35
Views
11
CrossRef citations to date
0
Altmetric
Review

Developing G-quartet oligonucleotides as novel anti-HIV agents: focus on anti-HIV drug design

Pages 1777-1785 | Published online: 24 Feb 2005

Bibliography

  • MILLIGAN JF, MATTEUCCI MD, MARTIN JC: Current concepts in antisense drug design. J. Med. Chem. (1993) 36:1923–1937.
  • SCZAKIEL C: The design of antisense RNA. Antisen. Nucleic Acid Drug Dev. (1997) 7:439–444.
  • DE CLERCQ E: Toward improved anti-HIV chemotherapy: therapeutic strategies for intervention with HIV infections. J. Med. Chem. (1995) 38:2491–2517.
  • GALDERISI U, CASCINO A, GIORDANO A: Antisenseoligonucleotides as therapeutic agents. J Cell. Physiol. (1999) 181:251–257.
  • SVINARCHUK F, NAGIBNEVA I et al.: Recruitment oftranscription factors to the target site by triplex-forming oligonucleotides. Nucleic Acids Res. (1997) 25:2459–3464.
  • GIOVANNANGEIL C, DIVIACCO S et al.: Accessibility ofnuclear DNA to triplex-forming oligonucleotides: The integrated HIV-1 provirus as a target. Proc. Natl. Acad. Sci. USA (1997) 94:79–84.
  • HIRATOU T, TSUKAHARA S et al.: Inhibition of HIV-1 replication by a two-strand system (1,11.0s) targeted to the polypurine tract. FEBS Lett. (1999) 456:186–190.
  • WYATT JR, VICKERS TA et al.: Combinatorially selected g-uanosine-quartet structure is a potent inhibitor of HIV envelope-mediated cell fusion. Proc. Natl. Acad. Sci. USA (1994) 91:1356–1360.
  • RANDO RF, OJWANG J et al: Suppression of humanimmunodeficiency virus Type 1 activity in vitro by oligonucleotides which form intramolecular tetrads. J Biol. Chem. (1995) 270:1754–1760.
  • JING N, RANDO R, POMMIER Y, HOGAN ME: Ion selectivefolding of loop domains in a potent anti-HIV oligonu-cleotide. Biochemistry (1997) 36:12498–12505.
  • MAUUMDER A, NEAMATI N et al: Inhibition of thehuman immunodeficiency virus Type 1 integrase by guanosine quartet structures. Biochemistry (1996) 35:13762–13771.
  • JING N, DE CLERCQ E et al.: Stability-activity relation-ships of a family of G-tetrad forming oligonucleotides as potent HIV inhibitors. J. Biol. Chem. (2000) 275:3421–3430.
  • GELLERT M, LIPSETT MN, DAVIES DR: Helix formationby guanylic acid. Proc. Natl. Acad. Sci. USA (1962) 48:2013–2018.
  • WILLIAMSON JR: G-quartet structures in telomeric DNA. Ann. Rev. Biophys. Biomol Struct. (1994) 23:703–730.
  • GILBER DE, FEIGON J: Multistranded DNA structures. Curr. Opin. Struct. Biol. (1999) 9:305–314.
  • HENDERSON E: Telomere DNA structure. In: Telomeres. Cold Spring Harbor Laboratory Press, USA (1995):11–34.
  • RHODES R, GIRALDO R: Telomere structure and function. Curr. Opin. Struct. Biol (1995) 5:311–322.
  • PILCH DS, PLUM GE, BRESLAUER KJ: The thermody-namics of DNA structures that contain lesions or guanine tetrads. Curr. Opin. Struct. Biol (1995) 5:334–342.
  • MERGNY JL, PHAN AT, LACROIX L: Following G-quartet formation by UV-spectroscopy. FEBS Lett. (1998) 435:74–78.
  • SEN D, GILLBERT W: A sodium-potassium switch in theformation of four-stranded G4-DNA. Nature (1990) 344:410–414.
  • GOU Q, LU M, KALLENBACH NR: Effect of thymine tract length on the structure and stability of model telomeric sequences. Biochemistry (1993) 32:3596–3603.
  • BUCKHEIT RW, ROBERSON JL et al.: Potent and specific inhibition of HIV envelop-mediated cell fusion and virus binding by G-quartet-forming oligonucleotide (ISIS 5320). AIDS Res. Hum. Retroviruses (1994) 10:1497–1506.
  • STODDART CA, RABIN LA et al.: Inhibition of humanimmunodeficiency virus Type 1 infection in SCID-hu Thy/fly mice by the G-quartet-forming oligonucleo-tide, ISIS 5320. Antimicrob. Agents Chemother. (1998) 42 :2113–2115.
  • OJWANG JO, BUCKHEIT RW et al.: 130177, an oligonu-cleotide stabilized by an intramolecular g-uanosine octet, is a potent inhibitor of laboratory strains and clinical isolates of human immunodeficiency virus Type 1. Antimicrob. Agents Chemother. (19 9 5) 39:2426–2435.
  • WALLACE TL, GAMBA-VITALO C et al.: Acute, multiple-dose and genetic toxicology of AR177, an anti-Hill oligonucleotide. Toxicol. Sci. (2000) 53:63–70.
  • JING N, GAO XL et al.: Potassium-induced loop confor-mation transition of a potent anti-H1Voligonucleotide. Biomol Struct. Dyn. (1997) 15:573–585.
  • JING N, HOGAN ME: Structure-activity of tetrad-forming oligonucleotides as a potent anti-HIV therapeutic drug. J. Biol. Chem. (1998) 273:34992–34999.
  • ESTE JA, CABRERA C et al.: Human immunodeficiency virus glycoprotein gp120 as the primary target for the antiviral action of AM 77 (Zintevir). Mol. Pharmacol (1998) 53 :340–345.
  • KATZ RA, SKALKA AM: The r etr ovir al enzymes. Ann. Rev. Biochem. (1994) 63:133–173.
  • ASANTE-APPIAH E, SKALKA AM: 1-11V-1 integrase: structure organization, conformational changes and catalysis. Adv. Virus Res. (1999) 52:351–369.
  • CHUN TVV, STUYVER L et al.: Presence of an inducible H1V-1 latent reservoir during highly active antiretro-viral therapy. Proc. Natl. Acad. Sci. USA (1997) 94:13193–13197.
  • WONG JK, HEZARECH M et al.: Recovery of replication-competent HIV despite prolonged suppression of plasma viremia. Science (1998) 278:1291–1295.
  • FINIZI D, HERMANKOVA M et al.: Identification of a reservoir for Hill-1 in patients on highly active antiret-roviral therapy. Science (1998) 278:1295–1300.
  • BUSHMAN FD, ENGELMAN A et al: Domains of integrase protein of human immunodeficiency virus type-1 responsible for polynucleotidyl transfer and zinc binding. Proc. Natl. Acad. Sci. USA (1993) 90:3428–3432.
  • HICKMAN AB, PLAMER I et al.: Biophysical and enzymatic properties of the catalytic domain of H1V-1 integrase. J. Biol. Chem. (1994) 46:29279–29287.
  • DYDA F, HICKMAN AB et al.: Crystal structure of thecatalytic domain of H1V-1 integrase: similarity to other © Ashley Publications Ltd. All rights reserved.Exp. Opin. Invest. Drugs (2000) 9(8) polynueleotidyl transferases. Science (1994) 266:1981–1986.
  • GOLDGUR Y, DYDA F et al.: Three new structures of thecore domain of HIV-1 integrase: an active site that binds magnesium. Proc. Natl. Acad. ScL USA (1998) 95:9150–9154.
  • JENKINS TM, ESPOSITO D et al.: Critical contactsbetween HIV-1 integrase and viral DNA identified by structure-based analysis and photo-crosslinking. EMBO J (1997) 16:6849–6859.
  • DRAKE RR, NEAMATI N et al.: Identification of a nucleo-tide bin ding site in HIV-1 integrase. Proc. Natl. Acad. ScL USA (1998) 95:4170–4175.
  • JENKINS TM, ENGELMAN A etal.: A soluble active mutantof HIV-1 integrase: involvement of both the core and carboxyl-terminal domains in multimerization. j Chem. (1996) 271(13):7712–7718.
  • BURKE CJ, SANYAL G et al: Structure implication ofspectroscopic characterization of a putative zinc fingerpeptide from HIV-1 integrase. j Biol. Chem. (1992) 267:9639–9644.
  • HAUGAN R, NILSEN BM et al.: Characterization of theDNA-binding activity of HIV-1 integrase using a filter binding assay. Biochem. Biophys. Res. Commun. (1995) 217:802–810.
  • ZHENG R, JENKINS TM, CRAIGIE R: Zinc folds theN-terminal domain of HIV-1 integrase, promotes multimerization and enhances catalytic activity. Proc. Natl. Acad. ScL USA (1996) 93:13659–13664.
  • VINK C, OUDE GROENEGER AM, PLASTERK RHA: Identi-fication of the catalytic and DNA-binding region of the human immunodeficiency virus Type I integrase protein. Nucleic Acids Res. (1993) 21:1419–1425.
  • ENGELMAN A, HICKMAN AB, CRAIGE R: The core andcarboxyl-terminal domain of the integrase protein of human immunodeficiency virus Type 1 each contribute to non-specific DNA binding. j Vim/ (1994) 68:5911–5817.
  • WOERNER AM, MAURCUS-SEKURA CJ: Characterization of a DNA binding domain in the C-terminus of HIV-1 integrase by deletion mutagenesis. Nucleic Acids Res. (1993) 1:3507–3511.
  • LODI PJ, ERNST JA et al.: Solution structure of the DNA binding domain of HIV-1 integrase. Biochemistry (1995) 34:9826–9833.
  • EIJKELENBOOM AP, LUTZKE RA et al.: The DNA-binding domain of HIV-1 integrase has an 5H3-like fold. Nature Struct. Biol. (1995) 2:807–810.
  • POMMIER Y, NEAMATI N: Inhibitors of human immunodeficiency virus integrase. Adv. Virus Res. (1999) 52:427–459.
  • JING N, MARCHAND C et al.: Mechanism of inhibition of HIV-1 integrase by G-tetrad forming oligonucleotides. J. Biol. Chem. (2000) 275:21460–21467.
  • BISHOP JS, GUY-CAFFEY JK et al.: Intramolecular G-quartet motifs confer nuclease resistance to a potent anti-HIV oligonucleotide. J. Biol. Chem. (1996) 271:5698–5703.
  • CHEREPANOV P, ESTE JA et al.: Mode of interaction ofG-quartets with the integrase of human immunodefi-ciency virus Type 1. Mol Pharmacol (1997) 52:771–780.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.