117
Views
42
CrossRef citations to date
0
Altmetric
Review

Antifungals targeted to sphingolipid synthesis: focus on inositol phosphorylceramide synthase

Pages 1787-1796 | Published online: 24 Feb 2005

Bibliography

  • WALSH TJ: Invasive fungal infections: problems and challenges for developing new antifungal compounds. In: Emerging Targets in Antibacterial and Antifungal Chemotherapy Sutcliffe JA, Georgopapadakou NH (Eds.), Chapman and Hall, New York, USA (1992):349–373.
  • BECK-SAGUE C, JARVIS W: Secular trends in the epidemiology of nosocomial fungal infections in the United States, 1980-1990. National Nosocomial Infections Surveillance System. J Infect. Dis. (1993) 1 67:1247–1251.
  • GEORGOPAPADAKOU NH, WALSH TJ: Human mycoses: drugs and targets for emerging pathogens. Science (1994) 2 6 4:371–373.
  • GEORGOPAPADAKOU NH, WALSH TJ: Antifungal agents: chemotherapeutic targets and immunologic strategies. Antimicrob. Agents Chemother. (19 9 6) 40:279–291.
  • GEORGOPAPADAKOU NH: Antifungals: mechanism of action and resistance, established and novel drugs. Curr. Opin. Microbic)]. (1998) 1:547–557.
  • •A useful review that focuses on agents under development and on emerging targets.
  • GEORGOPAPADAKOU NH: Antifungals targeted to the cell wall. In: Emerging Drugs: the Prospect for Improved Medicines. Bowman WC, Fitzgerald JD, Tylor JB (Eds.), Ashley Publications Ltd., London, UK (1996):261–276.
  • SHEEHAN DJ, HITCHCOCK CA, SIBLEY CM: Current and emerging azole antifungal agents. Clin. Mkrobiol. Rev. (1999) 12:40–79.
  • SANGLARD D, ISCHER F, CLABRESE D, DE MICHELI M, BILLE J: Multiple resistance mechanisms to azole antifungals in yeast clinical isolates. Drug Resist. Updates (1998) 1:255–265.
  • •A thorough review of the azole resistance mechanisms in clinical isolates focusing on Candida.
  • WHITE TC, MARR KA, BOWDEN RA: Clinical, cellular and molecular factors that contribute to antifungal drug resistance. Clin. Mkrobiol. Rev. (1998) 11:382–402.
  • CURRENT WL, TANG J, BOYLAN C et al.: Glucan biosyn-thesis as a target for antifungals: the echinocandin class of antifungal agents. In: Antifungal Agents: Discover)/ and Mode of Action. Dixon GK, Copping LG, Hollomon DW (Eds.), Bios Scientific Publishers, Oxford, UK (1995):143–160.
  • KURTZ MB, DOUGLAS CM: Iipopeptide inhibitors offungal glucan synthase. J. Med. Vet. Mycol. (1997) 35:79–86.
  • DICKSON RC: Sphingolipid functions in Saccharomyces cerevisiae: comparison to mammals. Ann. Rev. Biochem. (1998) 67:27–48.
  • •Discusses the most recent developments in yeast sphingolipids focusing on S. cerevisiae.
  • LESTER R, DICKSON R: Sphingolipids with inositolphosphate-containing head groups. Adv. Lipid Res. (1993) 26:253–274.
  • DICKSON RC, LESTER RL: Yeast sphingolipids. Biochim. Biophys. Acta (1999) 1 42 6:347–357.
  • SKRZYPEK M, LESTER R, DICKSON R: Suppressor gene analysis reveals an essential role for sphingolipids in transport of glycosylphosphatidylinositol-anchored proteins in Saccharomyces cerevisiae. J. Bacteriol (1997) 179:1513–1520.
  • TOLEDO MS, LEVERY SB, STRAUS AH et al.: Characteriza-tion of sphingolipids from mycopathogens: specific factors correlating with expression of 2-hydroxy fatty acyl (p-Delta 3-un satur ation in cerebrosides of Para coccidioides brasiliensis and Aspergillus fumigatus. Biochemistry (1999) 38:7294–7306.
  • ZHONG W, JEFFRIES MW, GEORGOPAPADAKOU NH: Inhibition of inositol phosphorylceramide synthase by aureobasidin Ain Candida and Aspergillusspecies. Antimicrob. Agents Chemother. (2000) 44:651–653.
  • MERRILL AH, SWEELEY CC: Sphingolipids: metabolism and cell signaling. In: Biochemistry of Lipids, Lipoproteins and Membranes. Vance D, Vance JE (Eds.), Elsevier Science, New York, USA (1996):309–339.
  • BROWN DA, LONDON E: Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J Biol. Chem. (2000) 275:17221–17224.
  • HUWILER A, KOLTER T, PFEILSCHIFTER J, SANDHOFF K: Physiology and pathophysiology of sphingolipid metabolism and signaling. Biochim. Biophys. Acta (2000) 1485:63–99.
  • HANNUN YA, OBEID LM, DBAIBO GS: Ceramide: a novel second messenger and lipid mediator. In: Lipid Second Messengers. Handbook of Lipid Research, Vol. 8. Bell SM, Exton H, Prescott SM (Eds.), Plenum Press, New York, USA and London, UK (1996):177–204.
  • HANNUN YA, LUBERTO C: Ceramide in the eukaryotic stress response. Trends Cell Biol. (2000) 10:73–80.
  • IKAI K, TAKESAKO K, SHIOMI K et al.: Structure of aureobasidin A. J Antibiot. (1991) 44:925–933.
  • NAGIEC M, NAGIEC E, BALTISBERGER J et al.: Sphingolipid synthesis as a target for antifungal drugs. Complementation of the inositol phosphorylcera-mide synthase defect in a mutant of Saccharomyces cerevisiae by the AURI gene. J. Biol. Chem. (1997) 272:9809–9817.
  • ••A seminal paper that revealed the biochemical function ofthe target of aureobasidin, clearing the way for SAR studies with inhibitors. It is perhaps instructive to note that the gene for the enzyme, discovered in 1994, offered no clues as to its biochemical function.
  • ENDO M, TAKESAKO K, KATO I, YAMAGUCHI H: Fungicidal action of aureobasidin A, a cyclic depsip ep-tide antifungal antibiotic, against Saccharomyces cerevisiae. Antimicrob. Agents Chem other. (1997) 41 (3):672–676.
  • BUEDE R, RINKER-SCHAFFER C, PINTO W, LESTER R,DICKSON R: Cloning and characterization of LCBI, a Saccharomyces gene required for biosynthesis of the long-chain base component of sphingolipids. [published erratum appears in J. Bacteriol (1993) 175:919] Bacteriol (1991) 173:4325–4332.
  • NAGIEC M, BALTISBERGER J, WELLS G et al: The LCB2 gene of Saccharomyces and the related LCBI gene encode subunits of serine palmitoyltransferase, the initial enzyme in sphingolipid synthesis. Proc. Natl. Acad. ScL USA (1994) 91:7899–7902.
  • ZHAO C, BEELER T, DUNN T: Suppressers of the Ca2±-sensitive yeast mutant (csg2) identify genes involved in sphingolipid biosynthesis. Cloning and characterization of SCS/, a gene required for serine palmitoyltransferase activity. J. Biol. Chem. (1994) 269:21480–21488.
  • GABLE K, SLIFE H, BACIKOVA D et al.: Tsc3p is an80-amino acid protein associated with serine palmitoyltransferase and required for optimal activity. J. Biol. Chem. (2000) 275:7597–7603.
  • BEELER T, BACIKOVA D, GABLE K et al.: The Saccharo-myces cerevisiae TSCIO/YBR265w gene encoding 3-ketosphinganine reductase is identified in a screen for temperature-sensitive suppressers of the Ca2+-sensitive Acsg2 mutant. J Biol. Chem. (1998) 273:30688–30694.
  • GRILLEY MM, STOCK SD, DICKSON RC, LESTER RL,TAKEMOTO JY: Syringomycin gene SYR2 is essential for sphingolipid 4-hydroxylation in Saccharomyces cerevisiae. J. Biol. Chem. (1998) 273:11062–11068.
  • OH CS, TOKE DA, MANDALA S, MARTIN CE: EL02 andEL03, homologues of the Saccharomyces cerevisiae ELOI gene, function in fatty acid elongation and are required for sphingolipid formation. J Biol. Chem. (1997) 272:17376–17384.
  • HEIDLER S, RADDING J: The AURI gene in Saccharo-myces cerevisiae encodes dominant resistance to the an tifungal agent Aureobasidin A (LY295337). Antimi-crob. Agents Chemother. (1995) 39:2765–2769.
  • HASHIDA-OKADO T, OGAWA A, ENDO M, YASUMOTO R,TAKESAKO K, KATO I: AURI, a novel gene conferring aureobasidin resistance on Saccharomyces cerevisiae: a study of defective morphologies in Aur1p-depleted cells. Mol. Gen. Genet. (1996) 251:236–244.
  • ZHONG W, MURPHY DJ, GEORGOPAPADAKOU NH: Inhibition of yeast inositol phosphorylceramide synthase by aureobasidin A measured by a fluorometric assay. FEBS Lett. (1999) 463:241–244.
  • BEELER TJ, FU D, RIVERA J et al: SURI (CSGI/BCL21), agene necessary for growth of Saccharomyces cerevisiaein the presence of high Ca2+ concentrations at 37°C, is required for mannosylation of inositolphos-phorylceramide. Mol. Gen. Genet. (1997) 255:570–579.
  • DICKSON RC, NAGIEC EE, WELLS GB, NAGIEC MM, LESTER RL: Synthesis of mannose(inositol-P) 2-ceramide, the major sphingolipid in Saccharomyces cerevisiae, requires the IPTI (YDR072c) gene. J. Biol. Chem. (1997) 272:29620–29625.
  • LEBER A, FISCHER P, SCHNEITER R, KOHLWEIN SD,DAUM G: The yeast mic2 mutant is defective in the formation of mannosyl-diinositolphosphoryl ceramide. FEBS Lett. (1997) 411:211–214.
  • MERRILL AH, WANG E, GILCHRIST DG, RILEY RT:Fumonisins and other inhibitors of de novo sphingolipid biosynthesis. Adv. Lipid Res. (1993) 26:215–234.
  • ZWEERINK MM, EDISON AM, WELLS GB, PINTO W, LESTER RL: Characterization of a novel, potent and specific inhibitor of serine palmitoyltransferase. Biol. Chem. (1992) 267:25032–25038.
  • HORN WS, SMITH JL, BILLS GF et al.: Sphingofungins Eand F: novel serine palmitoyltransferase inhibitors from Paecilomyces variotii. J. Antibiot. (1992) 45:1692–1696.
  • MANDALA SM, FROMMER BR, THORNTON RA et al.: Inhibition of serine palmitoyltransferase activity by lip o x amycin. j Antibiot (1994) 47:376–379.
  • MIYAKE Y, KOZUTSUMI Y, NAKAMURA S, FUJITA T, KAWASAKI T: Serine palmitoyltransferase is the primary target of a sphingosine-like immunosuppres-sant, ISP-1/myriocin. Biochem. Biophys. Res. Commun. (1995) 211:396–403.
  • MANDALA S, THORNTON R, FROMMER B, DREIKORN S, KURTZ M: Viridiofungins, novel inhibitors of sphingolipid synthesis. J Antibiot. (1997) 50:339–343.
  • WANG E, NORRED WP, BACON CW, RILEY RT, MERRILL AH: Inhibition of sphingolipid biosynthesis by fumonisins. Implications for diseases associated with Fusarium moniliforme. J. Biol. Chem. (1991) 266:14486–14890.
  • MERRILL AH: Fumonisins and other inhibitors of denovo sphingolipid biosynthesis. In: Advances in Lipid Research: Sphingolipids and their Metabolites. Bell RM, Hannum YA, Merrill AH (Eds.), Academic Press, San Diego, USA (1993) 26:215–234.
  • MANDALA S, THORNTON R, FROMMER B et al.: The discovery of australifungin, a novel inhibitor of sp h in gan in e N-acyl tr an s f er as e from Sporormiella australis. Producing organism, fermentation, isolation and biological activity. J. Antibiol (1995) 48:349–356.
  • IKAI K, TAKESAKO K, SHIOMI K et al: Structure of aureobasidin A. J Antibiol (1991) 44:925–933.
  • TAKESAKO K, IKAI K, HARUNA F et al.: Aureobasidins, new antifungal antibiotics: taxonomy, fermentation, isolation and properties. J Antibiol (1991) 44:919–924.
  • TAKESAKO K, KURODA H, INOUE T et al.: Biological properties of aureobasidin A, a cyclic depsipeptide antifungal antibiotic. J Antibiol (1993) 46:1414–1420.
  • OGAWA A, HASHIDA-OKADO T, ENDO M et al: Role of ABC transporters in aureobasidin A resistance. Antimi-crob. Agents Chemother. (1998) 42:755–761.
  • AWAZU N, IKAI K, YAMAMOTO J et al: Structures and antifungal activities of new aureobasidins. j Antibiol (1995) 48:525–527.
  • MANDALA S, THORNTON R, ROSENBACH M et al: Khafrefungin, a novel inhibitor of sphingolipid synthesis. J. Biol. Chem. (1997) 272:32709–32714.
  • ACHENBACH H, MUHLENFELD A, FAUTH U, ZAHNER H: The galbonolides. Novel powerful antifungal macrolides from Streptomyces galbus spp. Eurythermus. Ann. NY Acad. Sci. (1988) 544:128–140.
  • MANDALA SM, THORNTON RA, MILLIGAN J et al.: Rustmicin, a potent antifungal agent, inhibits sphingolipid synthesis at inositol phosphoceramide synthase. J. Biol. Chem. (1998) 273:14942–14949.
  • HARRIS GH, SHAFFIE A, CABELLO MA et al.: Inhibition of fungal sphingolipid biosynthesis by rustmicin, galbonolide B and their new 21-hydroxy analogs. J. Antibiot. (1998) 51:837–844.
  • GORDEE R, FARMER J, ZECKNER D: LY295337 a novel cyclic depsipeptide antifungal antibiotic. I. In vitro antifungal activity. In: Abstracts of the 32ad Intersci. Conf Antimicrob. Agents Chemother. American Society for Microbiology, Washington DC, USA (1992) 496:193 (Abstract).
  • ZECKNER D, BUTLER T, BOYLAN C et al: LY295337 anovel cyclic depsipeptide antifungal antibiotic. II. In vivo antifungal activity. In: Abstracts of the 32a1 Intersci. Conf Antimicrob. Agents Chemother. American Society for Microbiology, Washington DC, USA (1992) 497:193 (Abstract).
  • BUTLER T, ZECKNER D, BOYLAN C et al: LY295337 a novel cyclic depsipeptide antifungal antibiotic. III. Resistance development studies. In: Abstracts of the 32nd Intersci. Conf Antimicrob. Agents Chemother. American Society for Microbiology, Washington DC, USA (1992) 498:194 (Abstract).
  • RANE DF, COOPER AB, DESAI JA et al.: Anovel antifungal cyclodepsip ep tide: synthesis and structure-activity relationships of new cyclodepsipeptides. In: Abstracts of the 36th Intersci. Conf Antimicrob. Agents Chemother. American Society for Microbiology, Washington DC, USA (1996) F-196:134 (Abstract).
  • COOPER AB, JAO E, RANE DF et al: Total synthesis of the antifungal cyclic depsipeptides 5CH53174 and 54256. In: Abstracts of the 214th American Chemical Society National Meeting (Div. Med. Chem.). Div. Med. Chem., Amer. Chem. Soc., Washington DC, USA (1997):159.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.