647, in combination with antifungal therapy in a murine Candida albicans infections. Can. J. Bot. (1995) 73: (Suppl. 1) S1199–1205.
  • •SK&F 107647 combined with fluconazole or amphotericin B produced significant increase in survival for immunocom-promised mice challenged with C. albicans.
  • HORWITZ A, MOTCHINK P, NADELL R: Fungicidal properties from bactericidal/permiability-increasing protein (BPI) act synergistically with fluconazole on a variety of Candida strains. Abstracts of the 37th Intel-sci-ence Conference on Antimicrobial Agents and Chemotherapy. Toronto, Canada. (1997) F102.
  • AMMONS S, AARDALEN K, FROEBEL S, LITTLE R: Efficacy of domain III peptide from bactericidal/permiability-increasing protein (BPI) in murine disseminated aspergillosis. Abstracts of the 37th Interscience Conference on Antimicrobial Agents and Chemotherapy. Toronto, Canada (1997):B–16.
  • ••The BPI-based XMP.391 enhanced amphotericin Beffectiveness in a murine model of aspergillosis.
  • FRANZOT S, CASADEVALL A: Pneumocandin L-743,872 enhances the activities of amphotericin B and fluconazole against Cryptococcus neoformans invitro. Antimicrob. Agents. Chemother. (1997) 41:331–336.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.