42
Views
32
CrossRef citations to date
0
Altmetric
Review

Therapeutic potential of cyclic nucleotide phosphodiesterase inhibitors in heart failure

Pages 963-973 | Published online: 24 Feb 2005

Bibliography

  • SHARPE N, DOUGHTY R: Epidemiology of heart failure and ventricular dysfunction. Lancet (1998) 352:S13-SI7.
  • CLELAND JGF, SWEDBERG K, POOLE-WILSON PA: Successes and failures of current treatment of heart failure. Lancet (1998) 352:5119-SI28.
  • MOVSESIAN MA: cAMP-mediated signal transduction in heart failure: molecular pathophysiology and therapeutic implications. J. Investigative Med. (1997) 45:432–440.
  • BENOTTI JR, GROSSMAN W, BRAUNWALD E et al: Hemodynamic assessment of amrinone. N Engl. J. Med. (1978) 299:1373–1377.
  • BAIM DS, MCDOWELL AV, CHERNILES J et al: Evaluation of a new bipyridine inotropic agent - milrinone - in patients with severe congestive heart failure. N Engl. J. Med. (1983) 309:748–756.
  • SINOWAY LS, MASKIN CS, CHADWICK B et al.: Long-term therapy with a new cardiotonic agent, WIN 47203: Drug-dependent improvement in cardiac perform-ance and progression of the underlying disease. J. Am. Coll. Cardiol (1983) 2:327–331.
  • URETSKY BF, GENERALOVICH T, REDDY PS et al: The acute hemodynamic effects of a new agent, MDL 17,043, in the treatment of congestive heart failure. Circulation (1983) 67:823–828.
  • JASKI BE, FIFER MA, WRIGHT RF et al: Positive inotropic and vasodilator actions of milrinone in patients with severe congestive heart failure. J. Clin. Invest. (1985) 75:643–649.
  • DIBIANCO R, SHABI R, SILVERMAN BD et al.: Oral amrinone for the treatment of chronic congestive heart failure: results of a multicenter randomized double-blind and placebo-controlled withdrawal study. J. Am. Coll. Cardiol (1984) 4:855–866.
  • MASSIE B, BOURASSA M, DIBIANCO R et al.: Long-term oral administration of amrinone for congestive heart failure: lack of efficacy in a multicenter controlled trial. Circulation (1985) 71:963–971.
  • DIBIANCO R, SHAI R, KOSTUK W et al.: A comparison of oral milrinone, digoxin and their combination in the treatment of patients with chronic heart failure. N Engl. J. Med. (1989) 320:677–683.
  • URETSKY BF, JESSUP M, KONSTAM MA et al.: Multicenter trial of oral enoximone in patients with moderate to moderately severe congestive heart failure. Lack of benefit compared with placebo. Circulation (1990) 82:774–780.
  • PACKER M, CARVER JR, RODEHEFFER RJ et al.: Effect of oral milrinone on mortality in severe chronic heart failure. N Engl. J. Med. (1991) 325:1468–1475.
  • NONY P, BOISSEL J-P, LIEVRE M et al.: Evaluation of the effect of phosphodiesterase inhibitors on mortality in chronic heart failure patients. Eur. J. Clin. Pharmacol (1994) 46:191–196.
  • DIES F, KRELL MJ, WHITLOW P et al.: Intermittent dobutamine in ambulatory patients with chronic cardiac failure. Circulation (1986) 74:11-38 (Abstract).
  • THE XAMOTEROL IN SEVERE HEART FAILURE STUDY GROUP: Xamoterol in severe heart failure. Lancet (1990) 336:1–6.
  • WAAGSTEIN F, BRISTOW M, SWEDBERG K et al.: Beneficial effects of metoprolol in idiopathic dilated cardiomyopathy. Lancet (1993) 342:1441–1446.
  • ••This is a landmark clinical study.
  • PACKER M, BRISTOW MR, COHN JN et al.: The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. N. Engl. J. Med. (1996) 334:1349–1355.
  • GILBERT EM, ABRAHAM WT, OLSEN S et al: Comparative hemodynamic, left ventricular functional and antiad-renergic effects of chronic treatment with metoprolol versus carvedilol in the failing heart. Circulation (1996) 94:2817–2825.
  • MOVSESIAN MA: Beta-adrenergic receptor agonists and cyclic nucleotide phosphodiesterase inhibitors: shifting the focus from inotropy to cyclic adenosine monophosphate. J. Am. Coll. Cardiol. (1999) 34:318–324
  • BRISTOW MR, GINSBURG R, UMANS V et al.: 131- and 132-adrenergic-receptor subpopulations in nonfailing and failing human ventricular myocardium: coupling of both receptor subtypes to muscle contraction and selective 131-receptor down-regulation in heart failure. Circ. Res. (1986) 59:297–309.
  • INGLESE J, FREEDMAN NJ, KOCH WJ, LEFKOWITZ RJ: Structure and mechanism of the G protein-coupled receptor kinases. J. Biol. Chem. (1993) 268:23735–23738.
  • UNGERER M, BOHM M, ELCE JS, ERDMANN E, LOHSE MJ: Altered expression of 6-adrenergic receptor kinase and 131-adrenergic receptors in the failing human heart. Circulation (1993) 87:454–463.
  • FELDMAN AM, CATES AE, VEAZEY WB et al.: Increase in the 40,000-mol wt pertussis toxin substrate (G protein) in the failing human heart. J. Clin. Invest. (1988) 82:189–197.
  • BOHM M, GIERSCHIK P, JAKOBS KH et al.: Increase of Gi alpha in human hearts with dilated but not ischemic cardiomyopathy. Circulation (1990) 82:1249–1265.
  • NIROOMAND F, LUTZ S, MURA R, BALTUS D: Increased activity of membrane-associated nucleoside diphos-phate kinase leads to inhibition of adenylyl cyclase in membranes from failing human myocardium. Circula-tion (1997) 96:1495–1496.
  • SCULPTOREANU A, ROTMAN E, TAKAHASHI M et al.: Voltage-dependent potentiation of the activity of cardiac L-type calcium channel alpha 1 subunits due to phosphorylation by cAMP-dependent protein kinase. Proc. Natl. Acad. Sci. USA (1993) 90:10135–10139.
  • SEILER S, WEGENER AD, WHANG DD, HATHAWAY DR,JONES LR: High molecular weight proteins in cardiac and skeletal muscle junctional sarcoplasmic reticulum vesicles bind calmodulin, are phosphorylated and are degraded by Ca2±-activated protease. J. Biol. Chem. (1984) 259:8550–8557.
  • TAKASAGO T, IMAGAWA T, SHIGEKAWA M: Phosphory-lation of the cardiac ryanodine receptor by cAMP-dependent protein kinase. J. BioChem. (Tokyo) (1989) 106:872–877.
  • HAIN J, ONOUE H, MAYRLEITNER M, FLEISCHER S, SCHINDLER H: Phosphorylation modulates the function of the calcium release channel of sarcoplasmic reticulum from cardiac muscle. J. Biol. Chem. (1995) 270:2074–2081.
  • SIMMERMAN HK, JONES LR: Phospholamban: proteinstructure, mechanism of action and role in cardiac function. Physiol. Rev. (1998) 78:921–947.
  • JAMES P, INUI M, TADA M et al: Nature and site ofphospholamban regulation of the Ca2+ pump of the sarcoplasmic reticulum. Nature (1989) 342:90–92.
  • SOLARO RJ, ROBERTSON SP, JOHNSON JD et al.:Troponin-I phosphorylation: a unique regulator of the amount of calcium required to activate cardiac myofibrils. Cold Spring Harb. Conf Cell Proliferation (1981) 8:901–911.
  • HABENER JF: Cyclic AMP response element bindingproteins: a cornucopia of transcription factors. Mol. Endocrinol. (1990) 4:1087–1094.
  • FENTZKE RC, KORCARZ CE, LANG RM et al.: Dilated cardiomyopathy in transgenic mice expressing a dominant-negative CREB transcription factor in the heart. J. Clin. Invest (1998) 101:2415–2426.
  • ••This study provides evidence that cAMP has beneficialeffects on maintaining normal left ventricular size as well as on contractility.
  • ARBER S, HUNTER JJ, ROSS J JR et al.: MLP-deficient miceexhibit a disruption of cardiac cytoarchitectural organization, dilated cardiomyopathy and heart failure. Cell (1997) 88:393–403.
  • ROCKMAN HA, CHIEN KR, CHOI DJ et al: Expression of abeta-adrenergic receptor kinase 1 inhibitor prevents the development of myocardial failure in gene-targeted mice. Proc. Natl. Acad. Sci. USA (1998) 95:7000–7005.
  • MINAMISAWA S, HOSHIJIMA M, CHU G et al.: Genetic complementation identifies phospholamban-sarcoplasmic reticulum Ca ATPase interaction as the primary defect that drives the onset of heart failure in dilated cardiomyopathy. J. Cardiac Failure (1999) 5:21 (Abstract).
  • ••The preceding two studies give evidence that stimulation ofcAMP-mediated signalling can reverse contractile failure and chamber dilatation in an animal model of cardiomyopa-thy not induced through direct effects on cAMP-mediated signalling.
  • CONTI M, JIN S-LC: The molecular biology of cyclicnucleotide phosphodiesterases. Prog. Nucleic Add Res. (1999) 63:1–38.
  • MICHAELI T, BLOOM TJ, MARTINS T et al.: Isolation andcharacterization of a previously undetected human cAMP phosphodiesterase by complementation of cAMP phosphodiesterase- deficient Saccharomyces cerevisiae. J. Biol. Chem. (1993) 268:12925–12932.
  • FISHER DA, SMITH JF, PILLAR JS, ST DENIS SH, CHENG JB: Isolation and characterization of PDE8A, a novel human cAMP-specific phosphodiesterase. BioChem. Biophys Res. Commun (1998) 246:570–577.
  • SODERLING SH, BAYUGA SJ, BEAVO JA: Cloning and characterization of a cAMP-specific cyclic nucleotide phosphodiesterase. Proc. Natl. Acad. Sci. USA (1998) 95:8991–8996.
  • SODERLING SH, BAYUGA SJ, BEAVO JA: Identificationand characterization of a novel family of cyclic nucleo-tide phosphodiesterases. J. Biol. Chem. (1998) 273:1553–1558.
  • SODERLING SH, BAYUGA SJ, BEAVO JA: Isolation and characterization of a dual-substrate phosphodies-terase gene family: PDE10A. Proc. Natl. Acad. Sci. USA (1999) 96:7071–7076.
  • MOVSESIAN MA, SMITH CJ, KRALL J et al.: Sarcoplasmic reticulum-associatedcyclicadenosine5-monophosphate phosphodiesterase activity in normal and failing human hearts. J. Clin. Invest. (1991) 88:15–19.
  • MOVSESIAN MA: cAMP-mediated regulation of sarcoplasmic reticulum function in heart failure. Ann. NY Acad. Sci. (1998) 853:231–239.
  • THE DIGITALIS INVESTIGATION GROUP: The effect ofdigoxin on mortality and morbidity in patients with heart failure. N Engl. J. Med. (1997) 336:525–533.
  • GOLDBERG LI, HSIEH Y-Y, RESNEKOV L: Newer catecho-lamines for treatment of heart failure and shock: an update on dopamine and dobutamine. Prog. Cardio-vasc. Dis. (1977) 19:327–340.
  • COHN JN, LEVINE TB, OLIVARI MT et al.: Plasma norepi-nephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl. J. Med. (1984) 311:819–23.
  • MICKEY JV, TATE R, MULLIKIN D, LEFKOWITZ RJ: Regula-tion of adenylate cyclase-coupled 13 adrenergic receptor binding sites by 13 adrenergic catecholamines in vitro. Mol. Pharm. (1976) 12:409–419.
  • HAYES JS, BRUNTON LL, MAYER SE: Selective activation of particulate cAMP-dependent protein kinase by isoproterenol and prostaglandin Ei. J. Biol. Chem. (1980) 255:5113–5119.
  • ••This is a seminal paper on the intracellular compartmenta-tion of cAMP metabolism in myocardium.
  • BUXTON IL, BRUNTON LL: Compartments of cyclic AMP and protein kinase in mammalian cardiomyocytes. J. Biol. Chem. (1983) 258:10233–10239.
  • XIAO R-P, HOHL C, ALTSCHULD R et al: 132-adrenergie receptor-stimulated increase in cAMP in rat heart cells is not coupled to changes in Ca2+ dynamics, contrac-tility, or phospholamban phosphorylation. J. Biol. Chem. (1994) 269:19151–19156.
  • YABANA H, SASAKI Y, NARITA H, NAGAO T: Subcellular fractions of cyclic AMP and cyclic AMP-dependent protein kinase and the positive inotropic effects of selective 131- and 132-adrenoceptor agonists in guinea pig hearts. J. Cardiovasc. Pharmacol. (1995) 26:893–898.
  • XIAO R-P, JI X, LAKATTA EG: Functional coupling of the 132-adrenoceptor to a pertussis toxin-sensitive G protein in cardiac myocytes. Mol. Pharmacol. (1995) 47:322–329.
  • HOHL CM, LI Q: Compartmentation of cAMP in adultcanine ventricular myocytes. Relation to single-cell free Ca2+ transients. Circulation (1991) 69:1369–1379.
  • XIAO R-P, LAKATTA EG: 13i-adrenoceptor stimulationand 132-adrenoceptor stimulation differ in their effects on contraction, cytosolic Ca2+ and Ca2+ current in single rat ventricular cells. Circ. Res. (1993) 73:286–300.
  • ALTSCHULD RA, STARLING RC, HAMLIN RL et al.:Response of failing canine and human heart cells to 132-adrenergie stimulation. Circulation (1995) 92: 1612-1618.
  • ZHOU Y-Y, CHENG H, BOGDANOV KY et al.: LocalizedcAMP-dependent signalling mediates 92-adrenergie modulation of cardiac excitation-contraction coupling. Am. J. Physic)]. (1997) 273:H1611–H1618.
  • BOHM M, REIGER B, SCHWINGER RHG, ERDMANN E: cAMP concentrations, cAMP dependent protein kinase activity and phospholamban in non-failing and failing myocardium. Cardiovasc. Res. (1994) 28:1713–1719.
  • SCHWINGER RH, MUNCH G, BOLCK B, KARCZEWSKI P,KRAUSE EG, ERDMANN E: Reduced Ca2±-sensitivity of SERCA 2a in failing human myocardium due to reduced serin-16 phospholamban phosphorylation. J. Mol. Cell Cardiol. (1999) 31:479–491.
  • KAUFFMAN RF, CROWE VG, UTTERBACK BG, ROBERTSON DW: LY195115: a potent, selective inhibitor of cyclic nucleotide phosphodiesterase located in the sarcoplasmic reticulum. Mol. Pharm. (1986) 30:609–616.
  • MOVSESIAN MA, KOMAS N, KRALL J, MANGANIELLO VC:Expression and activity of low K., cGMP-inhibited cAMP phosphodiesterase in cardiac and skeletal muscle. BioChem. Biophys. Res. Comm. (1996) 225:1058–1062.
  • RAPUNDALO ST, SOLARO RJ, KRANIAS EG: Inotropic responses to isoproterenol and phosphodiesterase inhibitors in intact guinea pig hearts: comparison of cyclic AMP levels and phosphorylation of sarcoplasmic reticulum and myofibrillar proteins. Circ. Res. (1989) 64:104–111.
  • ••One of the best studies of compartmental aspects of theeffects of first-generation cyclic nucleotide phosphodies-terase inhibitors in myocardium.
  • MOVSESIAN MA: Effects of PDE3 inhibitors on membrane-bound and cytosolic cyclic nucleotide hydrolytic activity in failing human myocardium. 1999 Gordon Conference on Cyclic Nucleotide Phosphodies-terases. (Abstract).
  • SHAKAR SF, ABRAHAM WT, GILBERT EM et al: Combined oral positive inotropic and beta-blocker therapy for treatment of refractory class IV heart failure. J. Am. Coll. Cardiol. (1998) 31:1336–1340.
  • SMITH CJ, KRALL J, MANGANIELLO VC, MOVSESIAN MA: Cytosolic and sarcoplasmic reticulum-associated low K., cGMP-inhibited cAMP phosphodiesterase in mammalian myocardium. BioChem. Biophys. Res. Comm. (1993) 190:516–521.
  • ••Perhaps the first report showing that different molecularweight forms of PDE3 are localised to different intracellular compartments.
  • MEACCI E, TAIRA M, MOOS, Jr. Metal.: Molecular cloning and expression of human myocardial cGMP-inhibited cAMP phosphodiesterase. Proc. Natl. Acad. Sci. USA (1992) 89:3721–3725.
  • ••The first cloning of a PDE3 isoform.
  • KASUYA J, GOKO H, FUJITA-YAMAGUCHI Y: Multiple transcripts for the human cardiac form of the cGMP-inhibited cAMP phosphodiesterase. J. Biol. Chem. (1995) 270:14305–14312.
  • EKHOLM D, KRALL J, ANDERSSON KE et al.: Cloning, expression and characterization of a PDE3A cyclic nucleotide phosphodiesterase isoform from vascular smooth muscle myocytes. 1999 Gordon Conference on Cyclic Nucleotide Phosphodiesterases. (Abstract).
  • HE R, KOMAS N, EKHOLM D et al.: Expression and characterization of deletion recombinants of two cGMP-inhibited cyclic nucleotide phosphodiesterases (PDE-3). Cell. BioChem. Biophys. (1998) 29:89–111.
  • BRUNKHORST D, V. DER LEYEN H, MEYER W, NIGBUR R, SCHMIDT-SCHUMACHER C, SCHOLZ H: Relation of positive inotropic and chronotropic effects of pimobendan, UD-CG 212 Cl, milrinone and other phosphodiesterase inhibitors to phosphodiesterase III inhibition in guinea-pig heart. Naunyn-Schmiedeberg's Arch. Pharmacol (1989) 339:575–583.
  • KAASIK A, OHISALO JJ: Membrane-bound phosphodies-terases in rat myocardium. J. Pharm. Pharmacol. (1996) 48:962–964.
  • LUGNIER C, MULLER B, LE BEC A, BEAUDRY C, ROUSSEAU E: Characterization of indolidan- and rolipram-sensitive cyclic nucleotide phosphodies-terases in canine and human cardiac microsomal fractions. J. Pharmacol Exp. Ther. (1993) 265:1142–1151.
  • LUGNIER C, KERAVIS T, LE BEC A, PAUVERT 0, PROTEAU S, ROUSSEAU E: Characterization of cyclic nucleotide phosphodiesterase isoforms associated to isolatedcar-diac nuclei. Biochim. Biophys. Acta (1999) 1472:431–446.
  • MULLER B, STOCLET JC, LUGNIER C: Cytosolic and membrane-bound cyclic nucleotide phosphodies-terases from guinea pig cardiac ventricles. Eur. Pharmacol. (1992) 225:263–272.
  • SHAHID M, WILSON M, NICHOLSON CD, MARSHALL RJ: Species-dependent differences in the properties of particulate cyclic nucleotide phosphodiesterase from rat and rabbit ventricular myocardium. J. Pharm. Pharmacol. (1990) 42:283–284.
  • KAJIMOTO K, HAGIWARA N, KASANUKI H, HOSODA S: Contribution of phosphodiesterase isozymes to the regulation of the L- type calcium current in human cardiac myocytes. Br. J. Pharmacol. (1997) 121:1549–1556.
  • VERDE I, VANDECASTEELE G, LEZOUALC'H F, FISCHMEISTER R: Characterization of the cyclic nucleo-tide phosphodiesterase subtypes involved in the regulation of the L-type Ca2+ current in rat ventricular myocytes. Br. J. Pharmacol. (1999) 127:65–74.
  • KATANO Y, ENDOH M: Differential effects of Ro 20-1724 and isobutylmethylxanthine on the basal force of contraction and beta-adrenoceptor-mediated response in the rat ventricular myocardium. BioChem. Biophys. Res. Commun. (1990) 167:123–129.
  • KATANO Y, ENDOH M: Effects of a cardiotonic quinoli-none derivative Y-20487 on the isoproterenol-induced positive inotropic action and cyclic AMP accumulation in rat ventricular myocardium: comparison with rolipram, Ro 20-1724, milrinone and isobutylmethylx-anthine. J. Cardiovasc. Pharmacol. (1992) 20:715–722.
  • SHAHID M, NICHOLSON CD: Comparison of cyclic nucleotide phosphodiesterase isoenzymes in rat and rabbit ventricular myocardium: positive inotropic and phosphodiesterase inhibitory effects of Org 30029, milrinone and rolipram. Naunyn Schmiedebergs Arch. Pharmacol. (1990) 342:698–705.
  • HERZER WA, THOMAS NJ, CARCILLO JA, TOFOVIC SP, JACKSON EK: Effects of Type IV phosphodiesterase inhibition on cardiac function in the presence and absence of catecholamines. J. Cardiovasc. Pharmacol (1998) 32:769–776.
  • HOUSLAY MD, SULLIVAN M, BOLGER GB: The multien-zyme PDE4 cyclic adenosine monophosphate-specific phosphodiesterase family: intracellular targeting, regulation and selective inhibition by compounds exerting anti-inflammatory and antidepressant actions. Adv. Pharmacol (1998) 44:225–342.
  • KRALL J, TASKÉN K, STAHELI J, JAHNSEN T, MOVSESIAN MA: Identification and quantitation of cAMP-dependent protein kinase R subunit isoforms in subcellular fractions of human myocardium. J. Mol Cell Cardiol (1999) 31:971–980.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.